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Abstract 
The conditions of temperature and airflow distribution in the mass of stored grains are highly influenced by the 
configuration of the aeration ducts. However, silos are large structures, and the physical experiments on them 
become expensive and slow. Thus, this study aimed model and evaluate the temperature and airflow distribution 
in a maize mass, stored in a metal silo with different geometries of aeration ducts, using CFD (computational 
fluid dynamic). CFD was used to model and evaluate aeration ducts of square, ring, double bar and single bar 
shape. The proposed model was validated from experimental data. The airflow distribution and temperature in 
the grain mass were analyzed at different points. The ducts of a square and a ring shape showed better 
distributions of airflow in the grain mass, with averages of 0.00236 m s-1 and 0.00275 m s-1, respectively. The 
square shape aeration duct, presented better temperature values in the middle layer of the grain mass during 
aeration, with average 25.09 °C. CFD can be used in decision making for the best design of a silo, saving 
financial resources and time, as long as the parameters used in the simulation are reliable and represent the 
reality. 
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1. Introduction 
The successive increase in world grain production, and continuous demand for product throughout the year, 
make storage an indispensable operation (Oladunde et al., 2016; Lopes et al., 2015). The correct storage 
preserves the quality of products and guarantees their longevity until the consumption (Hendges et al., 2017). 
Bulk grain storage is commonly performed in elevated cylindrical silos equipped with aeration ducts 
(Khatchatourian & Oliveira, 2006). The aeration ducts can have different shapes, being the circular duct the most 
used (Khatchatourian et al., 2017).  

The temperature conditions and the airflow distribution in grain mass, depend primarily of aeration ducts shape, 
ambient temperature, grain temperature in neighboring layers and the aeration period (Navarro & Noyes, 2001). 
Thus, the way airflow and temperature are distributed in the grain mass, will result in the homogeneity of the 
aerated product (Amanlou & Zomorodian, 2010). According to Lopes et al. (2008), the positioning and the 
format of the aeration ducts, can result in an irregularity of temperature inside the silo, both along its longitudinal 
axis and its cross section.  

The use of Computational Fluid Dynamics (CFD) to predict phenomena within silos has been widespread in 
recent decades. Studies conducted by Tascón et al. (2011), Garcia et al. (2015), and Larsson et al. (2012), 
demonstrate the potential use of CFD to predict some phenomena, such as particles segregation in grain mass, 
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The heat flux absorbed by the silo was calculated by performing the energy balance in the walls, relating the 
gains by absorbance and losses by radiation and convection (Equation 6). 

q = Gα – h Tsup – T∞ – σTsup
4  (6)

Where, q: heat flux absorbed, W m-2; G: incident radiation flux, W m-2; α: material Absorbency; h: convective 
heat transfer coefficient, W m-2 K-1; Tsup: surface temperature, K; T∞: neighborhood temperature; : material 
emissivity; σ: Stefan-Boltzmann constant, 5.67 10-8 W m-2 K-4. 

2.5 Initial and Boundary Conditions 

In this study, the following boundary conditions were used: 

- Inlet: u = w = 0 m s-1, v = 0.0157 m s-1, T = 23 °C (296.16 K), turbulence intensity = 5%. 

- Opening: P = 0 Pa, turbulence intensity = 5%, T = 23 °C (296.16 K). 

- Wall: u = v = 0 (no slip), h = 5 W m-2 K-1, T = Tsup, heat flux = q (Equation 6).  

Where, u, v, w: components of velocity in the directions x, y and z, respectively; T: temperature; P: relative 
pressure; h: convective heat transfer coefficient. 

The porous medium (maize mass) was implemented using the models and empirical parameters found by Devilla 
et al. (2004, 2005), in its experimental analysis of the temperature and airflow distribution in a maize mass stored 
in aerated silos, for purposes of validation of the proposed model. 

2.6 Numerical Methodology 

The governing and support equations were resolved using a CFD code ANSYS CFX version 14.5 based in finite 
volume on an HP ProLiant ML150G6 computer with Intel (R) Xeon (R) processor, 2.00 GHz CPU E5504, and 
RAM 12.0 GB, belonging to the biofuels laboratory, of the Federal University of Viçosa, Brazil. 

The meshes used for implementation were composed of 104372, 112550, 103651 and 102977 nodes and 544777, 
589229, 540904 and 537634 elements for silos with aeration ducts shaped as double bar, ring, single bar and 
square respectively, using local refinement in critical runoff regions. The mesh independence tests were 
performed by successive refinement of the mesh until the variables temperature and velocity at a given point 
presented variations below 0.01 °C and 10-5 m s-1, respectively. 

To perform the simulation, high-resolution advection schemes and numerical models of first order turbulence 
were used. The minimum and maximum number of interactions were defined in 1 and 1000 respectively, using a 
physical time scale of 1 second, and convergence criterion based on Mean Square Error (MSE) less than 10-4. 

2.7 Validation 

For the validation of the proposed model, the experimental data obtained by Devilla et al. (2004, 2005). The 
authors used a system consisting of a cylindrical metal silo of 3.6 m diameter and 2.2 m height, loaded with 
maize (13% w.b.) up to 1.6 m in height and a ring-shaped aeration duct with perforated area of 1.5 m². In the 
study, the authors performed several tests evaluating the temperature using "T" thermocouples and air velocities 
using a rotating blade anemometer at various points on the surface of maize mass from the inlet velocity of 
0.0157 m s-1. For the validation, the velocities were evaluated at 20 points located on the surface of the silo, and 
temperatures were evaluated at 20 points along the silo diameter located at the center of maize mass, according 
to the experimental tests performed by the authors. 

3. Results and Discussion 
In the simulations, the average air velocity found on the surface of the grain mass was 0.0023 m s-1, with values 
ranging from 0.0020 m s-1 to 0.0026 m s-1. The values found corroborate with those obtained experimentally by 
Devilla et al. (2004), who, when analyzing the airflow behavior on the surface of the stored maize, found a mean 
surface velocity value of 0.0022 m s-1, ranging from 0.0020 m s-1 to 0.0024 m s-1. There is a similarity of velocity 
distribution between the proposed model and the data obtained experimentally (Figure 3). Thus, the proposed 
model can represents physically and numerically the prediction of velocity distribution in a silo with aeration 
system. 
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