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Abstract 
Mineral nutrients have favourable potential in alleviation of salinity problem in plants. Sulfur has specific 
functions in regulating plant growth, metabolism, enzymatic reactions and osmolyte homeostasis in plants. 
Hence, an experiment was carried out to explore the role of sulfur in ameliorating salt toxicity in maize by 
changes in organic and inorganic osmolyte contents. A range of sulfur levels (40, 80 mM) were used to induce 
salinity tolerance in maize. Various treatments of salinity (25, 75 mM) were applied by using sodium chloride. 
Results revealed that glycine betaine, proline, total soluble sugars, total soluble proteins and total free amino 
acids contents were increased by applying salinity while the application of sulfur lowered the proline and 
increased other studied organic osmolyte contents in all studied maize organs (leaf, shoot, root). The maximum 
improvement in organic osmolyte contents were found at 40 mM sulfur, however, at 80 mM sulfur proline 
contents were reduced. Applied salinity increased leaf tissue concentration of Na+ and decreased that of K+, Ca2+, 
NO3

-, PO4
3-, SO4

2- leading to a severely declined in K+/Na and Ca2+/Na+ ratio. However, application of sulfur 
reduced the Na+ contents and improved K+, Ca2+, NO3

-, PO4
3-, SO4

2-, K+/Na+ and Ca2+/Na+ ratio in the salinity 
grown plants. Moreover, 40 mM level of sulfur was greatly effective in osmolyte homeostasis at all levels of 
salinity. This indicated that use of sulfur (40 mM) ameliorated the effect of salinity by changing organic and 
inorganic osmolyte contents in maize plants. 
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1. Introduction 
Among various abiotic stresses, salt stress has affected 20% of land used for cultivation and 33% of the irrigated 
land throughout the world (Machado & Serralheiro, 2017). Overall, 10 million ha of the world land has been 
degraded due to salinity each year (Pimentel et al., 2004). Salt stress causes disturbances in physiological, 
biochemical, molecular processes in the plant (Nahar et al., 2016). As a result osmotic stress, imbalance in 
nutrient transport and accumulation of reactive oxygen species takes place (Iqbal et al., 2014; Puniran-Hartley et 
al., 2014). In such conditions, plants synthesize and accumulate various organic and inorganic osmolytes or 
osmoprotectants. These include proline, glycine betaine, glucose, isoleucine, mannitol and proteins (Parida & 
Das, 2005) and various inorganic nutrients (K+, Ca2+, NO3

-, PO4
3-, SO4

2-). The functions of these osmolytes are, 
to balance the ionic transport across the plant cell, scavenge reactive oxygen species, regulate enzyme activity 
and prevent membrane disintegration (Nahar et al., 2016). However, such strategies are needed that balances the 
concentrations of various osmolytes for maintaining plant metabolism. As higher concentration of osmolytes 
become toxic for plant cell. 

Sulfur plays a significant role in balancing the osmolyte contents in the plants. Sulfur is a basic constituent of 
many important compounds that maintain plant growth and development in stress conditions. These compounds 
include glutathione, vitamins, phytoharmones and various co-enzymes (Spadaro et al., 2010). Sulfur helps in 
coordination among different physiological and biochemical processes in the plants. Hence, Sulfur improves the 
cellular function by balancing the organic and inorganic osmolytes that develops salt tolerance in crop plants 
(Taiz & Zeiger, 2006; Nazar et al., 2014; Riffat & Ahmad, 2016). 

After wheat and rice, maize is very important cereal crop in the world. It is also known the ‘king of crops’. It 
contains many types of vitamins and nutrients. Due to its nutritional importance it has become a valuable food 
and feed crop in many countries of world. It is used for making bread, cake and porridge. Also it is an important 
constitute of livestock and poultry diet (Bukhsh et al., 2011). However, the production and quality of maize is 
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seriously affected by salinity as maize is moderately sensitive to salinity (Farooq et al., 2015). Therefore, such 
methods should be devised that increase the salt tolerance of this valuable crop to meet the growing food 
demand. 

Hence, this study focuses on the improvement in salt tolerance potential of maize by sulfur application. To 
maintain the balance of organic and inorganic osmolytes for development of salt tolerance is another objective of 
this study. 

2. Method 
2.1 Plan of Study 

A study was conducted to determine the role of sulfur in enhancing salt tolerance by changing the osmolyte 
contents in maize. The seeds of maize cultivars (Agaitti, 2003; Pak Afgoi, 2003) were acquired from Maize and 
Millet Institute Sahiwal Pakistan. The seeds were sorted and 10 uniform seeds were sown in plastic pots filled 
with 10 kg soil. 

2.2 Treatment Application 

Salinity (25, 75 mM) was applied by using sodium chloride. Various levels of sulfur (40, 80 mM) were applied 
by using potassium sulfate. Both treatments were applied at sowing time. After 15 days of treatment application, 
sulfur (40, 80 mM) was applied as foliar spray. Then 45 days plants were harvested for the determination of 
various biochemical attributes. 

2.3 Determination of Organic Osmolytes 

2.3.1 Glycine Betaine 

Grieve and Grattan (1983) proposed a procedure for the determination of glycine betaine contents. Two reagents 
2N H2SO4 and IK-I2 were prepared. 2N H2SO4 was prepared by mixing 5.6 mL of 36 M H2SO4 and distilled 
water was used for making final volume100 mL. IK-I2 was made by mixing 20 g of potassium iodide, 100 mL 
water and 15.7 g of iodine. Glycine betaine contents were determined by grounding 0.5 g dried plant material in 
20 mL of deionized water and shaken for 24 h at 25 oC. The extract was filtered and diluted with 2 N H2SO4 in 
1:1 ratio. Then 0.5 mL extract was put in centrifuge tube and kept in ice cooled water for 1 hour followed by 
addition of 1 mL of IK-I2, and vortexed at 0 oC at 10,000 g for 15 min. The supernatant was collected and 
dissolved in 9 mL of 1-2 dichloroethane. The solution was kept at room temperature for 2-2.5 h. The absorbance 
of glycine betaine was noted at 365 nm by using spectrophotometer (UV-1100). The values were compared with 
standard curve. 

2.3.2 Proline  

Proline contents in plants were determined by the procedure proposed by Bates et al. (1973). Firstly, some 
reagents were prepared. 6 M phosphoric acid was prepared by diluting 407 mL of 85 % phosphoric acid in 1000 
mL distilled water. For the preparation of acid-ninhydrin, 1.25 g of ninhydrin was dissolved in 30 mL glacial 
acetic acid and 20 mL of 6 M phosphoric acid. 3% sulfuric acid was made by mixing 3 g of sulphosalicylic acid 
in 100 mL of distilled water. For the determination of proline contents in plant material 0.1 g fresh plant sample 
was homogenised in 10 mL of 3% sulphosalicylic acid and filtered. Then 2 mL of acid ninhydrin, 2 mL of glacial 
acetic acid and 1 mL of filterate was heated in water bath at 100 oC for 1 hour and then transferred to ice bath 
following the addition of 4 mL of toluene. The reaction mixture was vortexed, chromophore having free proline 
was separated in test tube, kept at room temperature and the proline contents were measured at 520 nm on 
spectrophotometer (UV-1100). For blank, same procedure was used by using 2 mL of 3% aqueous 
sulphosalycylic acid. Following formula was used for proline determination. 

µmoles
proline

g
fresh weight	=	 µg proline/mL × mL of toluene

(115.5 µg/mole)/g sample/5
                        (1) 

2.3.3 Soluble Sugars 

For the determination of soluble sugars, the procedure given by Yoshida et al. (1976) was followed. Anthrone 
reagent was made by mixing 1 g anthrone in 1 L conc. H2SO4. For the determination of soluble sugars, 0.1 g 
fresh plant material was boiled in 5 mL distilled water and the filtrate was diluted to 50 mL with distilled water. 
To 1 mL of the filtrate, 5 mL of anthrone reagent was added and heated at 90 °C for 20 min. The soluble sugar 
contents were determined at 620 nm by using spectrophotometer (UV-1100). For standard curve, glucose series 
(0, 20, 40, 60, 80 and 100 µM) was used.  
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2.3.4 Total Free Amino Acids 

Total free amino acids in plant tissues were measured by the procedure of Hamilton and Van-Slyke (1943). 2% 
ninhydrine and 10% pyridine solution were prepared in the distilled water. For the determination of total free 
amino acids, 1 g fresh plant sample was homogenised in 10 mL of phosphate buffer (0.2 M with pH 7.2). To 1 
mL of the extract, 1 mL of pyridine (10%) and 1 mL of ninhydrine (2%) were mixed and heated at 100 oC in 
water bath for 30 min. The volume was maintained 50 mL with distilled water and the absorbance was noted at 
570 nm by using spectrophotometer (UV-1100). Following formula was used for calculating total free amino 
acid.  

Total amino acid (mg/g fresh weight)	=	 Graph reading of sample × Volume of sample × Dilution factor

Weight of the tissue x 1000
         (2) 

2.3.5 Total Soluble Proteins 

The concentration of total soluble protein was determined by the method given by Bradford (1976). Phosphate 
buffer saline was prepared by mixing 2.7 mM KCl, 10 mM Na2HPO4, 1.37 mM NaCl and 2 mM KH2PO4 and 
pH 7.2 was maintained by using HCl. The determination of total soluble protein was done by extracting the 0.5 g 
fresh plant material in phosphate buffer saline, centrifugation was done and the supernatant was collected. To 
equal volume of supernatant dye stock was dissolved, vortexed and kept in an incubator for 30 min. The 
absorbance was noted at 595 nm by using spectrophotometer (UV-1100). The standard curve was drawn by using 
bovine serum albumin (BSA) of the range (10 to 50 µg mL-1). 
2.4 Determination of Inorganic Osmolytes 

2.4.1 Sodium, Potassium, Calcium (Na+, K+, Ca2+) 

The dried plant sample (0.5 g) was incubated in 5 mL H2SO4 overnight and heated at 350 °C in the digestion 
block for 30 min. The mixture was cooled; 1 mL of H2O2 was added and again heated for 20 min. These steps 
were repeated until clear solution was obtained, filtered, and volume was maintained to 50 mL by using distilled 
water (Wolf, 1982). This extract was used for the determination of Na+, K+, Ca2+ ions by using flame photometer 
(Jenway PFP-7). For standard curve a series of standards (10, 20 to 100 ppm of Na+, K+ and Ca2+) was prepared. 
The actual values were calculated by comparing the values from standard curve and from flame photometer. 

2.4.2 Phosphate (PO4
2-)  

The concentration of phosphate ions in plant tissues was determined by following the method of Yoshida (1976). 
Firstly, two reagents were prepared. For the preparation of molybdate-vanadate solution, 25 g ammonium 
molybdate was mixed in 500 mL of water, and 1.25 g of ammonium vanadate was mixed in 500 mL of 1N HNO3 

separately, then equal volumes of two solutions were mixed together. For the preparation of nitric acid (2 N), 10 
mL of concentrated HNO3 was mixed in 80 mL of distilled water. The phosphate content was determined by 
boiling 0.5 g dried plant sample in 5 mL distilled water for 1 h, filtered and 50 mL volume was prepared by 
using distilled water. 1 mL of extract was mixed with 2 mL of 2 N HNO3, volume was maintained to 4 mL with 
distilled water, 1 mL of molybdate-vanadate reagent was added and the mixture was diluted to 10 mL with 
distilled water, vortexed, allowed to stand for 20 min and absorbance was noted at 420 nm by using 
spectrophotometer (UV-1100). For standard curve, stock solution of 25 mg/L PO4

3- was prepared by mixing 0.11 
g monobasic phosphate (KH2PO4) in 1 L distilled water and standard series was prepared by mixing 1, 2, 3, 4, 5 
and 6 mL of 25 mg/L PO4

3- and diluted to 8 mL with distilled water. 

2.4.3 Nitrate (NO3
-)  

For the determination of nitrate contents a procedure proposed by Kowalenko and Lowe (1973) was used. The 
reagents were prepared. For the preparation of 0.01% TCA, 0.1% CTA stock was prepared. For this purpose, 
0.247 g of chromotropic acid disodium salt (CTA) was dissolved in 100 mL of conc. H2SO4. Then 10 mL of CTA 
stock was diluted to 100 mL with H2SO4 for the preparation of 0.01% TCA. For the determination of nitrate 
contents, 0.5 g dried plant sample was boiled in 5 mL of distilled water for 1 h, filtered and diluted to 50 mL by 
using distilled water. 3 mL extract was mixed with 7 mL of working CTA solution, vortexed and absorbance was 
noted at 430 nm after 20 min by using spectrophotometer (UV-1100). Water was used for blank. For standard, 
0.7216 g of KNO3 was dissolved in 1 L distilled water for the preparation of 100 mg/L NO3

- stock solution, then 
a graded series (10, 20, 30, 40, 50 and 100 mg/L NO3

-) was prepared by diluting the stock solution. 

2.4.4 Sulfate (SO4
2-)  

For the determination of sulfate contents in plant sample, a procedure given by Tendon (1993) was used. Firstly, 
two reagents barium chloride/polyvinyl alcohol and acid mixture were prepared. For the preparation of barium 
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plants under stress conditions (Siringam et al., 2012). Moreover, soluble sugars serve as chelating agent that 
bound Na+ with starches and lower the toxic effects of salt on the plants (Xiao et al., 2009). The application of 
sulfur also increased the soluble sugars contents in both maize cultivars at all levels of treatments. It was 
supported by the findings of Lunde et al. (2008) who reported the reduction in soluble sugar contents by sulfur 
deficiency. 

In this study, it was found that salinity increased the total soluble protein contents in both studied maize cultivars. 
It was supported by earlier researches (Chen et al., 2007; Kapoor & Srivastava, 2010). Soluble proteins help to 
raise the nitrogen level in plants that promotes growth and development under stress conditions. In addition, 
soluble proteins perform a significant role in osmotic adjustment (Ashraf & Harris, 2004). Sibole et al. (2003) 
found that by application of salinity (10, 50, 100, 200 mM), the soluble protein contents were increased in the 
clover plant (Medicago citrna L.). The accumulation of soluble protein contents by salt application has been 
reported in various plants i.e. barley, maize, sunflower, rice and mung bean (Khosravinejad et al., 2009; Kapoor 
& Srivastava, 2010). This study showed that the application of sulfur improved the soluble protein contents in 
maize plants. It may be due to the reason that sulfur is an important part of amino acids the building blocks of 
proteins (Gardner et al., 1985). Different metabolites of sulfur (i.e. cysteine, thiol) protect the structure of 
proteins. Hence, sulfur helps in forming the structure and function of proteins in the stress conditions (Malhi & 
Leach, 2000).  

It was found that salt stress enhanced the total free amino acid contents in maize plants. In stress conditions, total 
free amino acid contents become very high that protects the proteins from degradation (Mansour, 2000). 
Moreover, this study showed that salt tolerant maize cultivar accumulated high level of total free amino acid in 
comparison to salt sensitive maize variety. These findings have been supported by previous studies (Ashraf and 
Tufail, 1995; Ashraf & Fatima, 2004). The application of sulfur improved various amino acid contents in maize 
plants as sulfur is the constituent of many important amino acids forming various structural and functional 
proteins in plants (Giovaneli, 1987).  

Salt stress causes the disturbance in availability, absorption and transport of nutritional contents in plants (Munns 
& Tester, 2008). In this study, salinity reduced the beneficial nutrients (K+, Ca2+, NO3

-, PO4
3-, SO4

2-, K+/Na+, 
Ca2+/Na+) in maize plants. It may be due to the reason that salt stress causes the disturbance in external osmotic 
potential that imbalance the nutrient contents in plants (Murillo-Amador et al., 2002). The imbalance in nutrient 
contents has been reported in various crops e.g. Lycopersicon esculentum, Spinacia oleracea, Physalis peruviana, 
as well as in Zea mays (Miranda et al., 2010; Collado et al., 2010).  

This study revealed that salt stress increased the sodium (Na+) contents in the maize plants which are in 
accordance to the findings of Fortmeier et al. (1995). The rise in sodium (Na+) contents decreased the plant 
growth in both studied maize cultivars (Agaitti, 2003; Pak Afgoi, 2003). It may be due to the reason that high 
sodium (Na+) contents forms ion-pair and precipitates other ions in plant cell (Hu et al., 2005). The reduction in 
Ca2+, K+, K+/Na+ and Ca2+/Na+ has been reported in this study. The elevated concentration of sodium (Na+) 
changes the root permeability and reduces the uptake of calcium (Ca2+) in plants (Greenway & Munns, 1980). 
This may be due to the competition in uptake of sodium (Na+) and calcium (Ca2+) contents and due to reduction 
in soil water potential affecting root pressure (Sonnevelt et al., 1975). Moreover, high concentration of sodium 
(Na+) negatively uptake the potassium (K+) resulting in reduction in carbon fixation, photosynthetic apparatus 
and ultimately reduces the photosynthesis in plants (Akram et al., 2010). The results of this study revealed that 
salt tolerant cultivar (Agaitti, 2003) accumulated low sodium (Na+) and high potassium (K+) and calcium (Ca2+) 
contents in comparison to salt sensitive maize variety (Pak Afgoi, 2003). Therefore, Agaitti (2003) showed high 
K+/Na+ and Ca2+/Na+ ratio. This may be due to the reason that salt tolerant variety compartmentalizes the sodium 
(Na+) in the plants thus transport the potassium and calcium (Munns et al., 2006). Thus, salt tolerant cultivar has 
high K+/Na+ ratio. It was supported by previous studies (Song et al., 2009). In salt tolerant variety the restricted 
uptake of Na+ ions maintains plant homeostasis and ultimately overall plant growth. While in salt sensitive 
variety, plant growth reduced due to disturbance in nutrient homeostasis. These findings are in accordance to 
previous researches (Eker et al., 2006; Riffat & Ahmad, 2018). Results showed that application of sulfur lowered 
the Na+ ions and improved the Ca2+, K+, K+/Na+ and Ca2+/Na+ in the maize plants. Sulfur helps in maintaining 
nutrient homeostasis in plants and induces salt tolerance (Singh et al., 2011). Sulfur application increases the 
Ca2+ and K+ ions and decreases the harmful effects of Na+ ions in the plants. This results in high K+/Na+ and 
Ca2+/Na+ ratio that indicate salt tolerance. Thus application of sulfur improves the crop quality and growth and 
development by maintaining proper nutrient homeostasis in plants under stressful environment (Badr et al., 2002; 
Prasad et al., 2003).  
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Results showed that salinity reduced nitrate (NO3
-) contents in maize plants. It was supported by previous 

findings of Samra (1985). It may be due to the reason that Na+ ions cause slow assimilation of nitrate (NO3
-) 

contents. Moreover, salt stress shifts the reduction of nitrate from leaf to root (Frechill et al., 2001; Ullrich, 2002), 
that disturbs the proper availability of nitrate (NO3

-) to the other parts of plants. The application of sulfur 
improved the nitrate (NO3

-) contents in both studied maize varieties. It was in accordance to the previous studies. 
Reuveny et al. (1980) reported that the deficiency of sulfur causes the reduction in nitrate reductase activity. 
However, sulfur application improves the nitrogen metabolism and ultimately improves the nitrate contents in 
stress conditions (Sexton et al., 1993). 

Salt stress also reduced the phosphate (PO4
3-) contents in maize plants. Champagnol (1979) reported that salt 

stress reduced the phosphate (PO4
3-) nutrition in the plants. However, sulfur application at low concentration 

improved the phosphorous contents in maize plants. These findings are supported by previous researches on 
various crops i-e. wheat, chickpea and maize, (Islam et al., 2011; Riffat, 2017; Riffat & Ahmad, 2018). Results 
revealed that salt stress reduced the sulfate (SO4

2-) contents in both studied maize varieties. Riffat & Ahmad 
(2018) reported that high concentration of salts reduced the sulfate (SO4

2-) contents. While, the sulfur application 
improved the sulfate (SO4

2-) contents in the maize plants. 

5. Conclusions and Recommendations 
Salt stress caused changes in the organic and inorganic osmolytes in the plants. The imbalance in nutrient 
contents disturbs the normal plant metabolism. To overcome the adverse effects of salinity some natural 
osmoprotectants get accumulated in the maize plants. Among these organic osmolytes, glycine betaine, proline, 
total soluble sugars, total soluble proteins and total free amino acids has considerable importance. The 
application of sulfur (40 mM) not only balanced the organic osmolytes contents by lowering the higher 
accumulation of proline to avoid toxic effects but also induced salt tolerance in maize plants. Among the 
inorganic osmolytes, salt stress increased the Na+ contents and lowered the beneficial osmolytes in the maize 
plants. However, sulfur application at 40 mM proved very effective in improving beneficial osmolytes (K+, Ca2+, 
NO3

-, PO4
3-, SO4

2-, K+/Na+ and Ca2+/Na+) in the plants. Hence, it is recommended that sulfur at 40 mM is very 
much effective in balancing organic and inorganic osmolytes for improving salt tolerance potential.  
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