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Abstract

The Visual Evaluation of Soil Structure (VESS) is a relatively simple methodology used for comparing
management systems and for maintaining or recovering the quality of agricultural soils. The objective of this
study was to evaluate the structural soil quality in the production of sugarcane using VESS. Three treatments
were established: Deep Strip-till (DST), Conventional Tillage (CT) and Uncultivated area (UC). For DST and
CT soil samples were taken from two locations: in-row and inter-row. Soil blocks were extracted from
mini-trenches and carefully fragmented into aggregates, whose appearance, resistance, and characteristics of the
structural units define quality scores. The density of visible roots was quantified by a grid-based counting
method. DST at in-row location had improved the structural quality of the soil, providing greater root growth.
Scores of visual soil quality in CT showed no difference between in-row and inter-row locations. Preserved from
machinery traffic the in-row trail in CT did not result in benefit to soil quality. Variability in the scores among the
replicate blocks for DST in-row suggests that the equipment had produced irregular soil tillage. VESS proved to
be a good indicator from which it is feasible to evaluate impacts of agricultural machines and tillage implements
on soil quality.
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1. Introduction

Knowledge and quantification of the impacts on soil quality of land use and management are important for the
development of sustainable agricultural systems (Doran, 2002). The soil quality can be assessed both for
agro-ecosystems aiming the productivity and for natural ecosystems where major aims are maintenance of
environmental quality and biodiversity conservation. Thus, measuring the quality of a soil means assigning a
value to the soil that expresses its capacity to fulfill a specific function, which in the context of arable agriculture
equates to providing a suitable environment for plant development (Biinemann et al., 2018).

Quantification of the quality of natural and degraded soils can be performed by visual methods, in which the soil
is described in terms of the size, shape, and porosity of its individual structural units (aggregates). Additional
descriptors that correlate with soil quality can be added (Ball et al., 2007). Omuto (2008) found that visual
evaluation is an inexpensive and rapid method for identifying the final stages of physical degradation with an
accuracy of 60%.

Direct, in-field evaluation of the structural quality of soils from the temperate regions have been made by several
methodologies (Ball & Douglas, 2003; Roger-Estrade et al., 2004; Ball et al., 2007; Shepherd, 2009; Mueller et
al., 2013; Abdollahi, Hansen, Rickson, & Munkholm, 2015; Leopizzi et al., 2018). However, few studies
reporting the evaluation of the quality of from the tropical regions through visual methods have been conducted
(Niero et al., 2010; Dechen et al., 2010; Guimardes et al., 2011; Giarola et al., 2013; Moncada et al., 2014;
Cherubin et al., 2016).

In the visual evaluation method developed by Ball et al. (2007) for the evaluation of the structural quality of a
soil, called Visual Evaluation of Soil Structure—VESS, scores are assigned according to classes defined in a
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chart. The depictions of soil attributes provided in these charts assist the user in identifying characteristics of the
sampled layers of a soil that determine its structural quality. The use of the VESS method has grown because of
its simplicity, it requires few equipment for its evaluation, reliability and speed with which the results are
obtained (Leopizzi et al., 2018)

Incorrect use of agricultural machinery and equipment has been identified as being pointed as cause of the
degradation of soil structure (Roque et al., 2010; Soracco et al., 2015) and hence on the root development of
crops (Souza et al., 2012). As a result, there has been growing interest in evaluation the quality of soils subjected
to different cultivation processes, with a view to defining the technologies most appropriate for specific climate
conditions and soils. Effects on the soil properties vary with the type of tillage followed in the management
system, and are dependent on the tillage intensity, the traffic of machines, and the type of equipment used
(Roque et al., 2010).

The relative ease and speed with which a soil structure evaluation can be performed by visual scoring makes
methods like VESS a practical tool for examining how tillage practices affect soil quality (Ball et al., 2007).
Thus, the hypotheses of the study are: for crops raised in rows, regardless of the soil tillage method, the soil
quality score for samples from within a row, where there is no traffic of agricultural machines, will be better than
for inter-row samples. The in-row scores for a soil managed under deep tillage will be better than for the same
soil under other systems of tillage. Through their effects on soil structural quality, tillage practices exert an
influence on the development of the root system of the crop. This leads to the expectation that soil quality scores
will be related to measures of root growth. The objectives of this present study were to compare the structural
quality of an Alfisol under deep strip-till and conventional tillage cultivated sugarcane and to search for
relationships between soil structural quality and root system development.

2. Method
2.1 Study Area Description of Treatments

The field study was conducted in Piracicaba, State of Sdo Paulo, Brazil (22°41'04” S and 47°38'52" W). The
climate is subtropical with dry winters, corresponding to classification Cwa within the K&ppen scheme (Peel et
al., 2007). The mean annual temperature and rainfall are 24 °C and 1273 mm, respectively. The local landscape
presents an undulating relief. The soil at the study site was classified as an Alfisol (Soil Survey Staff [USDA],
1999) corresponding to a Nitossolo Vermelho eutrdfico latossdlico within the Brazilian System for Soil
Classification (Santos et al., 2013), with an ochric epipedon, and clay texture (Table 1), with 134.0, 250.5, 115.0
and 500.0 g kg™ of coarse sand, fine sand, silt and clay content, respectively, in surfaces horizons (A and A/B).
The soil is free draining, and contains no stones or rocks.
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Table 1. Morphological description of the horizons (H) of the studied Alfisol (Piracicaba, SP, Brazil)

H Depth/m Color Texture Description
A 0.00-0.10 (2.5YR 3/2) clay Structure: moderate, small to medium, angular and
Dusky red subangular blocks.

Rupture resistance: friable.
Plasticity and stickiness: very plastic and sticky.
Boundary: gradual and wavy.

AB 0.10-0.25 (2.5YR 2.5/4) clay Structure: moderate, small to medium, angular and
Dark reddish brown subangular blocks.

Clay films: few and faint.

Rupture resistance: friable.

Plasticity and stickiness: very plastic and sticky.
Boundary: diffuse and wavy.

B 0.25-0.60 (10R 3/6) heavy clay Structure: strong, medium to large, angular and subangular
Dark red blocks.
Clay films: common and distinct.
Rupture resistance: very friable.
Plasticity and stickiness: very plastic and sticky.
Boundary: diffuse and wavy.

Bw below 0.60 (2.5YR 3/6) heavy clay Structure: weak, short, angular blocks that fall apart easily
Dark red to granular.

Clay films: few and faint.

Rupture resistance: very friable.

Plasticity and stickiness: very plastic and sticky.
Boundary: diffuse and wavy.

Note. Color = Water state: moist.

The experimental area of 3.50 ha was cultivated with sugarcane under conventional tillage since August 2005.
After two cycles, the area was prepared with conventional tillage for the implementation of the experiment. The
experiment was carried out in a completely randomized design (CRD), with 3 plots, each one being a treatment.
The plots were demarcated within the experimental area, with dimensions of 120 m long by 50 m wide (0.60 ha),
one for each treatment. Three replicates were made within each plot. The evaluations were carried out in the
cycle of the first ratoon cane.

2.2 Soil Tillage Treatments

Treatment 1: Deep Strip-Till (DST)—The deep strip-till of the soil was performed using an equipment that
comprises components which simultaneously performed surface tillage, deep tillage with a subsoiler, surface
clod breaking, straw windrowing, and the in-row application of lime and fertilizers at different depths (0.40 or
0.80 m). The surface soil tillage (0.00 to 0.40 m) was carried out with a rotary hoe with 16 blades on each wheel;
the deep tillage reached to a depth of 0.80 m, and formed the rows of paired plant beds. Agricultural limestone
was applied in-row as part of the deep tillage preparation of the plant beds: 2.00 t ha™ of lime (PRNT of 80%) at
a depth of 0.40 m, and 0.80 t ha™" at a depth of 0.80 m.

Treatment 2: Conventional Tillage (CT)—The soil tillage was carried on with a disc harrow (20 discs of 0.61 m
of diameter) for lime incorporation and a leveling harrow to break up clods. These operations extended to a
depth between 0.20 and 0.30 m. Thirty-four days after soil tillage (one day before planting), 2 t ha of lime were
applied with surface harrowing. The operations on planting day were the application of 0.80 t ha™" of agricultural
gypsum, incorporated with light harrowing, followed by the formation of the furrows.

Due to a lack of native vegetation near the treatment plots, usually used as a reference in studies on the effects of
management systems (Argenton et al., 2005), an Uncultivated area (UC) occupied by bamboo vegetation on the
same Alfisol was selected as the reference. There was no history of agricultural operations or traffic of
machinery through this area, and the bamboo vegetation had been growing undisturbed for approximately 40
years.
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The sugarcane (variety IACSP95-5000) was planted in a dual row system (Figure 1), with a row spacing of 0.90
m between the paired rows (in-row spacing), and 1.50 m between the rows of adjacent pairs (inter-row spacing).
The in-row spacing is preserved from machinery, and is known as “seedbed”, while the inter-row spacing is the
area used exclusively for traffic.
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Figure 1. Dual row planting scheme (DST and CT treatments), and locations and dimensions of the
mini-trenches from which the soil blocks were extracted

2.3 Soil Sampling and Visual Evaluation

The visual evaluation of soil structure was conducted before the harvest of the sugarcane ratoon cycle on
samples collected as blocks of surface soil. Soil moisture at the time of extraction of the blocks was 0.20 kg kg™
in layer 0-0.30, correspondent to the limit of plasticity, which were obtained by gravimetry through the sampling
of deformed soil. In DST and CT treatments both in-row and inter-row samples were collected, thereby resulting
in five treatments: DST in-row; DST inter-row; CT in-row; CT inter-row; and UC. Three sampling points were
positioned in representative locations within each treatment (central position of in-row and inter-row) where
three mini-trenches (replicates), for the extraction of soil undisturbed samples, were opened with the aid of a
straight spade. The dimensions of the trenches were 0.35 m wide (parallel to the plant rows) X 0.45 m long
(perpendicular to the plant rows) x 0.30 m deep (Figure 1). After extraction, the soil blocks were carefully
wrapped and taken to the laboratory where each block was broken into three subsample, top to bottom slices
with dimensions of 0.10 m wide X 0.15 m long X 0.25 m deep, providing nine observations for each of the five
treatments.

The visual analysis of the soil structure followed the VESS protocol of Ball et al. (2007). Each soil slice was
fragmented manually, respecting the fracture planes between the aggregates. Layers of contrasting structure were
identified and measured. For each layer, the evaluation of the structure was based on the appearance (size and
color), resistance, and characteristics of the structural units of the fragments (aggregate porosity) and
presence/absence of roots and their morphological characteristics. This led to the assignment of an integer score
(Sql_) for structural quality to layer i derived by visual classification, with values ranging from Sg; = 1 (best) to
Sq; = 5 (worst). The best score is that attributed to the friable soil, in which its aggregates easily break with the
fingers and are smaller than 0.006 m after the break, the soil presents high visible porosity and many roots.
Already the worst score is one that the soil presents itself very compact and it is difficult to break. Most of your
aggregates are angles greater than 0.01 m. The porosity is very low, may contain anaerobic zones and few rots
restricted to cracks (Ball et al., 2007).

The average score (Sg) was determined by multiplying the score of each layer by its thickness (di) and dividing
the sum by the total depth (d, = Y d;) (Ball et al., 2007):

Sq = (Xdi x Sq.)/d (1)
For the analysis of the distribution of sugarcane roots, six trenches were opened in the DST and CT plots (3
in-row and 3 inter-row). The trenches were 3.60 m long and 1.00 m deep parallel to the sugar cane plant row. On
one side of each trench, the soil profile was leveled in the vertical direction, by removing a thin layer of soil,
around 0.03 m, using a rolling scarified. The aim of this operation was to expose the roots, without removing
them from the soil. After exposing the roots, a grid with overall dimensions of 2.40 m long by 1.00 m deep,
covered with a 0.10 m x 0.10 m square lattice mesh, was fixed to the side of the trench. A visual count of the
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number of roots per unit area in the different layers of the soil was then conducted, without regard to the length,
thickness, or branching of the roots.

2.4 Statistical Analysis

The soil structural quality scores from the visual evaluation and the root system data obtained from the counting
of the roots of sugarcane plants were evaluated through confidence intervals that were computed according to the
procedures given by Gabriel (1978).

The median of the replicates values (3 replicates X 3 subsamples = 9 replicates) and only of each replicates (3
blocks) was represented in boxes, together with lower and upper limits corresponding to the first and third
quartiles, respectively. The ends of the whiskers marked the confidence intervals (p < 0.05) for multiple
comparisons of the mean values for a variable among the treatments. The Pearson’s correlation (p) between the
number of visible roots and the scores obtained for each layer was calculated through software R (R Core Team,
2017).

3. Results and Discussion

The visual evaluation revealed small differences in the thickness of the layers 1 and 2, and in the shape and size
of the aggregates among treatments (Figure 2).
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Figure 2. Images after fragmentation of soil samples and overall VESS scores for total soil layer (0-0.25 m) for
the treatments deep strip-till (DST-in-row, DST-inter-row), conventional tillage (CT-in-row, CT inter-row) and
the uncultivated area (UC). Whiskers are confidence intervals (Gabriel, 1978, p < 0.05) for multiple comparisons
among the treatments

The mean scores (Sg) for the structural quality of the soil, obtained from VESS for total layer (0.25 m) indicate
that soil structure changes with treatment, resulting in the following descending order of the median scores: UC
< DST, in-row < CT, inter-row < CT, in-row < DST, inter-row (Figure 2). Higher scores indicate deterioration in
the quality of the soil structure, but none of the treatments achieved a score of 3.0. According to Ball et al. (2007),
scores that do not exceed 3.0 indicate soil of acceptable structural quality, and that the soil conditions provided
by the management system are adequate for crop cultivation. Thus, although the cultivated soils displayed soil
structure deterioration relative to uncultivated soil, the observed increases in the median scores were not
sufficient to be detrimental to the development of the sugarcane crop. Askari et al. (2013) also observed that soil
tillage systems did not have detrimental impact on soil structure, although its effects could be discernible by
visual analysis.
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Lower scores (median Sq = 1.26) were observed in the uncultivated area (UC, Figure 2). The dense root system
of the bamboo vegetation, plus the accumulated organic litter on the surface of the Alfisol, probably gave to the
UC soil a higher content soil organic matter and a greater biological activity than in the tilled soils. Organic
matter and biological activity are factors that increase the binding between mineral particles and consequently
produce stable soil aggregates. Soil structural quality scores between 1 and 2 are considered indicators of good
soil structure by Ball et al. (2007), were also found by Giarola Tormena et al. (2009); Giarola et al. (2010) and
Eurich et al. (2014) for areas of native forest which had never experienced any kind of soil tillage and
management.

The DST in-row soil presented the median score (Sq = 2.10). Excavation of the mini-trenches and the extraction
of the blocks were easier for the DST in-row locations than for DST inter-row, CT in-row, and CT inter-row, and
this observation was consistent with the higher median score of the DST in-row soil.

DST in-row aggregates revealed a soil of greater porosity, and high friability. The presence of roots between
small and rounded aggregates, which could easily be broken with finger pressure, also contributed to the good
quality score for the DST in-row soil. The attributes of the aggregates in the DST in-row soil: small, friable,
porous, sub-angular and rounded, have been identified by Shepherd (2009) as characteristics of soils with good
structure.

However, as shown in the box plot of the median quality scores (Figure 2), the variability of the scores was very
high for the DST in-row. This occurred because in the layer 2 of some of the replications soil was composed of
porous round aggregates with sizes between 0.002 and 0.007 m and an abundance of branched roots, mixed with
aggregates of 0.001 m around which the roots observed were flattened and showed horizontal growth.

The median scores for the CT in-row and CT inter-row treatments (Sq = 2.36 and 2.24 respectively) were higher
than for the DST in-row. Difficulties were found in the extraction of the CT soil blocks from the field, due to the
resistance of the soil to the insertion of the blade of the spade, an indication of the presence of a compacted layer.
Tormena et al., (2016) also found difficulties in extracting blocks from soil under corn cultivation with
mechanized harvesting, where most of them had well-defined horizontal layers, large angular and subangular
shaped aggregates, and were difficult to break, which are all signs of soil compaction and poor structure.

CT in-row and CT inter-row presented large subangular aggregates that were resistant to rupture, with a few
flattened and grouped roots. These cubic and angular aggregates have higher tensile strength due to their greater
density (Guimardes et al., 2011), and are considered a sign of soil compaction. The similar scores of the two CT
sampling positions reflected the soil tillage, which used a harrow and a leveler, implements that produced
homogenization of the soil, as reported by Tavares et al. (2017) in sugarcane production under conventional
tillage. This means that preserved from machinery the in-row trail in this treatment did not result in benefit to
visual soil quality.

The highest median score was obtained for the DST inter-row (Sg = 2.58) mainly because of angular aggregates
with sizes ranging from 0.001 to 0.002 m and little porosity, low quantity of roots, and those present displayed
little branching and were flattened. The soil is compacted, not only because agricultural traffic was directed
along the inter-row zone, but also because there was no tillage in the soil on the 1.50 m wide inter-row zone, so
that the soil compaction generated in the previous crop cycle was not alleviated.

Two soil layers with structural differences were easily identified regardless of the treatment. The mean depth
ranges for the first layer displayed only small variations among treatments (DST in-row = 0.06 m, DST inter-row
= 0.08 m CT in-row = 0.05 m, CT inter-row = 0.07 m and UC = 0.05 m). The second layer correspond the
inferior limited of first layer until 0.25 m (depth of study).

The structural quality of the soil was always lower for layer 1 than for layer 2 (Figure 3). This differentiation
between the two layers was considered due in part to tillage and the traffic of machinery, and partly to the
development of the root systems of the sugarcane plants and the incorporation of plant residues on the surface.
For the uncultivated soil (UC), the scores of the layers were, as expected, very similar, but also the soil of the
deeper layer presented a higher score. Cherubin et al. (2016) studying different land use and management in
Brazil, also identified two layers, and the superficial layer (0.00-0.10 m) always presented better visual quality of
the soil structure. As well, Tormena et al. (2016) also noted two layers with visually distinct structural quality in
medium texture soil cultivated with corn for 7 years with different management systems.
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Figure 3. VESS scores of the individual layers for each treatment: (a). DST in-row; (b). DST inter-row; (c). CT
in-row; (d). CT inter-row; and (e). UC. Whiskers are confidence intervals (Gabriel, 1978, p < 0.05) for
comparisons between the layers

Guimardes et al. (2011) concluded that assigning scores to each individual layer provides more detailed
information for future management actions being more appropriate than using a weighted average of the two
layers as described by Ball et al. (2007). This applies specially to scores in DST inter-row treatment (Figure 3(b)),
with median scores of 1.25 and 3.20, respectively, for the upper and lower layers. In the lower layer, the
structural soil quality was classified between firm and compact. The score between 3 and 4 indicates a relatively
closed structure with few pores that possess clefts; these soil conditions may restrict the development of the root
systems of plants. The aggregates of layer 2 were observed to be angular; the abundance of roots was low, and
the roots were seen to be poorly branched and some were flattened. The increase in the median score from layer
1 to layer 2 indicates that better management is needed, especially as the area has a risk for the occurrence of
periods of drought during the development phase of the crop.

The variability of scores values in soil blocks for each treatment (DST, CT, or UC) and position relative to the
rows (in-row or inter-row) increased with the intensity of tillage (Figure 4). The variability within a block is
represented by the difference between the first and third quartile, and among blocks by differences in the median
value. In this sense, for soil sampling, Leopizzi et al. (2018) studying soil in growing areas of wheat plants
considered homogeneous for purposes of visual analysis of the soil structure concluded that there is 11%
variability between the blocks, being necessary to estimate the average VESS 5 blocks.
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Figure 4. VESS scores of the individual blocks (B1, B2, and B3) from the visual analysis of the soil structure for
each treatment: (a). DST in-row; (b). DST, inter-row; (¢). CT, in-row; (d). CT, inter-row; and (¢). UC. Whiskers
are confidence intervals (Gabriel, 1978, p < 0.05) for comparisons among the treatments

The greatest difference among the three extracted blocks (B1, B2, and B3) was observed in DST treatment, and
provides an indication of the degree of homogeneity in the preparation of the soil within that treatment. These
variations were probably due to the size of the equipment used for the in-row deep tillage of the soil, uneven
operation speeds, and small undulations at the surface of the soil. Each of these factors could have modified the
forces applied to the in-row soil for fragmentation of clods, which were actively controlled by mechanisms
attached to the rotary hoe and the subsoiler. For the inter-row blocks, fluctuations in the pressure on the soil from
the wheels of the tractor and implements, imposed by variations in the necessary pulling force, may be invoked
to account for the variability.

There were no differences in the VESS scores comparing treatments DST and CT, in-row and inter-row, within
layer 1 (Figure 5(a)), with the value for all treatments being equal to 1.2. For layer 2 as well, no statistically
significant differences were found (Figure 5(b)).

The counts of the visible roots per unit of vertical area (Figure 5(c) and 5(d)), a measure of the development of
the root systems of the sugarcane plants, point to no statistically significant differences among treatments. In
layer 1 (0.0-0.10 m) it is noted the lower number of visible roots in CT in-row treatment. In layer 2 (0.10-0.30 m)
higher number of roots visible in the DST in-row stands out.

Pearson’s correlation was negative between the number of visible roots and the scores obtained in each treatment
for layer 1 and layer 2 (Figure 5) meaning that the variables vary in the opposite direction, that is, the lower the
score obtained the higher the number of roots counted. In this way, better soil physical quality under
management with traffic control improves root development in sugarcane, as reported by Souza et al. (2012).
However, only for DST in-row and CT in-row in the layer 2 the correlation was strong (p = -0.87 and -0.94,
respectively). In layer 1 the correlation was weak because this layer presented similar structure in all treatments,
resulting in close scores. In layer 2, in-row was the position where a higher number of visible roots and a lower
score were expected. Pearson’s correlation confirms that changes in soil structure in this position are important to
infer the root growth. But, also, that in CT treatment soil structure conditions restricted the development of the
sugarcane roots.
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Figure 5. VESS scores of the tillage treatments from the visual analysis of the soil structure for: (a). layer 1; (b).
layer 2, and numbers of visible roots per unit area (vertical section) for: (¢). layer 1 (0.00-0.10 m); (d). layer 2
(0.10-0.30 m). Whiskers are confidence intervals (Gabriel, 1978, p < 0.05) for comparisons among the
treatments. Value of p between boxplots of each treatment is the Pearson’s correlation between the score and
number of visible roots

While there were differences in the number of visible sugarcane roots between the different treatments, positions,
and layers, attempts to relate these to the soil quality score obtained by visual analysis met with only limited
success.

4. Conclusion

VESS scores provide an efficient method to assess soil structure quality directly in the field allowing to evaluate
tillage implements and soil management practices.

Deep Strip-till presented a lower median mean score for the structural quality in the in-row position in layer
0.06-0.25 m, compared to conventional tillage.

The variations in the soil quality scores among the replicate blocks on Deep Strip-till in-row position indicated
that the soil modifications achieved were not uniform along the plant beds prepared with this equipment.
Preserved from machinery, the in-row trail in Conventional tillage did not result in benefit to visual soil quality.
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