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Abstract 
Fertigation of agricultural crops that are not directly used in human food, with domestic wastewater is a viable 
alternative for the sustainable use of water resources. The development of agricultural practices that provide high 
productivity with the sustainability of agroecosystems has been a great challenge. Thus, our aims were to use of 
domestic wastewater in the planting of Brachiaria brizantha cv Marandu, as an alternative for animal feed 
production in Cerrado soils, and to study the physical-chemical and microbiological impacts of the fertigation. 
These impacts were evaluated, respectively, by physical-chemical indicators content and diversity of nitrogen 
fixing bacteria (NFB) and arbuscular mycorrhizal fungi (AMF) in the DGGE profile. The NPK contents of the 
wastewater were used to determine the five fertigation managements (M1 to M5). M1 and M2 managements had 
no wastewater and M3 to M5 contained 20, 40 and 60% of NPK from the wastewater. The managements in a 
completely randomized design with 20 plots and 4 replicates were distributed. Soil samplings prior to fertigation 
and at the end of the experiment were performed. Leaf biomass productivity was determined in three different 
grass cuts. After fertigation, changes in physical-chemical indicators and in the viable microbial cells counts 
were observed. The NPK of wastewater increased the abundance of NFBs and AMFs. Leaf biomass productivity 
per hectare was directly proportional to NPK concentration. In addition, wastewater did not alter the nutritional 
composition of Marandu grass. Therefore, the fertigation with domestic wastewater showed to be a viable and 
promising alternative for reuse of this water in Cerrado soil for animal feed production. 

Keywords: fertigation, arbuscular mycorrhizal fungi, nitrogen fixing bacteria, Brachiaria brizantha cv Marandu, 
animal feed 

1. Introduction 
The water crisis and new discussions on the sustainable use of water should contribute to intensify studies of 
wastewater reuse in agriculture. Thus, the use of domestic wastewater to irrigate crops, which are not used 
directly in human food, can be a viable alternative (Silva et al., 2016). 

Brazil has the greatest biodiversity of the planet (Dias-Filho, 2014). The Cerrado is the second largest Brazilian 
biome. It has grassland, savannic and forest physiognomies that dominate the Brazilian Midwest (Sano et al., 
2008). This biome is a biodiversity hotspot, because of its species richness and high endemism level (Myers et 
al., 2000).  

In the 1970s, the Cerrado was subject to large financial investments for pastures formation (Andrade et al., 2005). 
In this period, the replacement of fat grass by more productive grasses, mainly, Brachiaria (B. decumbens, B. 
humidicola and B. brizantha) was done. In addition, the new agricultural areas formation and the abandonment 
of degraded areas have favored the growth and adaptation of invasive plant species (Dias-Filho, 2014). Thus, the 
development of agricultural practices that provide high biomass yields with sustainability of agroecosystems has 
been a great challenge.  

Our objectives were to use of domestic wastewater in the planting of Brachiaria brizantha cv Marandu, as an 
alternative for animal feed production in Cerrado soils, and to study the physical-chemical and microbiological 
impacts of the fertigation. 
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Different doses of nitrogen (N), phosphorus (P), and K potassium (K) were used for managements (Table 1). The 
M1 management had no NPK. The M2 had only commercial NPK (comNPK). The NPK source from M3 to M5 
was comNPK and wastewater NPK (wastewaterNPK).  

All managements had liming and water from an artesian well. The water volume of each management was in the 
ratio between the water balance of Palmas-TO city and NPK content (Table 1). 

 
Table 1. Fertigation managements with or without domestic wastewater that were used in the planting of 
Brachiaria brizantha cv Marandu in Cerrado soil 

Fertigation managements 
Fertilizer (%) 

Commercial NPK Wastewater NPK 

M1 0 0 

M2 100 0 

M3 80 20 

M4 60 40 

M5 40 60 

Note. NPK: nitrogen, potassium, and phosphorus. 

 

2.4 Planting and Management of Grass 

B. brizantha due to resistance to long dry periods, good adaptation in Cerrado soil, high regrowth capacity and 
tolerance to the leafhopper was used (Soares Filho et al., 2002).  

The seeds were obtained on the market of Palmas-TO city. They had 60.3% of purity, 80% of germination rate 
and of 48.24% cultural value. Thus, in the planting, 1.75 kg/ha of seeds were used. Embrapa (1984) recommends 
1.5 to 2 kg of viable seeds per hectare. The planting took place on June 24, 2015, with the seeds applied to the 
haul.  

In the plantation area were performed 20 plots with nine m2 (3 m × 3 m). The management of the plots was 
determined by lottery. The vertical dimension of the plots was 1.00 m, because of the maximum depth of soil 
samples.  

The effective root depth of 43 cm was used to determine the total water blade for the grass.  

In fertilization, phosphorus (P) and potassium (K) contents were applied according to Alcântara and Bufarah 
(1999). In this step, 627.66 kg of superphosphate ha-1 and 119.37 kg ha-1 of potassium chloride were applied. The 
urea was placed as a nitrogen source in a dosage of 150 kg ha-1 (Lopes et al., 2013).  

2.5 Total Water Capacity in the Soil 

The total water capacity (TWC) in the soil depends on the effective roots depth (Z). In grazing, the TWC is of 30 
to 100 cm (Klar, 1991). TWC for B. brizantha cv. Marandu, in middle texture soil, with pressures from 1/5 to 15 
atm was of 43.1357 cm (Cunha et al., 2010).  

Water availability factor in the soil for forage is of 0.3 to 0.7 (Bernardo et al., 2008). Thus, the actual water 
capacity (AWC) in the soil of 25.8 mm was calculated, respectively, with 51.6 mm and 0.5 of TWC and water 
availability factor. 

2.6 Irrigation Management of Crop 

The climate of the region is humid and subhumid (C2wA”a”) with a water deficit in the winter, annual 
evapotranspiration between 1.5 and 1.60 mm, mean annual temperature of 27.5 °C, and relative humidity of 80% 
(INMET, 2013).  

The wastewater application was on August 12, 2015, when the grass was about 20 cm of height. In this assay, 
thirty fertigations were done in the morning and afternoon periods. These applications were done with a watering 
can (10 liter) on the leaves. 

About 6000 students, teachers and visitors from the CEULP/ULBRA campus produce the domestic wastewater. 
For transportation and storage of this wastewater was used a pump (2 hp), 250 meters of hose of 50 mm in 
diameter and a water box of 1000 liters. 
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The comNPK was ground and diluted in the water of an artesian well or in the wastewater, because of the small 
amount. 

2.7 Sampling and Characterization of the Wastewater 

The physical, chemical and microbiological analyses were using three samples (0.5 L) of the wastewater (Apha, 
2005). The electrical conductivity and pH were determined, respectively, by instrumental and potentiometric 
methods. The iodometric and oxidimetric methods were used, respectively, for the biochemical oxygen demand 
(BOD) and the chemical oxygen demand (COD). The total solids, nitrogen, and minerals were determined in 
analytical balance, Kjedahl method, and spectrophotometry. Total and faecal coliform counts were determined by 
the most likely number (MPN) method.  

2.8 Sampling and Characterization of the Soil 

The soil sampling was done in two periods with a Dutch auger (Raij, 2001). The first one was carried out in 
April 2015, before planting the grass and applying the wastewater, in four points (A1 to A4) and in four soil 
depths (0-10, 10-20, 20-30 and 90-100 cm) (Figure 1). These samples were identified as A1SD1 to A1SD4, 
A2SD1 to A2SD4, A3SD1 to A3SD4, and A4SD1 to A4SD4. After the randomization of the experiment, the A1 
point was within the M4 management. A2 was in M3 management and the A3 and A4 points were, respectively, 
in the M1 and M2 managements (Figure 1, Table 1).  

The second sampling was performed at the end of the assay, in February 2016. Twelve samples were obtained for 
each fertigation management (M1 to M5), with four replicates and three soil depths (0-10, 10-20 and, 20- 30 
cm). 

Twenty grams of soil were placed in dark plastic bags and added in a Styrofoam box containing dry ice. These 
samples were used for physical, chemical and microbiological analyses. The physical-chemical indicators of soil 
were determined according to Standard Methods (APHA, 2005). 

2.9 Analysis of the Soil Microbiota  

Viable microbial cells and DGGE profile were performed as described in Carvalho et al. (2018). 

2.10 Sampling and Characterization of the Plant 

The plant cuts were carried out on November 13, 2015, January 4, 2016 and February 23, 2016. 

The first cut occurred after 140 days of sowing the grass seeds. The planting occurred in the dry season. So, the 
germination was observed after 30 days. The second and third cuts occurred, respectively, after 50 days and 100 
days of the first cut. The cuts were performed at a height of about 10 cm from the soil. 

After the plant cuts with a pruning shears, the green mass was determined in an analytical balance. After the 
green mass determination, the samples were placed in an oven at 65 oC, with forced ventilation for 72 hours. 
After cooling to room temperature (25±5 oC), the dry matter in the air (DMA) was determined in analytical 
balance. 

The DMAs were submitted to milling in a Willey mill to determine the nutrients (N, P, K, Ca, Mg, S, Zn, Cu, Fe, 
Mn, Na, Co, Mo and B), etheric extract, acid detergent fiber (ADF) and neutral detergent fiber (NDF). 

After the nitroperchloric digestion of DMAs (Tedesco et al., 1985), the elements contents were determined by 
the Kjeldahl method (nitrogen), spectrophotometry (phosphorus), flame emission photometry (potassium and 
sodium), and plasma emission spectrophotometry (other minerals).  

The actual dry matter (ADM) content was determined in an oven at 105 °C until the stabilization of its weight 
using DMA. The ash content was determined in muffle at 5500C using the MSE. 

The ash content was determined in muffle at 550 oC.  

All these analyses were performed according to the methodology of the Association of Official Analytical 
Chemists (1990) and Embrapa (1999).  

2.11 Statistical Analyses 

The assay was performed in a completely randomized design (CRD) with five fertigation managements and four 
replicates. 

Statistical analyses of soil and grass samples were performed, respectively, by CRD and CRD in a 5 × 3 factorial 
scheme. The factorial was the five doses of wastewater (Table 1) and the three cuts. The comparison between the 
viable microorganisms counts was done by analysis of variance (ANOVA) and Tukey's test. The comparison 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 10; 2018 

252 

between dry matter yields were performed by ANOVA and a regression analysis. These analyses were performed 
using the free trial version of the Minitab 17 software (2016) at the 5% level. 

The clusters and main component of the soil and plant samples were performed in Sigma Plot Software (2016). 

The DGGE profiles were analyzed by the unweighted pair group method with arithmetic mean (UPGMA) and 
Jaccard similarity index in the Bionumerics software (Version 5.1). The similar bands were those with 0.5% of 
significance level by the post-hoc Bonferroni test.  

3. Results and Discussions 
3.1 Wastewater Characterization 

The chemical composition of the domestic wastewater had higher N, P and K levels than nutrients that shows its 
potential in the fertigation (Table 2). However, the management of this wastewater over the soil is important, 
because of high ammonia level (Table 2). This compound has a high evaporation rate in the soil.  

 

Table 2. Physical and chemical indicators and coliform counts of wastewater 

Indicators Amount  Units 

Electric conductivity 634  μS cm-1 

pH 8.10 - 

Biochemical oxygen demand (BOD) 86.80 

mg L-1 

Chemical oxygen demand (COD) 213.30 
Total Solids 298.00 
Total nitrogen 74.58 
Organic nitrogen 29.62 
Nitrite 1.23 
Nitrate 3.42 
Ammonia 40.31 
Chlorine 4.56 
Cadmium 7.43 
Copper 0.43 
Iron 3.45 
Aluminum 0.54 
Manganese 0.03 
Magnesium 0.02 
Sulfur 0.92 
Calcium 0.22 
Phosphorus 7.43 
Sodium 5.83 
Potassium 18.60 

Fecal coliforms 1.85 × 10-7 
NMP/100 mL 

Total coliforms 2.50 × 10-6 

 

The total N, P and K contents (Table 2) were used to determine the wastewater proportion of the fertigation 
managements (Table 1). 

The domestic wastewater composition can vary according to the collection site, climate and the economic and 
social situation of the population (Kong et al., 2015). 

The N content of the wastewater was more than 70 mg L-1 (Table 2). The P and total nitrogen contents of crude 
domestic sewage were, respectively, 4 to 12 and 20 to 70 mg L-1 (Metcalf & Eddy, 2003).  

The K content of the wastewater of the CEULP/ULBRA was lower than 30 mg L-1. This value was also obtained 
in Pescod (1992). 

The BOD and COD were lower than the values described by Metcalf and Eddy (2003), and Araújo et al. (2010) 
which were 110 and 800 mg L-1 for raw sewage. However, the BOD/COD ratio of our wastewater was similar to 
the obtained for domestic sewage by Simões et al. (2013). 

The sodium content was lower than 40 mg L-1 described by Von Sperling (2006).  



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 10; 2018 

253 

Our domestic wastewater had medium level of salinization of the soil (Table 2). The salinization risk of the soil 
could be low (Electric conductivity, EC < 0.25 μS.cm-1), medium (250 < EC < 750), high (750 < EC < 2250) and 
very high (EC > 2250) (Bernardo et al., 2008). In addition, aluminum also has low concentrations reducing the 
possibility of contamination of the soil (Table 2). 

The basic pH of the wastewater and liming in the soil contributed to the acidity correction (Table 2). Seed 
germination and seedling growth depend on the acidity of the soil. 

The wastewater had of total and fecal coliforms counts smaller than the amount observed in other domestic 
effluents (Araújo et al., 2010). However, this count was similar to the obtained in domestic sewage from a septic 
tank (Fonseca, 2007).  

3.2 Physical-Chemical Indicators Characterization of Soil Before Fertigation  

The sand, silt, and clay amount did not show differences (p < 0.05) between the soil depths (Table 3). Thus, this 
soil is sandy-loam with middle texture. 

Only the pH, base saturation and clay not reduced its values with soil depth (Table 3). In the surface, the pH was 
more acid than at depths above 20 cm. This result may be due to the higher organic matter and minerals in the 
0-10 cm than other depths. In addition, there was a positive linear correlation (R2 = 0.8795) between base 
saturation and pH in soil depths. According to Ronquim (2010), the pH of the Cerrado soil is acid and depends 
on the sampling points, time and soil depth. Soils from six no-till crops also had acid pH more on the surface 
than other depth (Nicolodi et al., 2008). 

In 0-10 cm, the sampling points had different distributions of the physical-chemical indicators, with few 
overlapping of them (Figure 2). These results show the heterogeneous character of the soil. The unequal 
distribution of nutrients in the soil has also been reported in other studies (Pavinato & Rosolem, 2008; Nicolodi 
et al., 2008; Ronquim, 2010). 

 

Table 3. Physical-chemical indicators of soil samples before planting Brachiaria brizantha cv Marandu 

AvA Soil Indicators 

Sampling points* 

A1 A2 A3  A4 

Profundidade 

SD1 SD2 SD3 SD4 SD1 SD2 SD3 SD4 SD1 SD2 SD3 SD4  SD1 SD2 SD3 SD4

pH (CaCl2) 4.2 4.3 4.3 5.1 4.5 4.5 4.6 5.1 4.4 4.5 4.5 5.1  4.2 4.2 4.2 5.1 

Sand 

% 

44 42 40 37 37 40 32 37 30 37 40 28  32 30 37 37 

Clay 45 48 52 55 55 52 60 55 63 55 52 65  60 63 55 55 

Silt 11 10 8 8 8 8 8 8 7 8 8 7  8 7 8 8 

Ca 

cm
ol

c/
dm

3  

1 1 0.7 0.6 1.1 0.8 0.7 0.7 0.7 0.9 0.6 0.8  0.9 0.8 0.8 0.6 

Mg 0.8 0.7 0.5 0.4 0.8 0.5 0.4 0.4 0.6 0.7 0.4 0.6  0.6 0.6 0.6 0.4 

Al 0.9 0.6 0.4 0.1 0.2 0 0 0 0.3 0.3 0.3 0.1  0.4 0.5 0.4 0 

H+Al 9.8 8 8 2.8 5.2 5.5 5 2.5 7.2 6.8 5.2 2.8  8.4 9.3 8 2.9 

K 0.07 0.06 0.04 0.03 0.05 0.03 0.02 0.04 0.04 0.04 0.05 0.04  0.04 0.05 0.05 0.02

Cation exchange capacity 11.67 9.76 9.24 3.83 7.15 6.83 6.12 3.64 8.54 8.44 6.25 4.24  9.94 10.75 9.45 3.92

Organic matter  g/dm3 40 43 30 8 14 14 13 9 30 29 18 9  30 22 26 11 

Base saturation 

%
 16.02 18.03 13.42 26.89 27.27 19.47 18.3 31.32 15.69 19.43 16.8 33.96  15.49 13.49 15.34 26.02

Al saturation 32.49 25.42 24.39 8.85 9.3 0 0 0 18.29 15.46 22.22 6.49  20.62 25.64 21.62 0 

Na  

m
g/

dm
3  

2.00 2.00 2.0 2.0 2.00 2.00 3.00 3.00 2.00 2.00 2.00 2.00  2.00 2.00 2.00 2.00

Zn 0.20 2.90 1.30 2.10 0.30 2.30 0.70 2.40 0.20 1.00 1.80 0.90  0.80 0.40 2.30 10.0

B 0.23 0.19 0.14 0.28 0.23 0.19 0.23 0.19 0.23 0.28 0.19 0.23  0.14 0.28 0.19 0.23

Cu 0.30 0.20 0.20 0.30 0.20 0.20 0.30 0.30 0.30 0.20 0.50 0.30  0.60 0.60 0.20 0.20

Fe 120.00 62.80 38.40 30.20 41.90 44.20 35.90 31.00 53.90 51.40 37.10 27.40  61.60 63.10 58.50 29.60

Mn 5.40 3.60 2.70 1.00 2.20 2.20 0.20 0.30 2.90 1.80 2.00 1.20  1.70 0.90 1.10 0.30

K 26 24 14 11 21 12 9 15 14 15 19 14  17 18 19 7 

P (Melich) 1.5 1.5 1.2 0.8 1.2 0.8 0.8 1.5 1.2 1.5 1.2 1.2  1.5 1.5 1.5 1.2 

Note. * The values in this table represent the average of four replicates. These values were compared by analysis 
of variance (Anova) followed by the Tukey test at 5% probability. The results of these statistical analyses are 
presented in the text by p < 0.05.  
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Table 4A. Physical-chemical indicators of soil samples after the fertirrigation of Brachiaria brizantha cv 
Marandu in Cerrado soil 

Indicators  

Fertigation managements 

M1 M2 M3 

Soil Depth (cm) 

0-10 10-20 20-30 0-10 10-20 20-30 0-10 10-20 20-30 

pH (CaCl2)  5.00±0.71 4.65±0.43 4.55±0.24 4.57±0.68 4.3±0.22 4.25±0.13 4.82±0.43 4.57±0.31 4.42±0.10 

Clay 

% 

36.5±9.85 

41.5±8.96 

22±2.16 

40.25±5.62 

39±6.00 

20.75±2.06 

46.5±1.73 

33±2.00 

20.5±1.73 

36±4.00 

45.5±7.14

18.5±4.04

39.25±2.06

40.75±5.62

20±4.24 

44.75±6.95

37.25±8.77

18±3.56 

30.5±4.04 

50±2.00 

19.5±3.32 

34±6.00 

46±10.68 

20±6.98 

40.25±10.69

38.5±10.21

21.25±2.99

Sand 

Silt 

Ca  

cm
ol

c/
dm

3  

2.85±1.82 

1.275±1.21 

0.075±0.15 

5.15±2.54 

0.053±0.02 

9.325±0.88 

1.9±1.42 

0.625±0.43 

0.075±0.15 

5.75±1.95 

0.041±0.01 

8.3±0.85 

0.85±0.48 

0.375±0.22

0.025±0.05

5.25±1.12 

0.034±0.01

6.475±0.80

1.525±1.46

0.7±0.87 

0.15±0.13

5.4±1.81 

0.037±0.00

7.625±1.34

0.75±0.37

0.375±0.29

0.275±0.13

6.175±1.07

0.041±0.01

7.325±0.72

0.45±0.10

0.2±0.00 

0.175±0.10

6.3±1.15 

0.05±0.02

6.975±1.07

2.15±1.31 

1.1±0.77 

0.025±0.05 

5.3±1.41 

0.037±0.00 

8.55±0.77 

1.275±1.02 

0.575±0.49 

0.075±0.05 

4.9±1.10 

0.0348±0.00 

6.75±1.52 

0.575±0.33

0.3±0.22 

0.075±0.05

4.9±1.16 

0.031±0.01

5.775±1.46

Mg  

Al  

H+Al  

K  

CEC  

Organic Matter  g/kg 2.70±0.00 2.70±0.57 1.975±0.2 2.5±0.40 2.6±0.20 2.15±0.17 2.8±0.50 2.8±0.60 2.325±0.29

Base saturation 
% 

44.43±26.40

5.45±10.90 

31.45±19.22 

7.125±14.25 

919.75±9.79

3.375±6.75

27.8±24.88

11.3±9.03 

16.13±9.37

22.3±12.18

10.35±2.97

19.65±9.53

37.23±20.12 

0.775±1.55 

26.3±15.87 

6.2±4.28 

15.43±7.41

11.33±9.66 Al saturation 

Na 

m
g/

dm
³ 

1.5±0.58 

3.375±3.39 

0.275±0.05 

0.1±0.00 

46±6.48 

6.25±2.75 

20.5±6.61 

2±0.82 

0.775±0.31 

0.2±0.08 

0.15±0.06 

41.25±9.98 

3.75±2.06 

16±3.27 

1.5±0.58 

0.775±0.79

0.25±0.06 

0.1±0.00 

26±4.69 

2±1.15 

13±2.00 

1.25±0.50

0.975±0.13

0.25±0.06

0.175±0.05

34.75±4.86

2.75±0.96

14.5±1.91

1.5±0.58 

0.875±0.21

0.225±0.10

0.125±0.05

33.5±3.87

4.25±1.50

16±3.65 

1.5±0.58 

0.875±0.10

0.225±0.05

0.125±0.05

25.5±4.43

3±1.63 

19.5±8.70

1.25±0.50 

1.1±0.18 

0.25±0.06 

0.125±0.05 

42±8.29 

17.75±21.70 

14.5±1.00 

2±0.82 

1.15±0.06 

0.275±0.05 

0.175±0.05 

34±13.74 

11±13.04 

13.5±1.91 

1.5±0.58 

1.15±0.47 

0.2±0.08 

0.1±0.00 

24.25±11.59

2.5±1.00 

12±2.83 

Zn  

B 

Cu  

Fe  

Mn  

K 

P (Melich I)  1.5±0.58 1.25±0.50 1±0.00 2.5±1.00 1.5±0.58 2.25±0.96 1.75±0.96 1.5±0.58 1.5±0.58 

Note. * The values in the table represent the average of four replicates. These values were compared by analysis 
of variance (Anova) followed by the Tukey test at 5% probability (p < 0.05). 

 

Table 4B. Physical-chemical indicators of soil samples after the fertirrigation of Brachiaria brizantha cv 
Marandu in cerrado soil 

Indicators  

Fertigation managements 

M4 M5 

Soil depth (cm) 

0-10  10-20 20-30 0-10  10-20 20-30 

pH (CaCl2)   5.00±0.87 4.8±0.78 4.625±0.50 5.00±0.62 5.00±0.6 4.85±0.66 

Clay 

% 

27±0.00 

50±3.46 

23±3.46 

35.75±3.95 

40.75±5.62 

23.5±1.73 

42±4.24 

35±2.00 

23±4.69 

32.25±5.85 

41.75±6.45 

26±2.16 

38.5±1 

33.25±3.4 

28.25±3 

44.75±6.02 

32±7.53 

23.25±6.99 

Sand 

Silt 

Ca  

cm
ol

c/
dm

3  

2.7±2.35 

0.975±1.03 

0.1±0.14 

3.35±2.06 

0.042±0.01 

7.05±1.77 

1.65±1.65 

0.5±0.38 

0.05±0.06 

3.6±1.88 

0.069±0.07 

5.8±1.43 

0.975±1.02 

0.45±0.38 

0.125±0.10 

3.05±1.66 

0.04±0.01 

4.5±1.49 

1.875±1.81 

0.675±0.57 

0.05±0.10 

2.75±1.26 

0.042±0.01 

5.325±2.11 

2.375±1.7 

0.775±0.5 

0.025±0.1 

2.925±1.3 

0.0398±0 

6.1±0.6 

1.825±1.66 

0.55±0.45 

0.075±0.10 

2.575±0.79 

0.036±0.01 

4.95±1.63 

Mg  

Al  

H+Al  

K  

CEC  

Organic Matter  g/kg 31±3.27 28±3.83 26±3.83 32±2.00 27±5.7 24.25±4.72 

Base saturation 
% 

49.05±36.25 

8.275±12.44 

37.05±28.84 

5.975±6.90 

32.05±24.40 

14±11.65 

42.83±25.12 

2.875±5.75 

50.45±26 

2.175±4.4 

43.625±24.81 

4.5±7.14 Al saturation 

Na  

m
g/

dm
³ 

1.25±0.50 

1.2±0.41 

0.225±0.05 

0.15±0.06 

36±3.74 

20.25±14.03 

16.5±5.26 

2.75±0.96 

1.25±0.50 

1.15±0.10 

0.25±0.06 

0.125±0.05 

34±8.12 

7±3.46 

27±28.77 

2.25±1.26 

1.5±0.58 

0.925±0.34 

0.175±0.05 

0.1±0.00 

24.75±3.59 

10±12.08 

15.5±4.73 

1.5±0.58 

1.25±0.50 

4.3±2.83 

0.3±0.00 

0.1±0.00 

35.75±7.14 

7.75±2.63 

16.5±3.42 

2.75±0.50 

1.25±0.5 

3.775±2.6 

0.225±0.1 

0.125±0.1 

30.75±4.3 

8±0 

15.5±4.1 

1.75±16 

1.25±0.50 

4.9±1.30 

0.2±0.00 

0.125±0.05 

22.5±4.43 

6.25±2.99 

14±2.83 

2.25±0.50 

Zn  

B 

Cu  

Fe  

Mn  

K  

P (Melich I)  

Note. * The values in the table represent the average of four replicates. These values were compared by analysis 
of variance (Anova) followed by the Tukey test at 5% probability (p < 0.05). 
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The organic matter contents were higher in the fertigation management than in the management without 
wastewater (Table 4). Thus, infiltration of the effluent into the deeper layers may have occurred. The organic 
matter is an important factor for soil fertility (Alderson et al., 2015; Malafaia et al., 2016). However, there was 
no significant difference (p < 0.05) in phosphorus and sodium concentrations between managements with or 
without wastewater (Table 4). These results are important, because it shows a low risk of salinization and 
eutrophication of the soil by the domestic wastewater. 

3.4 Microbiological Analyses 

3.4.1 Counting of Viable Microorganisms Before Fertigation 

The domestic wastewater did not have significant (p < 0.05) counts of fungi and actinomycete (Table 5). 
However, we observed a viable cell count of bacteria in this wastewater that may be of the coliform group. 
According to Dionísio (2006), the bacteria were the main microorganisms found in the effluents of the sewage 
treatment plant of Curitiba/PR/Brazil. Bacteria has distinct ecological niches. In domestic wastewater and in soil, 
there is, respectively, a predominance of coliforms and rhizobacteria (Wartiainen et al., 2008).  

 

Table 5. Viable microbial cells counts from the soil before planting of Brachiaria brizantha cv Marandu and 
wastewater utilization 

Samples Actinomycete Bacteria  Fungos 

 ------------------------------------- Log (CFU g-1) --------------------------------------
Wastewater  -a 7.29±0.03 -a 
A1SD1 6.21±0.01 7.44±0.01 5.15±0.03 
A1SD2 6.02±0.01 7.37±0.01 4.92±0.01 
A1SD3 5.64±0.01 6.95±0.01 -a 
A1SD4 -a 6.69±0.03 -a 

A2SD1 6.25±0.01 7.45±0.01 5.04±0.04 
A2SD2 6.10±0.01 7.37±0.01 4.86±0.02 
A2SD3 5.50±0.03 6.97±0.01 -a 
A2SD4 -a 6.68±0.04 -a 

A3SD1 6.24±0.01 7.44±0.01 5.05±0.01 
A3SD2 6.08±0.01 7.36±0.01 4.79±0.02 
A3SD3 5.49±0.04 6.96±0.01 -a 
A3SD4 -a 6.67±0.05 -a 

A4SD1 6.28±0.01 7.43±0.01 5.10±0.06 
A4SD2 6.14±0.01 7.36±0.01 4.89±0.01 
A4SD3 5.55±0.03 6.93±0.01 -a 
A4SD4 -a 6.65±0.04 -a 

Note. a: values below 25 colonies. CFU: Colony forming unit. A1SD1: sampling point 1 and soil depth 1 (0-10 
cm), A2SD2: sampling point 2 and soil depth 2 (10-20 cm), A3SD3: sampling point 3 and soil depth 3 (20-30 
cm), and A4SD4: sampling point 4 and soil depth 4 (90-100 cm). The values in this table represent the mean of 
four replicates plus or minus one standard deviation. These values were compared by analysis of variance 
(Anova) and Tukey test at 5% probability (p < 0.05). 

 

The soil depth and the microbial group influenced the counts of viable microorganisms before fertigation (Table 
5). Regardless of depth, the bacterial community was larger than of filamentous fungi. This prevalence of 
bacterial community in relation to fungi was also observed in the soil under native vegetation in the southern 
region of Brazil (Rech et al., 2013). According to these authors, the soil microorganism count varies with the 
techniques, soil depth and culture medium. However, we observed no difference (p < 0.05) in the counts of 
viable bacteria between the sampling points and depths of 0 to 10 cm and 10 to 20 cm (Table 5). Therefore, the 
technique and/or culture medium influenced the microbial cells counts more than depth.  

The bacterial and fungal cell counts prior to fertigation are similar to the results obtained in other studies with 
soil samples (Rech et al., 2013).  

Only the bacterial community was observed at all depths (Table 5). Therefore, their great dispersion in the soil is 
due to present aerobic, anaerobic, and nitrogen fixation species (Dunbar et al., 2002, Vázquez et al., 2000, Zehr 
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et al., 2003). In addition, the microbial activity of six clayey soils was higher in the surface than in the depth of 
60 cm showing that the bacteria are present in several soil depths (Vale Júnior, 2011). 

Actinomycete colonies were not observed only at depths of 90 to 100 cm (Table 5). The absence of microbial 
colonies in this soil depth may be due to the nutrient and oxygen limitation. Fungal colonies were observed in 20 
to 30 cm and 90 to 100 cm. Furthermore, the communities of these microorganisms are higher in the rhizosphere 
than other soil depths (Smith et al., 2010, Neeraj, 2011, Silva et al., 2002, 2011).  

3.4.2 Viable Microbial Cells Counts After Fertigation 

A reduction in microbial cell count with the depth and Bacterial cell count greater than Actinomycete and Fungi 
were observed in soil samples before and after fertigation (Tables 5 and 6). This result may be due to the 
unicellular growth of the Bacterial (Madigan et al., 2010).  

 

Table 6. Viable microbial cells counts after the planting of Brachiaria brizantha cv Marandu 

Fertigation managements Soil depth Actinomycete Bacteria Fungos  

 -------- cm ------- ----------------------------- Log (CFU g-1) ------------------------------
M1 0-10 7.13 ±0.03 8.80 ±0.09 6.64 ±0.01 

10-20 6.83 ±0.03 8.20 ±0.07 5.52 ±0.01 

20-30 6.21 ±0.04 7.55 ±0.04 2.01 ±0.01 

M2 0-10 7.23 ±0.02 8.40 ±0.02 6.24 ±0.03 

10-20 6.79±0.01 7.95 ±0.07 5.35 ±0.07 

20-30 6.17±0.02 7.20±0.01 2.12 ±0.01 

M3 0-10 6.89 ±0.03 8.32±0.09 5.85 ±0.04 

10-20 6.64 ±0.06 7.93 ±0.05 5.12 ±0.02 

20-30 5.96 ±0.03 7.15±0.06 1.96±0.01 

M4 0-10 7.11±0.01 8.36±0.02 6.95±0.04 

10-20 6.82 ±0.03 8.01 ±0.03 5.34±0.03 

20-30 5.87±0.07 7.22 ±0.02 1.86±0.05 

M5 0-10 7.36±0.09 8.35±0.03 6.84±0.01 

10-20 7.01±0.06 7.85 ±0.03 5.90±0.02 

20-30 6.10±0.03 7.13±0.02 2.55  ±0.07 

Note. CFU: Colony forming unit. The values in this table represent the mean of four replicates plus or minus one 
standard deviation. These values were compared by analysis of variance (Anova) followed by the Tukey test at 5% 
probability (p < 0.05). 

 

Viable microbial cells counts after fertigation were higher than before planting of B. brizantha (Tables 5 and 6). 
Simões et al. (2013) observed a linear increase in microbial respiration with the wastewater dose applied in the 
planting of castor bean.  

Regardless of fertigation, there was a significant increase (p < 0.05) in the viable microbial cells counts after 
planting of B. brizantha (Tables 5 and 6). Thus, the wastewater did not change the viable microbial cell count 
(Table 5). However, the fungal colonies in the depth of 20-30 cm were observed after fertigation that may be due 
to the presence of roots and availability of water and nutrients (Table 6). The fungi form mycorrhizal interactions 
with the roots (Pozo & Azcon-Aguilar, 1997; Oehl et al., 2011).  

3.4.3 Microbial Diversity by DGGE Profile Before of Fertigation 

The amplification of the nif H gene in soil depth of 90 to 100 cm was not observed (Figure 3). Although, viable 
bacterial cells had been obtained in this depth.  

The DGGE band profile showed a large variety of NFB, with the higher number of bands in 0 to 10 cm and 
10-20 cm than other depths (Figure 3). This result can be due to the high amount of BFN cells in the rhizosphere 
(Silva et al., 2011). Furthermore, Da Silva (2012) showed great diversity of nif H gene in Cerrado soil by DGGE. 
This same author identified a predominance of this nif H gene in Actinomycete.  

Similar to the observed in the soil physicochemical analyses, two main groups were observed in the UPGMA 
dendogram (Figure 3). The A1 point has 69% of similarity with point A2, A3 and A4 points has 89% of 
similarity. Therefore, the distance between sampling points influenced the bacterial diversity and shows once 
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Fertigation managements (M3 to M5) had higher leaf dry mass production per hectare (ha) than the 
managements without wastewater (Figure 7). 

In the first cut, the dry mass was the average of each fertigation management (Figure 7). In the other cuts, these 
values were the mean of both cuts, as there was no significant difference between them (p < 0.05) (Figure 7). 

The dry mass productivity of B. brizantha was directly proportional to the wastewaterNPK (Figure 7). 
Furthermore, wastewaterNPK had higher leaf dry mass productivity than comNPK (Figure 8). Therefore, 
comNPK is less available for plant than the wastewaterNPK. 

Linear equations are important for leaf dry mass productivity studies using NPK wastewater concentrations. The 
positive linear effect on leaf dry mass with nitrogen dose was also observed in the planting of Marandu grass 
(Alexandino et al., 2003) and Brachiaria decumbens cv. Basilisk (Maranhão et al., 2010). 

The dry mass productivity of the second cut was similar to the third cut (Figure 7). This result shows the 
regrowth of the Marandu grass with the fertigation that can contribute to reduce the frequency of planting of this 
grass. The leaf dry mass increases with reduced cut-off interval and regrowth decreases with the cuts (Maranhão 
et al., 2010; Alexandino et al., 2003).  

The iron, cobalt, and etheric extract content of the leaf biomass did not differ significantly (p < 0.05) between the 
second and third cuts (Table 7).  

In the last cut, we observed a significant reduction (p < 0.05) in nitrogen, crude protein, potassium, zinc, copper, 
and manganese content (Table 7). However, there is a significant increase (p < 0.05) in phosphorus, calcium, 
magnesium, sulfur and, ADF content (Table 7). Therefore, the cuts had an influence on the nutritional 
composition of Marandu grass.  

The calcium and NDF levels were different between without management (M1) and managements with NPK 
(M2 to M5) (Table 7). These managements had higher phosphorus, magnesium, and NDF content than the M1 
management. Therefore, the domestic wastewater did not alter the nutritional composition of Marandu grass 
(Table 7).  

The crude protein content, in the fertigation managements, was similar to the obtained by Serafim (2010). This 
author shows a variation of 11.31 to 13.81% in the crude protein content with the use of swine wastewater in the 
Marandu grass growth. 

NDF is the main nutritional component of animal feed (Benett et al. 2008). According to these authors, a forage 
of better consumption is those with low NDF contents. Thus, only M1 management had a low quality forage. 

 

Table 7. Nutritional composition of Brachiaria brizantha cv Marandu  

Cuts N P K Ca Mg S Zn Cu Fe Mn Na Co Mo CP EE ADF NDF Ash 

 g kg-1 mg kg-1 --------------------------------------------------------------------------- % ------------------------------------------------------------------------------

1 21.76A 1.03B 17.89A 2.43B 1.89B 1.29B 25.35A 9.00A 392.30A 48.45A 113.50B 0.13A 0.44C 13.59A 1.50A 29.60B 55.17B 6.01A

2 20.38A 1.39A 11.78B 2.43B 3.09A 1.27B 25.25A 5.80B 434.40A 28.10B 124.65A 0.17A 0.58A 12.72A 1.36A 31.39AB 61.58A 5.82A

3 18.10B 1.51A 10.16B 3.00A 3.13A 1.51A 16.15B 3.00C 366.60A 25.80B 112.50B 0.10A 0.48B 11.31B 1.48A 33.285A 57.95B 5.74A

Fertigation managements 

M1 22.10a 1.05b 16.03a 2.29b 1.85b 1.22a 26.25a 5.58a 336.90a 38.33a 114.83a 0.12a 0.50a 13.81a 1.50a 29.37b 53.94b 6.1a 

M2 20.38ab 1.25ab 12.07a 2.78a 2.04ab 1.38a 22.92a 7.00a 358.80 a 32.17a 116.64a 0.12a 0.49a 12.73ab 1.47a 31.92ab 59.36a 5.3ab

M3 18.26  b 1.37a 12.17a 2.53ab 2.93a 1.38a 20.01a 5.01a 350.10 a 36.25a 116.58a 0.12a 0.51a 11.41b 1.51a 31.93ab 59.68a 4.1b 

M4 19.64ab 1.41a 13.08a 2.74ab 3.10a 1.34a 19.75a 6.01a 320.50a 31.83a 118.25a 0.18a 0.51a 12.24ab 1.36a 32.70a 59.08a 4.7b 

M5 20.08ab 1.46a 13.05a 2.75ab 3.22a 1.45a 22.33a 6.08a 322.40a 32.00a 118.08a 0.12a 0.49a 12.50ab 1.36a 31.20ab 59.11a 4.7b 

Note. CP: Crude protein, EE: Etheric extract, ADF: Acid detergent fiber, NDF: Neutral detergent fiber. The upper 
and lower case letters in the columns indicate, respectively, the statistical comparison between cuts and 
treatments. Thus, the same letters in the same column indicate that there was no significant difference by the 
Tukey test at 5% significance (see annexes). Statistical analyses were carried out using the free trial version of 
the Minitab 17 software (2016) available at http://www.onthehub.com/minitab. 

. 

FDA levels are related to the lignin content and digestibility. Therefore, the biomass of third cut had the higher 
FDA than to the other cuts that may be due to the aging of the plant.  
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The etheric extract levels did not exceed the limit of 6% of the diet of ruminants (Souza et al., 2009). These 
levels are lower than those reported by Mari (2003). This author obtained values etheric extract in Marandu grass 
from 2.7 to 1.9% of dry mass. 

The phosphorus concentration in leaf biomass was of 1.03 to 1.51 kg-1 (Table 7). This concentration was similar 
to the fodder plants (Malavolta, 1987). 

The aging of the grass influenced significantly (p < 0.05) in the Cu concentration (Table 7). We observed a 
decrease in Cu concentration with time. Concentration of this nutrient was of 3.00 to 9.00 mg kg-1. According to 
Malavolta (1987), the Cu level in grass is of 6.0 mg kg-1.  

The Fe level was high in leaf biomass, because the levels of this element in grass are of 180 to 250 mg kg-1 
(Malavolta, 1987). However, the iron requirement for ruminants is of 30 to 100 mg kg-1 (McDowell, 1999). Thus, 
our forage would meet this requirement. 

The ash content did not differ with the cuts (p < 0.05). However, the managements with wastewaterNPK had 
lower ash content than other treatments (Table 7). The ash content obtained in this study is similar to the 
observed in Marandu grass cultivated at different times of the year in the state of Piauí/Brazil (Rodrigues Júnior 
et al., 2015). 

4. Conclusions 
In this study, we had the following conclusions:  

 Fertigation is a viable alternative for the use of domestic wastewater in agriculture in the Cerrado soil, 
which may represent a reduction in the wastewater amount discarded in the water bodies. 

 Fertigation management with up to 60% NPK from wastewater also validates this alternative;  

 Changes in soil physical and chemical properties after fertigation depend of the time, the type of crop, and 
the characteristics of the soil and effluent used; 

 The use of fertilizers from domestic wastewater contributes positively with the abundance of NFB and 
AMF in the soil; 

 NPK of wastewater is more available to the plant than commercial NPK; 

 Fertigation with domestic wastewater has a low risk of salinization and eutrophication of the soil.  
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