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Abstract 
This trial goes along with irrigation systems based on the development and use of free software and hardware for 
direct measurements of soil moisture and temperature throughout the plant cycle. Thus, irrigation systems can 
optimize water use during the process at lower cost regarding TDR application. Four humidity sensors were used: 
one was resistive, and three capacitors were interconnected in a mesh network system. Thus, this research was 
carried out in laboratory and the studied soil was characterized as a typical dystroferric Red Latosol (Oxisol) 
with very clayey texture (66%). Soil clods were undone and dried in a greenhouse, then divided in 20 containers 
with addition of known volumes of water in each one. A network of mesh-type node sensors has been developed 
based on Arduino technology to read and transmit data to a single gateway. The sensor node was designed and 
built with Arduino Nano, radio NRF24L01, capacitive sensors of type SHT20 and DHT22, in addition to FC-28 
that is resistive. The system also featured a Real Time Clock DS1302, three photovoltaic cells and circuit battery 
charger. Domoticz software was used to store data and make them available on a server connected to the internet. 
Cubic modeling was one of the results of the relation among each sensor, TDR and the greenhouse method. The 
resistive sensor showed very close values to the TDR in its model as well as the set of the monitoring system 
showed low cost in relation to TDR. 

Keywords: sensors, TDR, arduino, mesh 

1. Introduction 
Drinking water of quality has been considered a finite resource for consumption and irrigation, so, its use must 
occur in a rational way in order to avoid wastes and contamination of aquatic sources (Helmer, 1997). Since 
irrigation is the main human consuming activity of water and considering the increase in energy costs and 
competition for water and energy resources among industrial, urban and agricultural sectors, it is relevant to 
define when and how much irrigation is needed in order to meet cropping water requirement (Mancosu et al., 
2015). 

In Brazil, water is used mainly for irrigation, human and animal consumption, industrial purposes, power 
generation, mining, aquaculture, navigation, tourism and recreation. Knowledge of these uses is constantly 
extended through direct surveys, sectoral studies and user registrations (National Water Agency, 2018). At the 
moment, irrigation is the main use of water in Brazil. Total demands for water withdrawn for irrigation in Brazil 
reach 969 m³ s-1. This use is even more relevant when consumption is considered, as return flows directly into 
waterbodies are very low, compared to other uses (National Water Agency, 2018). Thus, irrigation management 
must provide conditions of water availability to the crops, which allow externalizing its genetic yield potential in 
order to decrease the financial burden and environmental impact (Elliott et al., 2014). Therefore, it is extremely 
important to identify the timing of water application (when irrigating) and quantify how much of it should be 
applied (how much to irrigate) in order to avoid stress or water excess during the cropping term (Fereres, & 
Soriano, 2007). 
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According to Frizzone (2012), irrigation systems can be classified as: surface irrigation, whose water distribution 
occurs by gravity through soil surface; sprinkler irrigation, in which water jets are thrown into the air and fall on 
the crop as rain; trickle irrigation refers to where water is usually applied in only a part of the root system in 
plants, using precise emitters (drippers), linear ones (porous or “gut” duct) or surface emitters (micro-sprinklers); 
sub-irrigation, groundwater is kept at a certain depth and can allow an adequate flow of water to the root zone of 
a crop. It is mostly associated with a subsurface drainage system and, when there are satisfactory conditions, it 
may be the cheapest method. 

Frizzone (2017) also pointed out that there are several methods to determine soil water content. These methods 
have been evolving over time and fit to the technology advances. So, in order to obtain the details concerning 
several of these methods, it is possible to get information on texts written by Carvalho and Oliveira (2012), 
Andrade Júnior, Silva, and Coelho (2013), and Souza et al. (2016). Generally, these methods can be grouped into 
two categories: direct (or gravimetric) methods and indirect ones. Among the direct ones, that are also called as 
gravimetric methods, there are the forced-circulation (standard) oven drying, microwave oven drying and 
weighing methods. Indirect methods are based on measures of soil resistance to the passage of an electric current, 
dielectric constant of soil, soil water tension and neutral moderation (Van Genuchten, 1980; Carvalho, Sampaio, 
& Silva, 1996; Topp & Ferré, 2002; Queiroz, 2007; Lucas et al., 2011; Chari et al., 2013; Sui, 2018). 

The Time Domain Reflectometry (TDR) is one of the most used methods, with a calibration curve to study soil, 
as presented by Tommaselli and Bacchi (2001) as well as Milani, Tavares, and Scherpinski (2008), and 
Jeewantinie Kapilaratne and Lu (2017). It is worth noting that TDR is a high-precision and cost-effective device. 
However, its use is unfeasible for some simultaneous collection of data distributed at several points in the farm 
because, to probe some soil variability, cables and rods must be spread out in all directions and at great distances, 
exceeding the limits of this technology. So, this trial aimed at developing hardware and software for an 
automated data collection system, in variables such as soil moisture and temperature, in several points, using free 
technologies for irrigation systems as another viable field monitoring option. 

2. Material and Methods 
2.1 Sensor Node Design 

The Arduino Nano was used as a microcontroller for the Node of sensor network, with the following dimensions: 
18 × 45 mm, Flash memory of 32 Kbytes, 8 analog inputs/outputs, 22 digital inputs/outputs and consumption 19 
mA in 5 V. A two-way communication between Nodes and Gateway was performed by radio NRF24L01. The 
digital humidity and temperature sensors were SHT20 and DHT22 (this last one in two versions). In addition, the 
FC-28 analogue humidity resistive sensor was used, and the Real Time Clock (RTC) DS1302 was also used to 
establish temporal synchronism among readings. The system was powered by a 9-V rechargeable battery, which 
is charged by an LM317 composite circuit, diodes, resistors and three solar panels of 5 V and 200 mA each. 
Figure 1 shows the Sensor Node circuit. 
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along the adjusted regression line. Thus, determination coefficients were obtained in order to compare the 
models of equations 6, 7, 8, 9 and 10.  

R2
TDR = 96.9%                                     (6) 

R2
DHT22-1 = 90.1%                                   (7) 

R2
DHT22-2 = 92.7%                                   (8) 

R2
SHT20 = 89.0%                                    (9) 

R2
Resistive = 98.5%                                   (10) 

Based on these answers, R2 values have shown that the models that best explain the relation among the values 
obtained by the gold standard method are TDR (6) and the resistive sensor (10), although the other sensors also 
present good coefficient of determination. And, considering the analysis of variance, the standard error of 
regression (S) is another measure that allows the comparison among models, in which the smallest value 
indicates the best model: 

STDR = 1.58906                                   (11) 

SDHT22-1 = 2.83434                                  (12) 

SDHT22-2 = 2.4295                                  (13) 

SSHT20 = 2.98157                                   (14) 

SResistive = 1.11613                                  (15) 

In this specific issue, two previous regressions are still the best ones: the TDR (11) and the resistive sensor (15), 
however, the resistive one comes out as the best one based on the calculus of the standard deviation regarding 
wastes. 
4. Conclusion 
The hardware designs of Gateway and Sensor Node have worked properly for the requirement to use free 
technologies and the platform used by Arduino confers this feature. They take up little physical space, they also 
have low power consumption, high performance, and the price of their components are far below those presented 
by many other technologies. The battery system allows operation without recharging up to 36 hours and, with the 
sun, the photovoltaic cells can guarantee uninterrupted operation. 

The applied sensors and radio had very low cost and it has been demonstrated that it is feasible to use all the 
devices, mainly, the resistive one. It should be highlighted that this or the other capacitive ones can replace TDR 
use to register humidity, and it can also apply the correction according to the curves obtained in this research. 

The embedded software used MySensors library, which is a free-technology, licensed by GPL V2. The 
Free/Open Source application server receives data that are sent by the Gateway and makes them available on 
internet, while the whole source code is available and can be changed. The use of Mesh network, from 
MySensors library, has guaranteed data delivery to the Gateway, without flaws. Data can go from the sensor to 
the gateway and internet or vice versa; in addition, remote commands can be given to the Sensor Node by the 
web interface. Finally, data analysis showed that the use of proposed sensors is feasible and resulted in a model 
to be applied for each device. 
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