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Abstract 

In the semiarid region of the Brazilian Northeast, there is still the occurrence of soils with low concentrations of 
organic mass and nutrients. Eichhornia crassipes (water hyacinth) is recognized as one of the top ten endemic 
herbs in the world. However, its accumulation capacity means it can be an alternative source of nutrients. The 
objective of this study was to analyse the effects of macrophyte organic residue (ROM) on plant growth, 
antioxidative enzyme activity and membrane lipid peroxidation in leaves and roots of sunflower seedlings 
submitted to drought stress conditions. The experiment was conducted under greenhouse conditions at the 
Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Maracanaú Campus, Brazil. Samples of E. 
crassipes were collected in the Parangaba Lagoon, Fortaleza, Ceará, Brazil. The treatments were: 1) 100% (by 
volume) sand; 2) sand + fertilizer (following the recommendation of 80 kg of N/ha), and 3) sand + 100% of the 
recommended nitrogen in macrophytes (RN). In general, the use of ROM caused better seedling growth in 
relation to the other treatments in all conditions studied. Increases in antioxidative enzyme activity and 
reductions in the deleterious effects of drought stress on plant growth were observed.  

Keywords: drought, Helianthus annuus, oxidative stress, water hyacinth 

1. Introduction 

Water deficit is one of the main agricultural problems that reduces crop yields in arid and semiarid regions of the 
world, including the Brazilian Northeast (Farooq et al., 2009; Niu et al., 2017). These regions present irregular 
distribution of precipitation, high evaporation rates, and shallow and nutrient-poor soils (Santos et al., 2010). 
Despite these limiting factors, irrigation practice is the best way to ensure agricultural production, which together 
with organic fertilization can make soils more fertile and productive (Nobre et al., 2011; Finatto et al., 2013). 

Drought stress can cause morphological, physiological and biochemical changes in plants (Ferrari et al., 2015), 
as well as the restriction of nutrient and water acquisition (Manivannan et al., 2016), in addition to stomatal 
closure reducing the rate of evapotranspiration. Consequently, the photosynthetic rate may be reduced due to the 
lower availability of CO2, causing damage to the growth and development of the plants (Ghobadi et al., 2013; 
Cerqueira et al., 2015). 

Drought stress can also alter biochemical processes, thus increasing the production of reactive oxygen species 
(ROS). In excess, ROS are highly toxic to plants, with the following outstanding: superoxide radical (•O2

−), 
hydrogen peroxide (H2O2), singlet oxygen (1O2) and hydroxyl (·OH) (Demidchik, 2015). However, plants have 
defence mechanisms to combat this oxidative stress, such as the synthesis of non-enzymatic antioxidant 
compounds and/or the synthesis and activation of antioxidative enzymes such as superoxide dismutase (SOD), 
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catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) which aim to reduce ROS 
concentrations (Gill & Tuteja, 2010; Gonçalves, 2017). 

In the semiarid region of the Brazilian Northeast, there is still the occurrence of soils with low concentrations of 
organic matter and nutrients such as nitrogen and phosphorus (Esteves & Meirelles-Pereira, 2011). In this region, 
there is also a large presence of floating macrophytes in the water bodies, which may be related to disturbances 
in their short flood periods and prolonged dry periods (Pedro et al., 2006; Henry-Silva et al., 2010). 

Macrophytes are plant organisms distributed throughout the world in numerous humid environments and which 
have high nutrient storage capacity (Bonanno & Lo Giudice, 2010). They are among the groups that produce 
organic matter and play an important role in the geochemistry of wetlands. In addition, because of their 
accelerated decomposition, macrophytes when deposited in the soil can enrich it nutritionally (Dibble, 2005; 
Vodyanitskii & Shoba, 2015).  

Eichhornia crassipes (water hyacinth) is a free-floating macrophyte native to South America, and one of the 
most studied for phytoremediation purposes (Gupta et al., 2012; Melignami et al., 2015). This species reproduces 
sexually and asexually and can quickly colonize new areas (Villamagna & Murphy, 2010). It is present in 65 
countries and is recognized as one of the ten main endemic herbs in the world. Its large accumulation can 
characterize problems such as eutrophication, where this species functions as a bioindicator (Shanab et al., 2010). 
However, this plant can remove heavy metals, nutrients and sediments from water (Buta et al. 2011). In view of 
this, E. crassipes could be used in the composition of substrates for plants, functioning as an alternative source of 
nutrients. In addition, it could be an alternative destination for this waste. 

The sunflower (Helianthus annuus L.) is an oleaginous species that has been gaining ground in the Brazilian 
Northeast because it has a good tolerance to heat and drought. Among the characteristics of this crop, the 
following stand out: rusticity, high productivity and the quality of its oil, besides the potential for honey 
production and use in poultry rations (Lira et al., 2009; Souza et al., 2010; Santos et al., 2015). 

Thus, the present work analysed the effects of using macrophyte organic residue (ROM) on the initial growth of 
sunflower (H. annuus L.) plants under conditions of drought stress, evaluating plant growth, antioxidative 
enzyme activity and membrane lipid peroxidation. 

2. Method 

The experiment was conducted under greenhouse conditions at Instituto Federal de Educação, Ciência e 
Tecnologia do Ceará (IFCE), Maracanaú campus, Ceará, Brazil, from October to December 2016, totalling 30 
days. The mean values of temperature and relative humidity were 30 °C and 56%, respectively. 

Samples of E. crassipes (water hyacinth) were manually removed from the Parangaba Lagoon, Fortaleza, Ceará, 
Brazil, and arranged to dry in the full sun for 20 days. Subsequently, the dry mass was crushed by a mechanical 
crusher and sent to the Laboratory of Biochemistry and Plant Physiology of the IFCE Maracanaú campus to 
finalize the drying process in an oven with forced circulation of air at 60 °C.  

The material obtained was called ROM. After this process, a sample of the material was sent for analysis in the 
Laboratory of Soils/Water of the Federal University of Ceará (Table 1), and the results for nitrogen (N) content 
were used in calculations of amounts of ROM added to the substrates. For the commercial fertilizer treatment, 
the data of the analyses performed were provided by the manufacturer Terra Vegetal (Table 1).  

 

Table 1. Chemical analysis of the masses of Eichhornia crassipes and commercial fertilizer used in the 
composition of substrates for cultivation of sunflower plants (Helianthus annuus L.) 

 N-t Ca Na Mg K K2O P P2O5 S Fe Cu Zn Mn 

 -------------------------------------- g/Kg -------------------------------------- ---------------- mg/Kg ----------------

ROM 19.6 13.3 15.3 16.4 33.2 40.5 3.9 8.9 2.8 19.6 13.3 15.3 16.4 

Adubo 2.2 8.43 - 8.10 1.52 1.85 3.9 0.98 - 3.445,5 1.80 89.3 380.1

 *pH *C.E R.A.S C.O.T C/N NH4 NO3
- NO2

- Cl- HCO3
- CO3

- 

 ---------- dS/m ---------- -------- g/kg -------- --- Formas de N (g/kg) --- -------------- g/Kg --------------

ROM 6.6 7.52 3.35 453.3 23 14.1 3.9 1.1 10.1 0.4 0.0 

Adubo 7.6 - - - - - - - - - - 

Note. N-t: total nitrogen; T.O.C: Total Organic Carbon; C/N: carbon nitrogen ratio; C.E: Electric conductivity; 
S.A.R: sodium adsorption ratio. *Relation of (1:10).  
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In addition, both the leaves and roots of plants treated with ROM showed higher APX and GPX activity when 
compared to the other treatments. This may be associated with the behaviour of these species which function as a 
secondary mechanism in the elimination of ROS when compared to CAT, which first contributes to H2O2 
detoxification (Bhatt & Tripathi, 2011). 

In addition to these defence mechanisms, it is important to quantify lipid peroxidation, which produces MDA 
which is used to determine process intensity in the lipids of plant cell membranes. Thus, an increase of this 
substance is directly associated with indications of oxidative stress (Hendges et al., 2015). 

It should be noted that in both stress and control conditions, the treatments containing ROM had the lowest MDA 
levels. Moreover, similar results were found in other studies such as that of Messchmidt et al. (2015) who 
observed high levels of MDA in Prunus spp. under conditions of drought, and Silva (2010) who found a 
significant increase in the concentrations of MDA in sugarcane plants also submitted to drought. 

Maia et al. (2012) concluded that increases in the activity of enzymes such as SOD, APX and CAT are associated 
with a reduction of lipid peroxidation (MDA) in plants under conditions of drought stress. Thus, it is suggested 
that the use of ROM causes greater antioxidative enzyme activity and provides a reduction in lipid peroxidation 
and the deleterious effects of drought stress.  

5. Conclusions 

In the present experimental conditions, the use of ROM caused an increase in plant growth (SDM, RDM, TDM 
and leaf area) and antioxidant enzyme activity (SOD, CAT, APX and GPX) which contributed to a reduction of 
membrane lipid peroxidation (MDA) and the deleterious effects of drought stress, both under control conditions 
and drought stress, when compared to the other treatments. 

Thus, the use of dried and crushed E. crassipes to add nutrients and organic matter to the soil is suggested. 

Subsequent studies should be carried out to verify the use of this residue on a large scale and to act as an 
environmentally correct destination. 
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