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Abstract 

QTL-seq has been successfully studied in identifying major QTLs, markers, and candidate genes associated with 
traits that are important for crop improvement. Tomato earliness is an economically important trait and is a major 
current research focus recently. This paper reports the identification of tomato early ripening fruit locus 
facilitated by QTL-seq using a novel next-generation sequencing technology. Two DNA pools of phenotypes of 
F2 offspring from crosses between the Bone ММ (early ripening fruit, P1) and 071-440 (late ripening fruit, P2) 
cultivars of (Solanum lycopersicum) were bulked for sequencing and alignment analysis. Sequencing results 
revealed 434 SNP markers on chromosome 11, a candidate QTL at position 52,048,208 bp (named er-fruit) and a 
candidate gene, Solyc11g071510.1.1. The “er-fruit” as confirmed by the traditional QTL method was related to 
the early fruit ripening trait in tomato. Additionally, BLAST analysis to known homologies for 
Solyc11g071510.1.1 gene encodes glycoside hydrolases (GHs). GHs are functionally associated with cell wall 
degradation, fruit softening and ripening. Thus, GHs may be important in fruit softening, stimulating early fruit 
ripening in tomato. Our results confirmed that QTL-seq is effective method to identify candidate QTL loci, 
candidate genes and candidate markers. 
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1. Introduction 

Earliness in tomato is one of the factors that needs much concern in recent years due to climatic changes and 
increased world’s population. The ability to bring their products earlier to the market in the season can produce 
better income for growers (Kevany et al., 2008). Earliness in tomatoes consists of three stages; (1) flowering time, 
(2) fruit setting time, and (3) fruit ripening time (Powers, 1941). The environmental factors such as temperature 
and light intensity play a significant role in the expression of any components for early maturity (Kerr, 1955; 
Adams et al., 2001). It has been reported “Early Cherry’ alleles caused reductions in both ripening time and 
fruit weight by using RAPD marker analysis in F2 population derived from a cross between Lycopersicon 
esculentum’E6203’ (normal ripening) and Lycopersicon esculentum’Early Cherry’ (early ripening) (Doganlar et 
al., 2000). 

Early fruit ripening is commercially important and effective trait for tomato (Gur et al., 2010). A QTL (dw1) of the 
tomato that linked to phenotypic traits, increased yield (quantitative) and earliness (qualitative) have been 
identified although it caused a decline in fruit firmness (Inai et al., 2006). The tomato is classified as a climacteric 
fruit that needs phytohormone ethylene to ripen and it also coordinates expression of thousands of genes regulating 
fruit softening and increasing color development, sugars, acids, and aroma production (Klee & Giovannoni, 2011). 
The important fruit ripening phenotypes have been distinguished by rin, nor, Nr and Cnr mutants that have been 
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provided novel insights into the control of ripening processes (Thompson et al., 1999). In addition, the cell wall 
modification for softening of the fruit tissues is affected by transcriptional factors nor, rin, and ethylene receptor 
Never-ripe (Nr) because the transcription level of cell wall degrading enzymes polygalacturonase and 
pectate-lyase were not observed in rin, nor, and Nr mutants during tomato fruit ripening (Osorio et al., 2011). 
Smith and Gross (2000) proposed that a member of glycoside hydrolase family 35, β-galactosidase II, may be 
involved in Gal metabolism during cell wall degradation for softening of tomato fruit, conversion of chloroplasts 
into chromoplasts, fruit growth, and senescence. 

Next-generation sequencing (NGS) technology was proved as a quick accurate and successful method of genome 
analysis (Takagi et al., 2013a) which involves categorizing molecular markers associated to target genes or 
genotyping a pair of bulked DNA samples from two dissimilar extreme phenotypes and connecting the markers 
with QTLs related with chosen traits of research interest (Michelmore et al., 1991; Giovannoni et al., 1991; Mansur 
et al., 1993; Darvasi & Soller, 1994). The new approach has been proposed as a means of developing rapid QTL 
map through the MutMap (Abe et al., 2012), MutMap-Gap (Takagi et al., 2013b), Mutmap+ (Fekih et al., 2013), 
and QTL-seq (Takagi et al., 2013a) approaches. QTL-seq has developed (Fekih et al., 2013; Takagi et al., 2013a) 
to replace traditional QTL mapping which is labour-intensive, time-consuming and involves substantial costs 
associated with the development of DNA markers, genotyping and the generation of a large number of progenies 
during advanced segregating generations (Takagi et al., 2013a). Moreover, rapid identification of the QTL region 
(marker and candidate gene) associated with the traits of interest can be performed in the F2 population. The 
QTL-seq has been employed previously to identify QTLs underlying disease resistance traits in rice (Takagi et al. 
2013a), the early flowering trait in cucumber (Lu et al., 2014), seed weight trait in the chickpea (Das et al., 2015), 
fruit weight, locule number (Illa-Berenguer et al., 2015) and early flowering traits in tomato (Ruangrak et al., 
2018). In the present study, we used QTL-seq to identify the QTL for early ripening trait in tomato progenies of 
cross between naturally selected Bone ММ (earliness) and 071-440 (lateness) cultivars.  

2. Method 

2.1 Plant Materials and Phenotypic Evaluation 

S. lycopersicum cv. Bone MM (Earliness (E); P1 from Russia) and 071-440 (Lateness (L); P2 from China) were 
used as parents (Figure A1). The genetic backgrounds of Bone MM and 071-440 are extremely different for first 
fruit ripening characteristics. For the phenotypic evaluation, the first fruit ripening time was visually scored by 
counting the days from the first flower opening (anthesis) to the first fruit ripening of each plant, developing 
90% red color on fruit surface. The data were used for frequency distribution analysis. F2 progeny showing two 
extremes (early and late) of first fruit ripening times were isolated and pooled into two bulks (each bulk 
comprising 30 individuals). The experiment was performed in the tunnel type green house (at day/night average 
temperatures of 28 °C/15 °C) at the Institute of Vegetables and Flowers, Chinese Academy of Agricultural 
Sciences, Beijing, China (39.96° N, 116.33° E). 

2.2 QTL-seq Analysis 

Two DNA bulks of extreme early (41-45 days after anthesis) and late (55-59 days after anthesis) ripening times 
categories were extracted as equal volumes of DNA samples from the F2 progeny by following previously 
described DNA isolation methods (Abe et al., 2012; Takagi et al., 2013a). The genomic DNA extraction was 
performed from fresh tomato leaves using the Cetyl Trimethyl Ammonium Bromide (CTAB) method. The 
whole-genome sequencing was performed using an Illumina Genome IIx sequencer. Pair-end sequencing 
libraries (read length 100 bp) with 500 bp insert sizes were prepared for sequencing. The short reads were 
aligned to the S. lycopersicum reference genome sequence (//ftp.ensemblgenomes.org/pub/plants/release-22/ 
fasta/solanum_lycopersicum/dna/Solanum_lycopersicum.SL2.40.22.dna.toplevel.fa) with BWA software (Li & 
Durbin, 2009). SNP-calling was performed using SAM tools software (Li et al., 2009) and then converted into 
SNP-index as reported (Abe et al., 2012; Fekih et al., 2013; Takagi et al., 2013a). A given result was based on 
short reads harbouring the SNP being different from the reference sequence (Fekih et al., 2013; Lu et al., 2014). 
A SNP-index of E- and L-Ripening bulks was subtracted to obtain a ∆(SNP-index). Fisher’s exact test (Fisher, 
1922) was used to evaluate the statistical significance of the ∆(SNP-index) values. The detection of functionally 
annotated putative SNPs and the annotation of the candidate polymorphic marker locus were performed using 
ANNOVAR software (Wang et al., 2010). 

2.3 Traditional QTL Analysis 

To verify the results of the QTL-seq, conventional QTL analysis using InDel (insertion or deletion) markers was 
used. Two hundred and three InDel markers were identified from chromosome 11 (Table B1) by aligning 
E-Ripening Bulk Illumina reads to the reference genome (//ftp.ensemblgenomes.org/pub/plants/release-22/fasta/ 
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plants were used in a traditional QTL analysis. Among 203 InDel markers from chromosome 11, 21 InDel 
markers were polymorphic between the E- and L-Ripening bulks as shown in Table 1.  

 

Table 1. The information of InDel markers used in the traditional QTL analysis 

Marker name Primer sequences (5′→3′) Position (bp) LOD Valuea PVEb Kruskal-Wallis 
test (P)c 

Er-InDel4 F: CAGAATTGAGCAACATTCAA 3 531 907 1.83 11.73 ** 
 R: AGCTTGGATTCCCTTCTATC     
Er-InDel6 F: CTAGGGATAGGCATTTTCTG 3 604 601 2.03 11.67 ** 
 R: GTACTTAATCAAAGCTCAGCC     
Er-InDel27 F: TGTTTCTATTCGTGAACCAT 4 086 995 1.78 11.75 ** 
 R: TTGTCAAATTCATGATTAAAAG     
Er-InDel31 F: GGGAAAACCTTAGAATCTTGA 4 198 004 2.34 11.58 ** 
 R: TTAGGTAGCGTTTTATGGGA     
Er-InDel33 F: TTTGCATAGTTTTTGCTCCT 4 209 132 2.32 11.59 *** 
 R: ACCACACCAAATTGACTTTC     
Er-InDel37 F: ATCCCACGATTAAATCAGC 4 271 847 2.51 11.53 **** 
 R: TCAATGCTCCCTCACTTATT     
Er-InDel41 F: AGGAATTATGGGGGATTACA 4 346 201 1.06 10.97 ** 
 R: CAAACATCGAATGAACAACA     
Er-InDel44 F: TTTAGAAGGATGGCCAGATA 4 358 218 3.76 11.17 ****** 
 R: TCGAACGTGACCAATAAAAT     
Er-InDel46 F: CTTCTGGGGTACTCTCTCCT 4 375 549 3.28 11.31 ***** 
 R: CGAAATTGATATACTATCGGTG     
Er-InDel57 F: CAAATATACCCGAATCTCCA 4 526 314 3.77 11.17 ***** 
 R: CTATGAGCGAAACTCCAAGT     
Er-InDel67 F: AGTCACGAGCTTGAAATTCT 4 638 021 3.77 11.17 **** 
 R: AACGAGCCATTATTGTCCTA     
Er-InDel90 F: CATTTTCGGTAAGTTTTTGG 4 942 999 4.52 10.96 ******* 
 R: TGTCGAAAAAGAATTAAACGA     
Er-InDel99 F: ACCCTCCAAAAATACATGC 5 426 989 4.28 11.03 ******* 
 R: GGATGAAATGGAAAAGACAG     
Er-InDel106 F: GCATTCATCTAAAGGCAAAC 5 535 304 1.85 11.72 ** 
 R: GAACAGATCTCACTTCGGTC     
Er-InDel108 F: GTAGTGCAACCAAAGACCAC 5 608 446 4.17 11.06 ******* 
 R: TAGCCTAATTGGTCGAGTGT     
Er-InDel115 F: GTTAGGTTTCAGTTGCCGT 7 223 638 2.28 11.60 *** 
 R: CGAACTTAGTCCATCACCAT     
Er-InDel137 F: TCAAGTTTCCTTTTGCTTTC 7 828 980 5.77 10.62 ******* 
 R: AGTCCCTATCCACAGATCCT     
Er-InDel178 F: TGTCGTCACTGACTATTTGG 51 965 954 7.94 10.06 ******* 
 R: CTCCTTGAGGAAAGGACTCT     
Er-InDel191 F: TCATCTTTCGAGTCGAGATT 52 146 442 5.80 10.61 ******* 
 R: TATCCATTTTGTATAGGGGC     
Er-InDel193 F: TGAAGGAAACAATGTCACAA 52 151 475 6.05 10.55 ******* 
 R: TACCTGAAAAGAAATCGGAA     
Er-InDel196 F: TGTTTGTCACAAGTATCTGTTG 52 204 378 4.90 10.86 ******* 
 R: AAATTAGTCGCGTTCCATAC     

Note. aLOD value was performed by MQM mapping analysis. bPVE was the percentage of phenotypic variance 
calculated by MQM mapping in MapQTL 6.0. Significance: *P  = 0.05; **  P =   0.01; ***  P  =  0.005; ****P  = 
0.001; *****  P  = 0.0005; ******  P  = 0.0001; *******  P =    0.00005 (P values from Kruskal-Wallis test are 
indicated by an asterisk).  

 

These 21 markers were applied to the segregating population for QTL analysis. MQM mapping analysis 
identified a major QTL for early fruit ripening time delimited by two InDel markers Er-InDel178 and 
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Er-InDel191, which were physically located in the region range of 51,965,954 to 52,146,442 Mb on 
chromosome 11 (Figure 3(b)). A LOD threshold value of 3.8 was used for declaration of a QTL. The LOD 
values in this region ranged from 1.06 to 7.94 with the highest peak at marker locus Fl-InDel178 (7.94). This 
interval was corresponded to the genomic region identified by the QTL-seq method (Figures 2(a)-2(c)). In 
addition, the candidate gene was aligned to the Solyc11g071350.1.1, encodes glycoside hydrolases (GHs), which 
was analyzed by BLAST through the Sol Genomics Network (SGN; http://solgenomics.net/) website 
(Fernandez-Pozo et al., 2015).  

4. Discussion 

QTL-seq is a powerful tool for identifying candidate QTL loci and candidate genes using NGS technology as 
previously reported (Takagi et al., 2013a; Lu et al., 2014; Das et al., 2015; Illa-Berenguer et al., 2015). This 
study is aimed to rapidly identify the candidate QTL locus and gene related to the early fruit ripening of the 
tomato using QTL-seq. Our aim was achieved successfully using naturally selected varieties from Russia 
(earliness) and China (lateness). The results of phenotyping and the distribution of early fruit ripening time 
demonstrated that multiple genes control fruit ripening time because the frequency distribution is close to a 
normal (Gaussian) distribution (Takagi et al., 2013a) (Figure 1). Thus, results suggest that the F2 population can 
further benefit from the use of QTL-seq analysis. The QTL mapping results confirmed the QTL-seq analysis, 
supporting the proposition of the QTL located on 52,048,208 bp was a major QTL associated with the early 
ripening fruit phenotype.  

The normal distribution of the F2 population clearly allowed the performance of QTL-seq, which is based on the 
crossing of two parents that have extreme phenotypic differences followed by selfing of F1 individuals to 
generate F2 progeny. Takagi et al. (2013a) suggested that an F2 population is much easier to generate than RILs 
of complex generations. DNA samples of F2 individuals showing extreme phenotypes, i.e. those exhibiting the 
earliest and latest extreme values of fruit ripening phenotype were bulked in an equal ratio and subjected to 
whole genome sequencing. In this study, the high base accuracy of Q30 varied from 90.08% (for L-Ripening 
bulk) to 92.29% (P1), with an average of 91.30% (Table B5) suggested that the sequencing data of all the 
samples corresponded to low error probabilities and sufficiently high quality. Alignment analysis of the 
sequencing data showed a candidate QTL located on 52,048,208 bp on the Solyc11g071510.1.1 gene on 
chromosome 11 and this was confirmed by the result of the traditional QTL method which was consistent with 
the QTL-seq analysis.  

Furthermore, the result of BLAST protein function analysis suggested that this candidate gene encodes glycoside 
hydrolases (GHs). GHs function as common degradation enzymes with a bond between a carbohydrate, a protein, 
lipid or another moiety, and are found in many kinds of organisms such as archaea, bacteria, animals and plants 
(Tyler et al., 2010). Consequently, genes encoding GHs are comparatively abundant in plants where they are 
involved in processes of starch metabolism, defense, and cell-wall remodeling (Tyler et al., 2010). GH genes 
play important roles in synthesizing carbohydrate-active enzymes in photosynthesis and in constructing 
carbohydrate- rich cell walls (Coutinho et al., 2003). Other functions of GHs in plants include pathogen defense, 
the degradation of starch, and hormone signalling (Minic, 2008). GH genes express to regulate functions in plant 
cell wall synthesis, renovation, and degradation (Minic & Jouanin, 2006; Lopez-Casado et al., 2008). In this 
context, GHs which participate in the degradation of cell wall polysaccharides are also implicated in the 
governance of plant cell wall loosening, the regulation of growth and development, germination, abscission, cell 
adhesion and fruit ripening (Fischer & Bennett, 1991; Minic, 2008). GH genes also play an important role during 
fruit ripening, with multiple enzymes promoting the disassembly of cell wall polysaccharides or polysaccharide 
domains and contribute to modifications in cell wall construction. The most characterized and studied cell wall 
degrading proteins in fruits were reviewed by Owino, Ambuko, and Mathooko (2005). These include GH 
enzymes such as polygalacturonases (PGs), ß-D-galactosidases, endo-ß-1,4-D-glucanases, and to a lesser extent 
endo-ß-mannanases, ß-D-xylosidases, α-D-galactosidase, and XET (Minic, 2008). ß-galactosidase II plays an 
important role in degrading galactan and the rise in its activity through tomato ripening suggests a possible role 
for this enzyme in tomato softening (Smith & Gross, 2000). During fruit ripening, pectin and some 
hemicellulosic polysaccharides gradually develop solubility and depolymerize by the release of neutral sugar 
residues from side chains of matrix polysaccharides (Huber & O’Donoghue, 1993; Brummell & Labavitch, 
1997).  

5. Concludsion 

In summary of this study, as confirmed by traditional QTL and BLAST protein function analysis, QTL-seq 
detection found that a GH gene is related to the early fruit ripening trait in the tomato as GH genes are 
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functionally associated with cell wall degradation, fruit softening and ripening fruit. Thus, GHs may be 
important in fruit softening that stimulate early fruit ripening of tomato. These results established that QTL-seq 
is rapid and effective method to identify candidate QTL loci, candidate genes and candidate markers. In addition, 
our results are important for plant breeding and crop improvement because early ripening is not only one of the 
major earliness traits in tomato but also one of the important agronomical traits in crop plants. 
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Appendix B 

Table B1. InDel markers were identified from chromosome 11 

InDel Position Forward primer sequences Reverse primer sequences (5′→3′) size 

1 2 838 463 AATATTCTGGCTTGTCGCTA CAACCACAGGAGTAACCTTT 131 

2 3 125 646 TACTCTTGTATAGTCCATTTCG ATTTTGCTTCTTTGTTTACG 114 

3 3 389 559 GCTTCTATTTAACAATTCCAAA TGGAATTTTTCTCTTTTACCA 86 

4 3 531 907 CAGAATTGAGCAACATTCAA AGCTTGGATTCCCTTCTATC 156 

5 3 597 324 TATTCCCCTCATTCCTTTTT GAATGAAATGTGCAATGGTA 82 

6 3 604 601 CTAGGGATAGGCATTTTCTG GTACTTAATCAAAGCTCAGCC 158 

7 3 675 820 TCTTCACTTGCAATCCTCTT TGGCTTCAGAAATTTGTTTT 98 

8 3 686 098 TTGGATCAAAATTTAGTTGG TGATCGTAATTATTCAAAGAAA 109 

9 3 707 839 TCTATTCGTTTGGGACAAAT AATGATGAACTGAAAGGCAC 140 

10 3 712 520 TGATCAAGATTTCAACACAAA ATGCATTCAATGATCAACAA 99 

11 3 715 610 TGAGTGGATAAAAATTCGGT CTTCTTCTTCACACTCCACC 92 

12 3 731 737 ATCAGTCGATGGTCTATTGG CTAAATTTCTGTGGACACCC 152 

13 3 756 267 TCAAAAATTCTCTCTCTCACAA TCTTTCGGAAATAGAACAAAA 139 

14 3 763 421 AAGTTGGACGTGTTGAGATT GTTTTCATCAAGCGTCAAGT 95 

15 3 776 827 ATTTCTTCTTTCCCTCCATT CGTGACTAATTCAACTCATTTT 144 

16 3 792 290 TGATTTAAGCTCTCATTCTTTT GGAAATAGAAGAATCATCACAA 136 

17 3 797 724 TTTATGTTTGTATAAAGCGAGC TTGAATCGAAATAAAATGTTTG 81 

18 3 799 535 TCATCAATAATAATGGGTCAAA AATAGCAGCACTCACAAACA 136 

19 3 962 344 GATTTTCAGTTCTTCATGGG ACCGAAGCAACCATTAATAC 135 

20 3 969 654 TATGTCAAACACTTTGCCTG AACAATCTTCCAAACTCGAT 143 

21 3 988 040 ATCTTCTTGTTGTTTCGACG TTCATCATCAATCCCTCTTC 115 

22 4 005 222 TGTTCAATCAAAAGTCATCG TGATCCTGATCAGTTACAGGT 141 

23 4 011 449 TCGGTCTGCAGAAATAATCT TTGCATCCTTTTAAATCTTTG 155 

24 4 033 022 CTGAATCGATGATGTAGGAA TGCCACAACTTTTATACGAA 160 

25 4 036 540 TGTCTCGACGATGTAAAGAA TTTCCCAAAAACATATCACC 120 

26 4 042 055 CATCTCTTTTGGAATAGACCC ACAGGTGATTATCTGGTCAAA 100 

27 4 086 995 TGTTTCTATTCGTGAACCAT TTGTCAAATTCATGATTAAAAG 116 

28 4 121 829 ATAAAGCCGCATATATTGGA TATTTTAATGCGCTTCCTTT 148 

29 4 125 698 TCCTCAAATTGTGTGAGATTT CGAGCATTCATACTCGTTTT 157 

30 4 187 615 AAAAGAAGGCTTTGATAAGTTC TGCAATAACAAAGGAAGAAA 130 

31 4 198 004 GGGAAAACCTTAGAATCTTGA TTAGGTAGCGTTTTATGGGA 130 

32 4 208 813 GAATGACAACCCTCTTTGAA TTCTTCAACCATCACAAAAA 88 

33 4 209 132 TTTGCATAGTTTTTGCTCCT ACCACACCAAATTGACTTTC 134 

34 4 236 711 CTTTCTTCCAAAATCAACAT TTGAAATTGAGAGAGTACAAAG 84 

35 4 237 861 TTGTTGTAGCATTGAACTGAG TCTTTGGATCATTGATATTTTT 141 

36 4 268 305 ATGCATTTTGTAAGTAAATCAA TTGAGTGTAAAGGGCATAAC 103 

37 4 271 847 ATCCCACGATTAAATCAGC TCAATGCTCCCTCACTTATT 84 

38 4 305 848 AAAACAGGCCAGCAATAATA ACAAATTGAAACGAAGATGG 102 

39 4 306 589 TCATTTAATATGAATCGCAAA ATTGGTTAACAGGGTCACTT 114 

40 4 316 701 TTCAATTCATCACCTACAACA AGTTGTGACTAGCTCCTTGC 136 

41 4 346 201 AGGAATTATGGGGGATTACA CAAACATCGAATGAACAACA 154 

42 4 347 369 CCCATCAAGGCATAGTATGTA GTGACATGGTTATTCGACAA 148 

43 4 352 220 AACGTCCCTTAAAACGTGTA GAAATCGAGTCTCTGACGAA 113 

44 4 358 218 TTTAGAAGGATGGCCAGATA TCGAACGTGACCAATAAAAT 127 

45 4 363 073 TTAAGGACAAGTAAGCTCCC CTTGAGGCAAAACAAGAAGT 121 

46 4 375 549 CTTCTGGGGTACTCTCTCCT CGAAATTGATATACTATCGGTG 144 

47 4 389 174 GTAAATCCTGAGTTGTTGGG TTTGTTCTTTCTTAAACTCCG 86 

48 4 389 947 ATTGGTGATCATCTTATCCG TTGAACACAGAACCAGACAA 113 
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49 4 416 887 TAGGAGCCTAATCTGGAACA TATCCAAGTATCTCATGCCC 132 

50 4 450 426 GTTAAAAGTACCCCTAAGTGA AAGCTTATCTTTATTAACTCCA 140 

51 4 451 523 TACACCGGCTGTAAAGGTAG ACCGAAAAGGGATAGAAAAT 159 

52 4 456 449 TGGGGTTGTTCTGTTTTTAC AAACACTGGGAAAATGTCAC 154 

53 4 488 417 AAGGAACATGCTTCTTCAAA TCATTATTGCTCAAAGAGGC 96 

54 4 490 387 TTCAATGCCATGTATACCTTT GTAGACTGTCTTGCAGAGGG 157 

55 4 502 272 ACCTAAATGGACCATGAATCT GCCAATATTGTAATCCCAAA 103 

56 4 514 878 GGAAAAATTTGCCTTACATT TTTTTAAACAAATGTCTCGAAT 130 

57 4 526 314 CAAATATACCCGAATCTCCA CTATGAGCGAAACTCCAAGT 112 

58 4 542 717 TTTAATGTCATTCATGTGCAA TAAATCAACGGAATCTGAGG 126 

59 4 549 052 ACACGTGTATCACATTTTCCT TGGCTAGCTATTTATACGCA 123 

60 4 556 242 CAAAAGTGTTGACGTGCTTA AAGATCACCCTCAACAATGA 152 

61 4 556 864 CGTCAAACTATTGGGTCAGT TGAAATCGTTTCTGGAAAAT 132 

62 4 577 831 TTACAACAACTTCGTGCAAC TTGAGTTTCGGGTATAAGTGA 155 

63 4 605 203 AGCGAGACGTACCAAAAATA AGACTTACGCCTCAATTTCA 88 

64 4 618 882 ATAATTGCGCTCAATAGCA GCCCAAGTCTCTTTCTCTTT 108 

65 4 626 988 AAAAGCCCTTAAACAATCAA TGATTTGTCAAAATGAACAAG 110 

66 4 631 659 CGAATGCATCCTTTCTTAAA CCCATTACCTAGCTTGACAG 145 

67 4 638 021 AGTCACGAGCTTGAAATTCT AACGAGCCATTATTGTCCTA 123 

68 4 671 136 AACACTTGATCTACCAAACTCA TTGGATTATGATTTTACCCTTC 144 

69 4 703 160 CACCAAATTCTCTTCACCAT AGAAATACACAGCAGTTGGG 111 

70 4 704 795 TCCTAGCCATTTTGATGAGT CTTTCATGAGCCTTTTCATC 144 

71 4 719 917 TTTATTAATTTAAACGCCGC TCTAAAAATGAGTGGACCAAA 133 

72 4 722 366 AATGTTACATGACACCCCTT GCTTGTTTTGTTTGTTCTCC 147 

73 4 744 825 TATTTTAAACCCTTTTCCGT GGTCAAACATTAGTCCTTTACA 132 

74 4 747 534 CAAAATTCATAGCTAATTTCAA ATTTAATTTTGTGGACGTGT 136 

75 4 748 835 AAAAGGGTTAAAAGGTCAAC TTTGGAGTAACTCTTCAAGG 114 

76 4 749 358 ATGTATGCACCTTGTTTCTT TTCTTGTATTTTGATTTAAACG 126 

77 4 758 481 ATTACAAGCATCATAAGGGG TTTATGGCATGAGAAGTCAA 139 

78 4 765 664 GGAATTGGTAAGAGTCCACA ATATGTCTCCCACTACCCCT 145 

79 4 765 856 TGAGGTTGAAAGAATACCACA GTTTTTCGACGTGAAATTGT 112 

80 4 772 480 TTTTTCTGCTACAATCGAGTC TGTTCGTGTCAACAAACATT 132 

81 4 837 346 TTAATCACGTGCTTGCAATA CAAACCCTAGCTATTCCATTT 156 

82 4 838 504 CCTCTCTCCTCCCTCTCC ATTTGTAAATATGGCAAGCG 152 

83 4 866 926 TTTTCACCCTTACCATCG TTTTTATAGTGGTGGGATAGG 157 

84 4 867 489 ACACCTAAGGTTGACAATGG CTTTGGGTCGAACTTTATTG 109 

85 4 904 804 AAATTACGGGAAGTAGAAAAAC TTTGTTTTGTTTAATGGAACC 108 

86 4 920 067 AGAAAACTTTGGGAAAAAGG TACAAGGCTCGTTTTTATGC 82 

87 4 932 781 GTGAACGTTATTAAGTGGTTT TTCATCACTATTTTAACCTTTT 155 

88 4 937 081 ATAACCCCCATTCGTCTTT TCTCTTTTTCTCGCATCAAT 139 

89 4 941 284 TGTCAAACACCTTTTCATCA CGGAATTCGGTAATAGAGTG 146 

90 4 942 999 CATTTTCGGTAAGTTTTTGG TGTCGAAAAAGAATTAAACGA 136 

91 4 948 461 AAGTGAAAGTGTGCAACCAT AGATTCCCTGAAACGTTCTT 153 

92 4 983 330 TCCTTCAAGCCCATAAAATA GATCATAACGACCCTATTGGT 134 

93 4 985 718 TTCGTACATTGTGGTTGGTA AATAATATCCTGGCGATCAA 157 

94 5 001 460 AAAGATGTGAAGTCTAGCAAAT TCGCGATATATATGTGTGTG 108 

95 5 309 254 ACCAACCATCCCTTTATTTT TCCATCACAATACTCAACGA 130 

96 5 350 273 AAAGAAAGAAAAGAATCGGG CTTTTGTTGAGCTTTGAAGG 158 

97 5 361 713 AAAGCAAAATAGCGAGAGAA CAACCCAAAAGCTTAATCAG 146 

98 5 424 037 TGTTTGATATGTTATGTTCCCT CCGAAACGAGACATTTAACTA 130 

99 5 426 989 ACCCTCCAAAAATACATGC GGATGAAATGGAAAAGACAG 157 

100 5 428 746 AGGACAAATGAAAATCGAAA CCAAATAAAATCAGCCCATA 138 
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101 5 463 728 CTCAATTTCAATCTTTATGCC TAGCTAGAGGACCACAAACC 80 

102 5 466 894 TGAATGGAGAAAAAGAAAAGA AAATAGCCTAATTGGCAAAG 127 

103 5 480 048 TGATACGTGAATAGGGATTG AAAAAGAAAGCAAGATAAACG 83 

104 5 515 271 GCCCTTGTCTTCTTCACTC TAGTGAAAACGGGTTGAAGT 154 

105 5 516 690 GCTTACGTTTGGACATTGTT TTTTCAACCTAAGACCTCCA 139 

106 5 535 304 GCATTCATCTAAAGGCAAAC GAACAGATCTCACTTCGGTC 89 

107 5 604 411 GGTCACCAAATATTCAAGGA TTGCTGAAGTTTATCATGGA 92 

108 5 608 446 GTAGTGCAACCAAAGACCAC TAGCCTAATTGGTCGAGTGT 86 

109 6 277 288 TCTATCCTTCCTTTTTGTGG GGGGTGAATGTGACACTAAT 121 

110 6 513 613 ACGGAGAAACCAAAAATGTA AACACGGACGCATATATCTAA 121 

111 6 555 783 TTCTTTTTAAAACGGAGAAAGT TCACCTTCGATTCAATCTTT 108 

112 7 179 708 TTTTTCCCTTATCCATTCAA AGAAACCACCTACGAGATCA 129 

113 7 207 977 CACACCCGCTAAAAGTTATT GCCCAATCAACTATTTTTGT 107 

114 7 208 496 GGAGATGAGCGAGATCTGTA TCTCGCATGTATCCCTATCT 121 

115 7 223 638 GTTAGGTTTCAGTTGCCGT CGAACTTAGTCCATCACCAT 89 

116 7 239 191 GGGAAAAATTTGTCTTTCTTG CTATTTCTGTCCTTTGGCAC 149 

117 7 281 558 TATCATGACCGATGTATTCG TCTTTTGGAATTGACTTCTGA 140 

118 7 291 112 TCAAAAGAAAAGAGAAGGTGA CCTTTTTCCCTTTATCCAAT 155 

119 7 292 091 ATTTGTGAATTTTTGGCATT CACTATCCGACCCATTTTTA 122 

120 7 313 245 ACCCTTTTCTTCTAACGGAA AAAAATATGTTTGACGAGGATT 116 

121 7 322 100 TTCCAAAGAACCGTTACACT TTAACAACCTTCCACATTCC 141 

122 7 346 925 ATTTTAGGTAGGTTTTCACGA GACTTTTAACAGTGAGCGTG 80 

123 7 439 153 GCTCGCATGATCTTAATTCT TCGATAGCTCACTTTGAACA 108 

124 7 541 872 CAAGAAAAATGCACAACAAA CTCCTTTCCATTAGCATCAG 104 

125 7 568 277 CCAAAGAACTGTTACACTTTCA TTAACAACCTTCCACATTCC 127 

126 7 574 712 TGGTCTAATGAAGCCTTTGT ACCGGATAGGGATATTGACT 136 

127 7 615 512 ATTTTTGAGAAGTTCGACCA ATTGAGTCGCTCACGTAAAT 99 

128 7 651 161 CATAAGCTCTTCAAATTGCC TTGGAGAAAACACAACATCA 142 

129 7 659 778 CCGTTTTAAAAAGATTGACA ATGTGGCATGTTTAAGATCA 143 

130 7 660 678 TGTCCCTTGCTTTACATTTT AAGCTGTTTTGAGTATTGCC 112 

131 7 679 022 TAATTGAAATGGATGAACCC CTTCATCTTCATCTTCCTCG 153 

132 7 693 896 TTTTTGTTATGTTTGGCAGA TTCTCTCTCTCACGCTTTTT 92 

133 7 716 571 ATGACTTCCAGCCAAATCTA TCAAGCAATACAGAGTCGAA 147 

134 7 717 308 AAGTTCTTTCCATTCTTCCC GGCTTTCCAAATTCCTATCT 84 

135 7 735 695 TGTGGGAGAGAGGTAAATTG AATTACGTGGACTGACTTCG 133 

136 7 741 318 GAATTGCATCGTTTTTCTTC AAAATTAAAACCAACGGACA 113 

137 7 828 980 TCAAGTTTCCTTTTGCTTTC AGTCCCTATCCACAGATCCT 127 

138 7 847 378 GAGAGACGTAGGAGAGAGG TTCGTCAGAATATACAATTACA 145 

139 7 903 813 TCTACTCGAGGGTTTAAGGA CCGAACCAGATTACAAATAAA 142 

140 7 928 572 TATGGCTGTCACAAACAGAG AATTTCGATTCGATTTTGAG 91 

141 7 946 864 ACCACATTTAAGCACCAAAC ACGTGAAGTGTGAGTTTTATTG 133 

142 7 949 256 GAATTTGGGTTTTGATTTTG TAAAGTGAAGGGGTGAATTG 141 

143 7 995 950 CACTTCATTAACGGGGTAGA AGTGAGGGAACAATTTCTGA 109 

144 45 230 496 CGGTCATCTAAAACACCATT GAATCTTCGAACAGAGGCTA 155 

145 45 258 180 CCCTGAAAAGTTAAGATAGCA AGCATTATTTTACGGTTTAATG 97 

146 45 370 701 ATGGATATATGGATGCCAAC GATCCTTTTCCAAAGATGTG 147 

147 45 709 190 TTTAGGGAAAATGCACAAGT CGAAAAGGGGTAGAAAATTAC 141 

148 46 125 680 GACGTGAACAACGTGACTAA TACGCCTGACTCCTTATCAT 131 

149 46 216 965 AAACTCAAATCCCAAATTCA CTGTTGTTGATGCTGCTAGA 100 

150 46 725 937 TACTTCAATTAAAGCTCGCC CCCTTTGATCTATGTCGTGT 105 

151 46 764 362 TTTTCTCTCTCTCTTTTCACG GAATTGGGGTTGATGATAAG 107 

152 46 858 505 AAATGCAAGTTTACAAGGGA AAGACTTGGACTTGGACTTG 118 
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153 47 566 184 AAATAATTTTCCGAACTCCC GGAGAAAACGATTTCACAAA 96 

154 47 973 834 TGCAGGAGTAGACTGAAACC TTTTTGAGTGACTATATGCGAA 114 

155 48 262 849 ATACTCGCTTTGCTTCAAAC GCAATCCAAGCTACAGAAGT 133 

156 48 404 570 CGCAACTCCTCTATCCTAAA AGAGAATTAAATGGCGTTTG 109 

157 48 771 672 TATCAACGTTTGGGATTTTC CTCAATTTCATTTTGAACCTTT 126 

158 48 874 074 GTGAACCAAACTTTAAACGG GTTTGGTATTTCGTTGTGGT 150 

159 49 204 628 CTCTTAACACCACTTTTGCC ATGAAGAATTTTGGGGTTTT 90 

160 49 256 128 ACCTATGGGGTCCTACTGTT TGTATGCCTGTGATTTGTGT 120 

161 49 808 261 TTTTTCGACGTAATTTCAGA ACTAGACATAACATTGGGTCC 100 

162 49 808 266 TTTTTCGACGTAATTTCAGA ATAACATTGGGTCCAAGAAT 94 

163 49 976 324 GCGCATACACCACAAAATTA CACGTAGGCGGTCCTAATA 144 

164 50 000 357 AATGAGTTCAAGGGGGTAAT GCACATTTTGGGACATACTT 121 

165 50 005 083 ATACATTTGTCCAAACCTCC AAAAAGTATTGGTGTGGTTTT 112 

166 50 159 967 TTGATATTGTTGACACCCAA AAGGATGAAATACCGATGTG 151 

167 50 593 726 CCCTGATCACTGCTAAACAT CCACGTACTTACTTGTGGGT 137 

168 50 623 429 TCAAATAATTTTGTTCTTGTGA TCCCAATTTAAATAAAAGCA 154 

169 50 806 100 ATTATATGTTTGGTCTCGGG TCGACTAGTGGTTTGGTTTT 116 

170 51 139 343 GCTCTTGGCAAAAGTAAAGA TCGAAATTTCTGAAAGACGTA 160 

171 51 197 947 CCCCATTAATCCTTTTTCA CTTTAGTTGGTTTTGTTTGTGA 128 

172 51 262 762 CGTGAAAAACTTCGAAAAAT CGAGTTCGAGATTCTGTTTT 87 

173 51 272 827 TTGAATTCATCGACAAATAAGA CATGGAATAGGGATAGTGTCA 105 

174 51 370 255 ATGGTTACCAGTCTCTGTCG AGAAACAGGGGATACTTTGG 152 

175 51 922 055 GTAGCCGTAGCACTTGAGAC AACACGAAAAGAACATCACC 108 

176 51 953 001 TTGAAGAAAAAGTTCACAAAAA CCCTTTTTCCAAGAATGTAA 98 

177 51 956 466 TGTTTGATTAAATTGGTGAAAT ATAGCCTCTTTTCAATCACC 118 

178 51 965 954 TGTCGTCACTGACTATTTGG CTCCTTGAGGAAAGGACTCT 117 

179 51 990 155 TCACAAAGGTTTGCTGAATA TTAACATCATTTTGAGTGCG 118 

180 52 006 616 CTCTCACCTCCCTCCTATCT TAAGAGATAAATTGGGCTGG 159 

181 52 034 258 TTGGGTTATTTCAGATTGTTC GGGTACGGACCCTCTACTAT 127 

182 52 045 558 TTGGTTACTGTCCTTTGGTT AAGCAGTTTGCCATTTATGT 94 

183 52 084 043 TTACCCCTTCTCTATTGTGC TTTGGTTAAGCCAACTTTTC 141 

184 52 086 183 TAGCATCCATGACTTTGTGA ACAAGGATTGGTCAATATGC 134 

185 52 107 486 TAAAGTCGTCGCTAAAGGTT GCGACAACTTCATACCTCTT 123 

186 52 119 815 TGACACTAAACTAATGCCGA AAAGGCAAGAGGATTTGATA 121 

187 52 120 967 AGGTTGATGGACAATATCTGA CCATCCACTATCCCTCTTTA 155 

188 52 125 009 AACTTTGCTTCACTTCTTGC CATACAAACAGGCTTGAACA 155 

189 52 139 230 CCCAAATGGACAAATCATTA TTTGGAAATTTTATCCGTTG 103 

190 52 143 232 GGATTACTGACCCTCCTCAT ATCGAAAGATCTGTGTACGAA 110 

191 52 146 442 TCATCTTTCGAGTCGAGATT TATCCATTTTGTATAGGGGC 80 

192 52 150 991 TGAAAGTCTGATGCACAAAG TTCTCCATAACACAACACGA 121 

193 52 151 475 TGAAGGAAACAATGTCACAA TACCTGAAAAGAAATCGGAA 122 

194 52 153 089 TCCTACAGCTATGTTGCTCA CATTGTTCTGTTTCATGTCG 100 

195 52 180 545 GGTCTTCAGGAATCTCAACA CGAAGTTGTGGTTGTTACAG 122 

196 52 204 378 TGTTTGTCACAAGTATCTGTTG AAATTAGTCGCGTTCCATAC 141 

197 52 268 761 TTTTACGTATCACGTTTATTTT CATTTCACATGCGATAGTTA 135 

198 52 270 046 TTGTTTTGTAAAATGATATGGA TAAAATACACGTGATTCCG 96 

199 52 321 549 AATGTCTGGTTCTGATGAGG GGTTAGAAGCAAGTCCATTG 134 

200 52 384 121 ATTTCTCAAATCTGCAAGGA TTGTTTGCAAATTACTCTCAAC 122 

201 52 388 226 TAGGAGGACCCTCTTAAAGC CACCATCAGGTCTAGTCACC 94 

202 52 747 446 TGTACCGTCTTTCTTTTGCT GAAAAATGTCAATGAAGAGGA 142 

203 52 855 027 ATGTTCCCTTCAATCATTTG TTGTCAACAACCCAAACTAA 133 
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Table B2. Sequencing depth and coverage 

Sample Total reads1 Mapped reads2 Mapping rate  
(%)3 

Average  
depth (X)4 

Coverageat  
least 1X5 (%)5 

Coverageat  
least 4X6 (%)6 

P1 (Bone ММ) 144 593 794 139 246 400 96.30 17.68 99.19 98.27 
P2 (440-071) 136 509 578 127 146 260 93.14 16.31 96.04 94.17 
E-Ripening Bulk 175 329 770 166 584 109 95.01 21.09 99.56 97.92 
L-Ripening Bulk 152 560 340 144 286 570 94.58 18.19 99.23 95.82 
Average 152 248 371 144 315 835 94.76 18.32 98.51 96.55 
Total 608 993 482 577 263 339  

Note. 1Effective sequencing data; 2Comparison to the reference genome of the read numbers (including single end 
alignment and double end alignment); 3Reference genome reads divided by the effective sequencing data; 4The 
average sequencing depth; 5A reference genome has at least 1 base covered per site accounting the genome; 6A 
reference genome has at least 4 bases covered per site accounting the genome.  

 

Table B3. SNP detection and annotation 

Category Number of SNPs 

Exonic1 

Stop gain2 468 

Stop loss3 168 

Synonymous4 13 230 

Non-synonymous5 18 955 

Intronic6 92 638 

Splicing7 180 

Upstream8 63 263 

Downstream9 52 837 

upstream/downstream10 4 874 

Intergenic11 1 622 942 

Ts12 991 440 

Tv13 879 058 

Ts/Tv14 1 127 

Total 1 870 498 

Note. 1The number of SNPs in an exon region, including stop gain, stop loss, non-synonymous and synonymous; 
2Introduction of a stop codon; 3Loss of a stop codon; 4Missense non-synonymous regions; 5The number of SNPs 
presumed to be silent; 6The number of SNPs in introns; 7Splicing regions are located in the splice site (near the 
exon/intron boundaries of the 2 bp intron); 81 Kb downstream region; 91 Kb upstream region; 101 Kb 
upstream/downstream gene; 11The number of SNPs in regions between genes; 12Transitions (ts) are interchanges 
between a purine base and another purine (A↔G) or replacement of a pyrimidine with another pyrimidine (C↔T); 
13Transversions (tv) are interchanges between the purine and pyrimidine bases (T↔A, T↔G, C↔A, C↔G); 
14ts/tv; Transition/transversion ratio.  
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Table B4. The annotations of the candidate polymorphic marker loci  

Category Number of SNPs 

Exonic1 

Stop gain2 0 

Stop loss3 0 

Synonymous4 7 

Non-synonymous5 8 

Intronic6 41 

Splicing7 0 

Upstream8 46 

Downstream9 15 

upstream/downstream10 2 

Intergenic11 315 

Ts12 267 

Tv13 167 

Ts/Tv14 1.598 

Total 434 

Note. 1The number of SNPs in an exon region, including stop gain, stop loss, non-synonymous and synonymous; 
2Introduction of a stop codon; 3Loss of a stop codon; 4Missense non-synonymous regions; 5The number of SNPs 
presumed to be silent; 6The number of SNPs in introns; 7Splicing regions are located in the splice site (near the 
exon/intron boundaries of the 2 bp intron); 81 Kb downstream region; 91Kb upstream region; 101 Kb 
upstream/downstream gene; 11The number of SNPs in regions between genes; 12Transitions (ts) are interchanges 
between a purine base and another purine (A↔G) or replacement of a pyrimidine with another pyrimidine (C↔T); 
13Transversions (tv) are interchanges between the purine and pyrimidine bases (T↔A, T↔G, C↔A, C↔G); 
14ts/tv; Transition/transversion ratio.  

 

Table B5. Sequencing data quality 

Sample 
Raw Base  
(bp)1 

Clean Base  
(bp)2 

Effective Rate 
(%)3 

Error Rate 
(%)4 

Q20 (%)5 Q30 (%)6 
GC Content 
(%)7 

P1 (Bone ММ) 15 048 951 400 14 459 379 400 96.08 0.03 97.33 92.29 36.17 

P2 (071-440) 14 217 646 400 13 650 957 800 96.01 0.03 97.33 92.28 36.67 

E-Ripening Bulk 18 162 823 000 17 532 977 000 96.52 0.03 96.61 90.56 36.5 

L-Ripening Bulk 15 876 913 600 15 256 034 000 96.08 0.04 96.38 90.08 37.8 

Average 15 826 583 600 15 224 837 050 96.17 0.03 96.91 91.3 36.79 

Total 63 306 334 400 60 899 348 200      
1The original data yield of DNA sequences; 2The effective data after filtering; 3The ratio of raw data after filtering 
to obtain clean data, error rate and base error rate; 4Base error rate; 5, 6Phred quality scores ≥ Q20 and Q30; 7The 
percentage of GC content.  
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