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Abstract 
The cowpea (Vigna unguiculata (L.) Walp) it is a leguminous widely cultivated in Northeast of Brazil. In the 
state of Ceara, its cultivation is performed mainly by family farms who make use of traditional varieties of good 
adaptation to the growing region. Thus, characterizing traditional varieties with characteristics of adaptation to 
regions with water shortage is essential for the production of food in the world, especially in semi-arid regions. 
In this sense, the objective was to evaluate the physiological and biochemical responses in three genotypes of 
cowpea, being two traditional varieties grown in Ceara (Sempre-Verde and Cabeça-de-Gato) and a genotype 
characterized as a standard of drought tolerance (Pingo-de-Ouro-1,2) under three water regimes: irrigated, 
moderate deficit and severe water deficit. The parameters evaluated were: gas exchange, chlorophyll a 
fluorescence, photosynthetic pigments, organic solutes (proline, total carbohydrates, reducing and non-reducing 
carbohydrates), starch and enzyme activity (APX, G-POD, CAT and SOD). The genotype Pingo-de-Ouro-1,2 
confirmed its tolerance pattern in a water deficit condition, presenting greater water potential, higher 
photosynthetic rate, high levels of total carbohydrates and high accumulation of proline. Among the traditional 
varieties, the Cabeça-de-Gato presented superior photosynthesis to Sempre-Verde higher Electron Transport Rate 
(ETR), reflecting in a greater photochemical quenching (qP) and a greater accumulation of proline, indicating 
that this variety presents more pronounced adaptive characteristics for water restriction conditions, which is a 
common condition to the Brazilian semiarid. 

Keywords: osmotic adjustment, chlorophyll fluorescence, biochemistry, drought tolerance, gas exchange, Vigna 
unguiculata (L.) Walp 

1. Introduction 
The cowpea (Vigna unguiculata (L.) Walp.) is a legume originating in West Africa, having great nutritional and 
economic importance where it is cultivated, such as the semi-arid tropics, Asia, Africa, south-east Europe, and 
Central and South America. Its cultivation is justified by its development and productive capacity in areas where 
other crops do not produce satisfactorily, due to high temperatures and irregular rains (Akibode & Maredia, 
2011). In Brazil, its cultivation is of great importance in the North and Northeast, with increasing progress in the 
Central-West region (Rocha et al., 2009).  

Plants generally acclimate or adapt to environments with limitations, involving various protection mechanisms, 
such as, morphological, physiological, biochemical and molecular. Water is considered the most important and 
limiting resource for growth and crop productivity, making its restriction one of the most prejudicial abiotic 
stresses in relation to ability, survival and yield of crops (Pinheiro & Chaves, 2011; Simova-Stoilova et al., 2015; 
Gagné-Bourque et al., 2016). To deal with these water restriction conditions the plants developed, over time, a 
variety of adaptive strategies, based on the concepts of escape, avoidance and tolerance (Goufo et al., 2017). An 
example would be the development of mechanisms of control at the physiological level, such as, regulation of 
stomatal opening, directly affecting the perspiration and CO2 assimilation (Alderfasi et al., 2017; Sicher, Timlin, 
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& Bailey, 2012), modulation of gas exchange and alterations to biochemical level simultaneously (Goufo et al., 
2017; Rivas et al., 2016), in addition to morphological changes such as the development of deeper roots (Araus 
et al., 2002), decrease of the growth rate and reduction of leaf area (Cardona-Ayala et al., 2013). At the 
biochemical level, plants that present a standard tolerance to water deficit seek the maintenance of tissue 
turgidity through osmotic adjustment, through the accumulation of inorganic or organic solutes, being that the 
synthesis and/or accumulation of these solutes will depend on the water status of the plant and the genotype 
(Blum, 2017; Rivas et al., 2016).  

The role of osmoprotection in cowpea is not well established and presents divergences between the different 
genotypes. In some cultivars under water stress, rapid and significant changes in proline levels are observed, 
favoring osmotic adjustment (Hamidou, Zombre, & Braconnier, 2007; Costa et al., 2011). In other cultivars, 
proline does not accumulate or only increases after several days of the imposition of the water deficit (Singh & 
Reddy, 2011; Shui et al., 2013). This delayed response may be linked to the protection of the photosynthetic 
apparatus (Goufo et al., 2017), once this solute acts on the reduction of NADPH from glutamate (proline 
precursor), thus avoiding the generation of singlet oxygen (Cecchini et al., 2011). In addition to proline, other 
organic solutes may be directly involved in osmotic adjustment and may contribute of differential form in 
tolerance to water stress in cowpea. 

Due to these variations between rapid and late responses, the physiological and biochemical changes in cowpea 
in a water deficiency condition are not yet fully understood. However, these late responses can be more specific 
and can be directly related to the mechanisms induced by the diffusive and biochemical limitations of 
photosynthesis in order to protect the photosynthetic apparatus against excess reactive oxygen species. In general, 
atmospheric CO2 diffuses through the stomata into the intercellular spaces and then through the mesophyll to the 
carboxylation sites. The limitations to the assimilation of CO2 imposed by the stomatal closure in the leaves 
during the water stress can lead to an imbalance between the generation of electrons in photosystem II (PSII) and 
the electron requirement for photosynthesis. In turn, this could lead to hyperexcitation and subsequent 
photoinhibitory damage of the PSII reaction centers from the mesophyll and the biochemical limitations of 
photosynthesis. 

All this divergence between the answers, resulting from the great genetic diversity of the cowpea, is the object of 
study by many researchers who seek to elucidate the interaction between the physiological and biochemical 
processes to deal with drought and to identify promising genotypes (Singh & Reedy, 2011). The objective of this 
work was to study the effects of water stress on physiological and biochemical responses in three genotypes of 
cowpea with differences and responses that are important for the Brazilian semi-arid region. 

2. Methodology 
2.1 Plant Material, Growing Conditions and Experimental Design 
The experiment was conducted in a greenhouse belonging to the Federal University of Ceara (UFC), in Fortaleza, 
from June to August 2016, where the flux density of photosynthesizing photons at noon was approximately 
1.300 mol m-2 s-1and average temperature of 32.0±2 °C. Three genotypes were used, two traditional varieties 
being collected in the state of Ceará/Brazil: Sempre-Verde (from Tururu-CE/Brazil) and Cabeça-de-Gato 
(originally from Juazeiro do Norte-CE/Brazil); and the standard genotype for drought tolerance 
Pingo-de-Ouro-1,2 (CE-1019). The seeds were pre-germinated on pre-weighed “germitest” type filter paper and 
moistened with distilled water and maintained in a chamber under controlled conditions (temperature at 25 ºC 
and photoperiod of 12 hours) until the emergence of the radicles. Subsequently the seeds with the emerged 
radicles (germinated) were transferred to 3 dm3 filled with sand, humus and vermiculite (6:3:1), previously 
irrigated, to field capacity (CC). The plants were maintained in the CC with daily irrigation with distilled water 
and, weekly, fertigated with Hoagland nutrient solution until the imposition of the water deficit that occurred at 
32 days after seeding (DAS).  

The treatments were applied when the plants reached the V4 stage (pre-flowering) and consisted of three water 
regimes: Irrigated (absence of water stress); moderate water deficit (5 days of stress, having an irrigation with 
100 mL on the third day); and severe water deficit (5 consecutive days of water stress), following the completely 
randomized design (DIC), in a 3 × 3 factorial arrangement (3 varieties × 3 water regimes) with 5 repetitions. The 
evaluations were performed after 5 days of the beginning of the irrigation suspension using the third and fourth 
trefoil fully expanded for the physiological and biochemical evaluations. For the biochemical analyzes, the 
leaves were collected and frozen in liquid N2, lyophilized and macerated for later use. 
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2.2 Potential Leaf Water and Biometric Parameters 

The leaf water potential was measured in the morning (05:00 a.m.-06:00 a.m.) using the fourth trefoil with the 
aid of a Scholander type pressure pump. 

The following biometric parameters were measured: plant height using a ruler graduated in cm; number of leaves 
by direct counting; leaf area with the aid of an area integrator (LI-3100, Li-COR, Inc., Lincoln, NE, USA); and 
the dry mass of leaves using a forced air circulation greenhouse at 60 °C for 72 hours and analytical balance. 

2.3 Gas Exchange, Chlorophyll a Fluorescence 

The gas exchange measurements were performed between 08:00 and 11:00 am on the central leaflet of the third 
sheet completely expanded in all plants using an infrared gas analyzer (IRGA, model LI-6400XT, LI-COR, 
Lincon, Nebraska, USA). Liquid photosynthesis (A), stomatal conductance (gs), transpiration rate (E), ratio 
between internal concentration and CO2 environment (Ci/Ca) were evaluated. For these parameters, the 
photosynthetically active radiation (PAR) constant of 1200 μmol photons m-2 s-1, constant concentration of CO2 
(400 ppm), temperature and ambient humidity.  

The chlorophyll a fluorescence was performed using the fluorometer coupled to IRGA (6400-40, LI-COR, USA) 
on the same sheet in which the gas exchanges were evaluated. The plants were acclimatized in the dark for 30 
minutes, obtaining the minimum fluorescence parameters (Fo) and after a pulse of saturating light, the maximum 
fluorescence (Fm) was obtained. Then, the potential photochemical efficiency of PSII, expressed by the Fv/Fm 
ratio, was calculated. Then, the potential photochemical efficiency of PSII, expressed by the Fv/Fm ratio, was 
calculated. With the fluorescence parameters collected in the clear (at the same moment of determination of the 
gas exchanges) were determined the effective quantum yield of FSII (ɸFSII), electron transport rate (ETR), 
photochemical quenching (qP), non-photochemical quenching (qN) and the non-photochemical extinction 
coefficient (NPQ). 

2.4 Photosynthetic Pigments 

For the determination of photosynthetic pigments (chlorophyll a, b, total and carotenoids), leaf discs were 
immersed in dimethylsulfoxide solution (DMSO) saturated with CaCO3 being kept in the dark at room 
temperature until quantification. The absorbances of the extracts were measured in a UV/visible 
spectrophotometer at wavelengths 480, 649 and 665nm, and the concentrations were calculated using equations 
based on the specific absorption coefficients, according to Wellburn (1994). 

2.5 Soluble Carbohydrates and Starch 

The extracts for determination of soluble carbohydrates were prepared from 30 mg of lyophilized leaves that 
were added to 5 mL of ethanol (80%) and placed in a water bath at 75 °C for 1 h and then centrifuged at 3000 × 
g at 4 °C, being the supernatant collected and the extraction steps repeated 2×. The total carbohydrate levels and 
reducing carbohydrate were quantified according to the methods proposed by Dubois (1956) and Nelson (1945), 
respectively. The non-reducing carbohydrates were obtained from the subtraction of the aforementioned 
parameters. The results were expressed as μmol of dry matter carbohydrate g-1. 

The extracts for determination of carbohydrates were prepared with the precipitate remaining of ethanolic extract 
of soluble carbohydrates with respect to the precipitate 4 mL of perchloric acid (30%) with subsequent stirring 
and centrifugation. The determination followed the method proposed by Hodge and Hofreiter (1962) and the 
concentration was expressed in μmol glucose g-1 dry matter. 

2.6 Proline Content 

The extracts for proline quantification were prepared using 20 mg of lyophilized sheets added to 2.0 mL 
deionized water where they remained for 1h with shaking every 10 m. After centrifugation at 3,000 × g for 15 
min, the supernatant was collected for quantification. The quantification was determined according to Bates et al. 
(1973) and the result expressed in μmol proline g-1 dry matter. 

2.7 Extraction and Antioxidant Enzyme Activity Assays 

The enzymatic extracts were prepared from 1 g of fresh leaf, macerated in 4 mL of the potassium phosphate 
buffer (50 mM and pH 7). From this extract, the enzymatic activities of ascorbate peroxidase (APX), guaiacol 
peroxidase (GPOD), catalase (CAT) and superoxide dismutase (SOD) were measured, according to the methods 
of Nakano and Asada (1981), Kar and Mirsha (1976), Havir and McHale (1987) and Beauchamp and Fridovich 
(1971), respectively. The protein contents were quantified in the same extract of the enzymatic activities, from 
the Coomassie Blue reagent by the method proposed by Bradford (1976), the enzymatic activities being 
expressed in mmol of H2O2 min-1 g-1 protein. 
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