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Abstract 
The Visual Evaluation of Soil Structure (VESS) is a relatively simple methodology used for comparing 
management systems and for maintaining or recovering the quality of agricultural soils. The objective of this 
study was to evaluate the structural soil quality in the production of sugarcane using VESS. Three treatments 
were established: Deep Strip-till (DST), Conventional Tillage (CT) and Uncultivated area (UC). For DST and 
CT soil samples were taken from two locations: in-row and inter-row. Soil blocks were extracted from 
mini-trenches and carefully fragmented into aggregates, whose appearance, resistance, and characteristics of the 
structural units define quality scores. The density of visible roots was quantified by a grid-based counting 
method. DST at in-row location had improved the structural quality of the soil, providing greater root growth. 
Scores of visual soil quality in CT showed no difference between in-row and inter-row locations. Preserved from 
machinery traffic the in-row trail in CT did not result in benefit to soil quality. Variability in the scores among the 
replicate blocks for DST in-row suggests that the equipment had produced irregular soil tillage. VESS proved to 
be a good indicator from which it is feasible to evaluate impacts of agricultural machines and tillage implements 
on soil quality. 

Keywords: soil quality, tillage implements, VESS 

1. Introduction 
Knowledge and quantification of the impacts on soil quality of land use and management are important for the 
development of sustainable agricultural systems (Doran, 2002). The soil quality can be assessed both for 
agro-ecosystems aiming the productivity and for natural ecosystems where major aims are maintenance of 
environmental quality and biodiversity conservation. Thus, measuring the quality of a soil means assigning a 
value to the soil that expresses its capacity to fulfill a specific function, which in the context of arable agriculture 
equates to providing a suitable environment for plant development (Bünemann et al., 2018). 

Quantification of the quality of natural and degraded soils can be performed by visual methods, in which the soil 
is described in terms of the size, shape, and porosity of its individual structural units (aggregates). Additional 
descriptors that correlate with soil quality can be added (Ball et al., 2007). Omuto (2008) found that visual 
evaluation is an inexpensive and rapid method for identifying the final stages of physical degradation with an 
accuracy of 60%. 

Direct, in-field evaluation of the structural quality of soils from the temperate regions have been made by several 
methodologies (Ball & Douglas, 2003; Roger-Estrade et al., 2004; Ball et al., 2007; Shepherd, 2009; Mueller et 
al., 2013; Abdollahi, Hansen, Rickson, & Munkholm, 2015; Leopizzi et al., 2018). However, few studies 
reporting the evaluation of the quality of from the tropical regions through visual methods have been conducted 
(Niero et al., 2010; Dechen et al., 2010; Guimarães et al., 2011; Giarola et al., 2013; Moncada et al., 2014; 
Cherubin et al., 2016). 

In the visual evaluation method developed by Ball et al. (2007) for the evaluation of the structural quality of a 
soil, called Visual Evaluation of Soil Structure—VESS, scores are assigned according to classes defined in a 
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chart. The depictions of soil attributes provided in these charts assist the user in identifying characteristics of the 
sampled layers of a soil that determine its structural quality. The use of the VESS method has grown because of 
its simplicity, it requires few equipment for its evaluation, reliability and speed with which the results are 
obtained (Leopizzi et al., 2018) 

Incorrect use of agricultural machinery and equipment has been identified as being pointed as cause of the 
degradation of soil structure (Roque et al., 2010; Soracco et al., 2015) and hence on the root development of 
crops (Souza et al., 2012). As a result, there has been growing interest in evaluation the quality of soils subjected 
to different cultivation processes, with a view to defining the technologies most appropriate for specific climate 
conditions and soils. Effects on the soil properties vary with the type of tillage followed in the management 
system, and are dependent on the tillage intensity, the traffic of machines, and the type of equipment used 
(Roque et al., 2010). 

The relative ease and speed with which a soil structure evaluation can be performed by visual scoring makes 
methods like VESS a practical tool for examining how tillage practices affect soil quality (Ball et al., 2007). 
Thus, the hypotheses of the study are: for crops raised in rows, regardless of the soil tillage method, the soil 
quality score for samples from within a row, where there is no traffic of agricultural machines, will be better than 
for inter-row samples. The in-row scores for a soil managed under deep tillage will be better than for the same 
soil under other systems of tillage. Through their effects on soil structural quality, tillage practices exert an 
influence on the development of the root system of the crop. This leads to the expectation that soil quality scores 
will be related to measures of root growth. The objectives of this present study were to compare the structural 
quality of an Alfisol under deep strip-till and conventional tillage cultivated sugarcane and to search for 
relationships between soil structural quality and root system development. 

2. Method 
2.1 Study Area Description of Treatments 

The field study was conducted in Piracicaba, State of São Paulo, Brazil (22º41′04″ S and 47º38′52″ W). The 
climate is subtropical with dry winters, corresponding to classification Cwa within the Köppen scheme (Peel et 
al., 2007). The mean annual temperature and rainfall are 24 °C and 1273 mm, respectively. The local landscape 
presents an undulating relief. The soil at the study site was classified as an Alfisol (Soil Survey Staff [USDA], 
1999) corresponding to a Nitossolo Vermelho eutrófico latossólico within the Brazilian System for Soil 
Classification (Santos et al., 2013), with an ochric epipedon, and clay texture (Table 1), with 134.0, 250.5, 115.0 
and 500.0 g kg-1 of coarse sand, fine sand, silt and clay content, respectively, in surfaces horizons (A and A/B). 
The soil is free draining, and contains no stones or rocks.  
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Table 1. Morphological description of the horizons (H) of the studied Alfisol (Piracicaba, SP, Brazil) 

H Depth/m Color Texture Description

A 0.00-0.10 (2.5YR 3/2) 
Dusky red 

clay Structure: moderate, small to medium, angular and 
subangular blocks. 

Rupture resistance: friable. 

Plasticity and stickiness: very plastic and sticky. 

Boundary: gradual and wavy. 
AB 0.10-0.25 (2.5YR 2.5/4) 

Dark reddish brown 
clay Structure: moderate, small to medium, angular and 

subangular blocks. 

Clay films: few and faint. 

Rupture resistance: friable. 

Plasticity and stickiness: very plastic and sticky. 

Boundary: diffuse and wavy. 
B 0.25-0.60 (10R 3/6) 

Dark red 
heavy clay Structure: strong, medium to large, angular and subangular 

blocks. 

Clay films: common and distinct. 

Rupture resistance: very friable. 

Plasticity and stickiness: very plastic and sticky. 

Boundary: diffuse and wavy. 
Bw below 0.60 (2.5YR 3/6) 

Dark red 
heavy clay Structure: weak, short, angular blocks that fall apart easily 

to granular. 

Clay films: few and faint.  

Rupture resistance: very friable. 

Plasticity and stickiness: very plastic and sticky. 

Boundary: diffuse and wavy. 

Note. Color = Water state: moist. 

 

The experimental area of 3.50 ha was cultivated with sugarcane under conventional tillage since August 2005. 
After two cycles, the area was prepared with conventional tillage for the implementation of the experiment. The 
experiment was carried out in a completely randomized design (CRD), with 3 plots, each one being a treatment. 
The plots were demarcated within the experimental area, with dimensions of 120 m long by 50 m wide (0.60 ha), 
one for each treatment. Three replicates were made within each plot. The evaluations were carried out in the 
cycle of the first ratoon cane.  

2.2 Soil Tillage Treatments 

Treatment 1: Deep Strip-Till (DST)—The deep strip-till of the soil was performed using an equipment that 
comprises components which simultaneously performed surface tillage, deep tillage with a subsoiler, surface 
clod breaking, straw windrowing, and the in-row application of lime and fertilizers at different depths (0.40 or 
0.80 m). The surface soil tillage (0.00 to 0.40 m) was carried out with a rotary hoe with 16 blades on each wheel; 
the deep tillage reached to a depth of 0.80 m, and formed the rows of paired plant beds. Agricultural limestone 
was applied in-row as part of the deep tillage preparation of the plant beds: 2.00 t ha-1 of lime (PRNT of 80%) at 
a depth of 0.40 m, and 0.80 t ha-1 at a depth of 0.80 m. 

Treatment 2: Conventional Tillage (CT)—The soil tillage was carried on with a disc harrow (20 discs of 0.61 m 
of diameter) for lime incorporation and a leveling harrow to break up clods. These operations extended to a 
depth between 0.20 and 0.30 m. Thirty-four days after soil tillage (one day before planting), 2 t ha-1 of lime were 
applied with surface harrowing. The operations on planting day were the application of 0.80 t ha-1 of agricultural 
gypsum, incorporated with light harrowing, followed by the formation of the furrows.  

Due to a lack of native vegetation near the treatment plots, usually used as a reference in studies on the effects of 
management systems (Argenton et al., 2005), an Uncultivated area (UC) occupied by bamboo vegetation on the 
same Alfisol was selected as the reference. There was no history of agricultural operations or traffic of 
machinery through this area, and the bamboo vegetation had been growing undisturbed for approximately 40 
years.  
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Lower scores (median Sq = 1.26) were observed in the uncultivated area (UC, Figure 2). The dense root system 
of the bamboo vegetation, plus the accumulated organic litter on the surface of the Alfisol, probably gave to the 
UC soil a higher content soil organic matter and a greater biological activity than in the tilled soils. Organic 
matter and biological activity are factors that increase the binding between mineral particles and consequently 
produce stable soil aggregates. Soil structural quality scores between 1 and 2 are considered indicators of good 
soil structure by Ball et al. (2007), were also found by Giarola Tormena et al. (2009); Giarola et al. (2010) and 
Eurich et al. (2014) for areas of native forest which had never experienced any kind of soil tillage and 
management. 

The DST in-row soil presented the median score (Sq = 2.10). Excavation of the mini-trenches and the extraction 
of the blocks were easier for the DST in-row locations than for DST inter-row, CT in-row, and CT inter-row, and 
this observation was consistent with the higher median score of the DST in-row soil.  

DST in-row aggregates revealed a soil of greater porosity, and high friability. The presence of roots between 
small and rounded aggregates, which could easily be broken with finger pressure, also contributed to the good 
quality score for the DST in-row soil. The attributes of the aggregates in the DST in-row soil: small, friable, 
porous, sub-angular and rounded, have been identified by Shepherd (2009) as characteristics of soils with good 
structure. 

However, as shown in the box plot of the median quality scores (Figure 2), the variability of the scores was very 
high for the DST in-row. This occurred because in the layer 2 of some of the replications soil was composed of 
porous round aggregates with sizes between 0.002 and 0.007 m and an abundance of branched roots, mixed with 
aggregates of 0.001 m around which the roots observed were flattened and showed horizontal growth.  

The median scores for the CT in-row and CT inter-row treatments (Sq = 2.36 and 2.24 respectively) were higher 
than for the DST in-row. Difficulties were found in the extraction of the CT soil blocks from the field, due to the 
resistance of the soil to the insertion of the blade of the spade, an indication of the presence of a compacted layer. 
Tormena et al., (2016) also found difficulties in extracting blocks from soil under corn cultivation with 
mechanized harvesting, where most of them had well-defined horizontal layers, large angular and subangular 
shaped aggregates, and were difficult to break, which are all signs of soil compaction and poor structure.  

CT in-row and CT inter-row presented large subangular aggregates that were resistant to rupture, with a few 
flattened and grouped roots. These cubic and angular aggregates have higher tensile strength due to their greater 
density (Guimarães et al., 2011), and are considered a sign of soil compaction. The similar scores of the two CT 
sampling positions reflected the soil tillage, which used a harrow and a leveler, implements that produced 
homogenization of the soil, as reported by Tavares et al. (2017) in sugarcane production under conventional 
tillage. This means that preserved from machinery the in-row trail in this treatment did not result in benefit to 
visual soil quality. 

The highest median score was obtained for the DST inter-row (Sq = 2.58) mainly because of angular aggregates 
with sizes ranging from 0.001 to 0.002 m and little porosity, low quantity of roots, and those present displayed 
little branching and were flattened. The soil is compacted, not only because agricultural traffic was directed 
along the inter-row zone, but also because there was no tillage in the soil on the 1.50 m wide inter-row zone, so 
that the soil compaction generated in the previous crop cycle was not alleviated.  

Two soil layers with structural differences were easily identified regardless of the treatment. The mean depth 
ranges for the first layer displayed only small variations among treatments (DST in-row = 0.06 m, DST inter-row 
= 0.08 m CT in-row = 0.05 m, CT inter-row = 0.07 m and UC = 0.05 m). The second layer correspond the 
inferior limited of first layer until 0.25 m (depth of study).  

The structural quality of the soil was always lower for layer 1 than for layer 2 (Figure 3). This differentiation 
between the two layers was considered due in part to tillage and the traffic of machinery, and partly to the 
development of the root systems of the sugarcane plants and the incorporation of plant residues on the surface. 
For the uncultivated soil (UC), the scores of the layers were, as expected, very similar, but also the soil of the 
deeper layer presented a higher score. Cherubin et al. (2016) studying different land use and management in 
Brazil, also identified two layers, and the superficial layer (0.00-0.10 m) always presented better visual quality of 
the soil structure. As well, Tormena et al. (2016) also noted two layers with visually distinct structural quality in 
medium texture soil cultivated with corn for 7 years with different management systems. 
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