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Abstract

For matched-pair data with a polychotomous outcome, the Stuart-Maxwell test (1955) and the Bhapkar test(1966) are
commonly used to test marginal homogeneity. When the outcome is ordinal, the test proposed by Agresti (1983) can be
used to test the marginal homogeneity against stochastic order. In practice, we often face the need to consider multiple
categorical outcomes simultaneously to insure Type I error protection. In this paper, we propose three statistics to test
simultaneous marginal homogeneity for multiple multinomial outcomes in two dependent samples. Furthermore, when
the outcome is ordinal, we also propose a transformed version of the three statistics for testing simultaneous marginal
homogeneity against stochastic order in two dependent samples. We then prove their asymptotic properties. Finally,
Monte Carlo simulations are conducted to evaluate their performance in small samples with respect to empirical size and
power.

Keywords: Simultaneous marginal homogeneity, Stochastic order, Chi-square distribution

1. Introduction

In phase II-III clinical trial of pharmaceutical products, the analysis of adverse event(AE) data is an important aspect of
examining the safety of a new drug. The investigator are often interested in looking at if the severity distributions of
the AEs patients experienced are different under two treatments or two dosages. The simplest way is to analyze each
AE separately and combine individual p−values through various multiple adjustment techniques. However, many AEs
are correlated to a huge extent. Without a proper adjustment, type I error will not be adequately controlled. Therefore,
analyzing the incidence of related AEs simultaneously is ideal and preferable to treating them separately. Analyzing the
severity distribution of multiple AEs simultaneously is challenging, as it leads to dealing with clustered and thus correlated
matched-pair multinomial data.

Chuang-Stein and Mohberg (1993) developed the Wald and score-type tests for comparing the incidence of multiple
AEs simultaneously in two independent groups. The score-type test used the pooled covariance estimator under two
treatments. Agresti and Klingenberg (2005) recommended the score-type test over the Wald test because the empirical
size of the score-type test tends to be closer to the nominal level than the Wald test does.

Klingenberg and Agresti (2006) developed the Wald and score-type test for comparing the incidence of multiple AEs
simultaneously in two dependent groups. Both statistics asymptotically follow a Chi-square distribution. The score-type
statistic is preferred because it maintains the nominal level much better than the Wald statistic. They also pointed out that
for sample sizes less than 100, neither statistic is well approximated by a χ2 distribution when the number of AE consid-
ered is 2 and 4. Therefore, the score-type statistic using bootstrap method is recommended in small samples. In situations
when bootstrap method is too computationally intensive, a permutation test is recommended. But the permutation test is
to test the identical joint distribution (IJD), which is a stronger hypothesis than SMH. Thus, the permutation test will lead
to inflated type I error rates when testing SMH.

Klingenberg et al. (2008) developed the score-type test and a score-free statistic for testing SMH against stochastic order
in two independent groups. The permutation test and bootstrap method based on these two tests were proposed. For small
sample sizes, the bootstrap method for the two tests is either too conservative or liberal, while the permutation test has the
empirical size closer to the nominal level. However, the permutation is only valid for testing SMH when a prior condition
(stochastic order) is assumed or two samples are balanced.

In this paper, we focus on the methods for testing SMH in matched-pair multinomial data. In section 2, we define the
hypothesis of SMH for matched-pair multinomial data and develop the statistics to test SMH. In section 3, we focus on a
special case of multinomial data, which is ordered. For ordinal data, an alternative hypothesis, stochastic order, is defined.
Then we present the statistics to test SMH against stochastic order. In section 4, Monte Carlo simulations are performed to
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evaluate the performance of the statistics introduced in section 2 and 3. Section 5 discusses the drawbacks of the methods
proposed and possible extensions. The paper is entirely framed in terms of a safety analysis comparing the marginal
proportions of each AE severity categories under two treatments or dosages. However, our methods can be applied to any
paired or repeated multinomial response.

2. Tests of SMH for Clustered Matched-pair Multinomial Data

2.1 Simultaneous Marginal Homogeneity

Let Yi j = (Yi j1,Yi j2, · · · ,Yi jK)T be a K × 1 vector of multivariate responses for subject i at dose j = 1, 2, where K
is the number of multinomial responses (AE severity), Yi jk is the multinomial response with Ck > 2 categories, k =
1, 2, · · · ,K. In this paper, Ck = C = 4 is used for all k which denotes the 4 severity levels of AE, i.e. none, mild,
moderate and severe. If subject i experienced AE k with severity ck at dose j, then Yi jk = ck. For each subject, let
Yi = (Yi1,Yi2)T = (Yi11,Yi12, · · · ,Yi1K ,Yi21,Yi22, · · · ,Yi2K)T denote the subject i’s AE severity profile. Assume that we
have n subjects in the study, where (Y1,Y2, · · · ,Yn) are n independently and identically distributed random variables from
a multinomial distribution with probability π(c1, c2, · · · , cK , c

′

1, c
′

2, · · · c
′

K), where π(c1, c2, · · · , cK , c
′

1, c
′

2, · · · , c
′

K) denotes
the joint probability Pr(Yi11 = c1, · · · ,Yi1K = cK , · · · ,Yi21 = c

′

1, · · · , Yi2K = c
′

K).

Let π j = (π j1(1), · · · , π j1(C), π j2(1), · · · , π j2(C), · · · , π jK(1), · · · , π jK(C))
′
, where π jk(ck) denotes the probability Pr(Yi jk =

ck), ck = 1, 2, · · · ,C, for C = 4. The null hypothesis of SMH is defined as

H0 : π1k(ck) = π2k(ck) for k = 1, 2, · · · ,K, ck = 1, 2, · · · ,C.

2.2 Multivariate Tests of SMH

Motivated by the statistic proposed by Agresti and Klingenberg (2005) and Klingenberg and Agresti (2006), a statistic to
test SMH is constructed by comparing the marginal proportions of each AE at two dosages. Let π̂ j = (π̂ j1(1), · · · , π̂ j1(C −
1), π̂ j2(1), · · · , π̂ j2(C − 1), · · · , π̂ jK(1), · · · , π̂ jK(C − 1))T denote the marginal proportions of each AE at dose j, where
j = 1, 2 and π̂ jk(ck) denotes the sample proportion of subjects with severity ck of AE k at dose j, ck = 1, 2 · · · ,C − 1.
Let d = π̂2 − π̂1 = (d̂1(1), · · · , d̂1(C − 1), d̂2(1), · · · , d̂2(C − 1), · · · , d̂K(1), · · · , d̂K(C − 1))T denote the difference of the
marginal sample proportions at two dosages.

Under the assumption of multinomial distribution, the covariance matrix V of d has elements:

Var(d̂k(ck)) = Var(π̂2k(ck) − π̂1k(ck))
= Var(π̂2k(ck)) + Var(π̂1k(ck)) − 2Cov(π̂2k(ck), π̂1k(ck))

=
(π1k(ck) + π2k(ck) − 2πk(ck, ck)) − (π1k(ck) − π2k(ck))2

n
,

(1)

where πk(ck, ck) is the probability of experiencing AE k of severity ck at both dosages,

Cov(d̂k(ck), d̂k(c
′

k)) = Cov(π̂2k(ck) − π̂1k(ck), π̂2k(c
′

k) − π̂1k(c
′

k))

= −
π2k(ck)π2k(c

′

k)
n

−
π1k(ck)π1k(c

′

k)
n

−
π12k(c

′

k, ck) − π1k(c
′

k)π2k(ck)
n

−
π12k(ck, c

′

k) − π1k(ck)π2h(c
′

k)
n

,

(2)
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where π12k(c
′

k, ck) is the joint probability of experiencing AE k of severity c
′

k at dose 1 and AE k of severity ck at dose 2,
and

Cov(d̂k(ck), d̂k′ (ck′ )) = Cov(π̂2k(ck) − π̂1k(ck), π̂2k′ (ck′ ) − π̂1k′ (ck′ ))

=
π2kk′ (ck, ck′ ) − π2k(ck)π2k′ (ck′ )

n

−π12k′ k(ck′ , ck) − π1k′ (ck′ )π2k(ck)
n

−π12k′ k(ck, ck′ ) − π1k(ck)π2k′ (ck′ )
n

+
π1kk′ (ck, ck′ ) + π1k(ck)π1k′ (ck′ )

n
,

(3)

where π jkk′ (ck, ck′ ) is the joint probability of experiencing AE k of severity ck and AE k
′

of severity ck′ at dose j and
π j j′ kk′ (ck, ck′ ) is the joint probability of experiencing AE k of severity ck at dose j and AE k

′
of severity ck′ at dose j

′
.

Let V̂ denote the sample version of V . Then, a Wald statistic to test SMH is

W = dT V̂−1d,

and based on the Central Limit Theorem, W has an asymptotic null χ2 distribution with d f = K(C − 1) when n −→ ∞ .
By replacing π1k(ck) and π2k(ck) by the pooled estimator, π̂0k(ck) = (π̂1k(ck)+π̂2k(ck))/2, we have V̂s as the pooled estimator
of V , which has elements as:

V̂ar(d̂k(ck)) =
2(π̂0k(ck) − π̂k(ck, ck))

n

Ĉov(d̂k(ck), d̂k(c
′

k)) =
−π̂12k′ k(c

′

k, ck) − π̂12kk′ (ck, c
′

k)
n

Ĉov(d̂k(ck), d̂k′ (ck′ )) =
π̂1kk′ (ck, ck′ ) + π̂2kk′ (ck, ck′ ) − π̂12k′ k(ck′ , ck) − π̂12kk′ (ck, ck′ )

n
.

(4)

Then we have a score-type test statistic Ws = dT V̂−1
s d, which also has an asymptotic null χ2 distribution with d f = K(C−1)

when n −→ ∞. In the binary case (C = 2), the W and Ws reduces to the multivariate McNemar’s tests (Klingenberg and
Agresti, 2006).

For the Wald and score-type statistics, it is assumed that (Y1,Y2, · · · ,Yn) are n independently and identically distributed
random variables from a multinomial distribution. However, this assumption may not be feasible in practice. Therefore,
a non-parametric covariance estimator of d is considered in this section. The non-parametric covariance estimator V̂np of
d is given as follows:

V̂ar(d̂k(ck)) = V̂ar(π̂2k(ck) − π̂1k(ck))

=

∑n
i=1(Yi2k(ck) − Y2k(ck))2

n(n − 1)
+

∑n
i=1(Yi1k(ck) − Y1k(ck))2

n(n − 1)

−
∑n

i=1 2((Yi1k(ck) − Y1k(ck))(Yi2k(ck) − Y2k(ck))
n(n − 1)

, (5)
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where Yi1k(ck) = 1 if subject i experience AE k of severity ck; Yi1k(ck) = 0 if subject i did not experience AE k of severity
ck.

Ĉov(d̂k(ck), d̂k′ (ck′ )) = Ĉov(π̂2k(ck) − π̂1k(ck), π̂2k′ (ck′ ) − π̂1k′ (ck′ ))

=

∑n
i=1((Yi2k(ck) − Y2k(ck))(Yi2k′ (ck′ ) − Y2k′ (ck′ )))

n(n − 1)

−
∑n

i=1((Yi2k(ck) − Y2k(ck))(Yi1k′ (ck′ ) − Y1k′ (ck′ )))
n(n − 1)

−
∑n

i=1((Yi1k(ck) − Y1k(ck))(Yi2k′ (ck′ ) − Y2k′ (ck′ )))
n(n − 1)

+

∑n
i=1((Yi1k(ck) − Y1k(ck))(Y1ik′ (ck′ ) − Y1k′ (ck′ )))

n(n − 1)
.

(6)

Next, we will show (5) and (6) are consistent estimators of Var(d̂k(ck)) and Cov(d̂k(ck), d̂k′ (ck′ )), respectively. First, we
will show

∑n
i=1(Yi2k(ck) − Y2k(ck))2/n(n − 1) in (5) is a consistent estimator of Var(π̂2k(ck)).

Assume that Y12k,Y22k, · · · ,Yn2k are independently and identically distributed with mean µ and variance σ2. It is well-
known that sample variance

∑n
i=1(Yi2k(ck) − Y2k(ck))2/(n − 1) is a consistent estimator of σ2. Furthermore, we have

Var(π̂2k(ck)) = Var(
∑n

i=1(Yi2k(ck))
n

) =
Var(Yi2k)

n
=
σ2

n
.

Hence,
∑n

i=1(Yi2k(ck) − Y2k(ck))2/n(n − 1) is a consistent estimator of Var(π̂2k(ck)). Similarly, it can be shown that∑n
i=1(Yi1k(ck) − Y1k(ck))2/n(n − 1) and

∑n
i=1((Yi1k(ck) − Y1k(ck))(Yi2k(ck) − Y2k(ck))/n(n − 1) are consistent estimators of

Var(π̂1k(ck)) and Cov(π̂2k(ck), π̂1k(ck)), respectively. Therefore, (5) is a consistent estimator of Var(d̂k(ck)).

Similarly, it can be shown that (6) is a consistent estimator of Cov(d̂k(ck), d̂k′ (ck′ )). Since (5) and (6) are both consistent,
V̂np is a consistent estimator of variance of d.

From the Central Limit Theorem, we have a non-parametric Wald test statistic Wnp = dT V̂npd, which asymptotically
follows a χ2 distribution with d f = K(C − 1) when n −→ ∞.

3. Tests of SMH against Stochastic Order in Clustered Matched-pair Ordinal Data

3.1 Stochastic Order

All the statistics introduced in section 2.2 treat the outcome as nominal. They can be used to test marginal homogeneity
against any alternatives. When the outcome is ordinal, however, they ignore the ordinal nature of the outcome. Quite
naturally, the tests that utilize the ordinal information will be more powerful. For instance, for ordinal outcome, one is
usually interested if the classifications based on one variable are higher than those based on the other variable. For a I × I
square table, let Y1 denote the observation from the row marginal distribution {πi+} and Y2 denote the observation from the
column marginal distribution {π+ j}. Y1 is stochastically higher than Y2 (Agresti, 2010) if the cumulative density function
of Y1 is uniformly below the cumulative density function of Y2, i.e.

π1+ + · · · + π j+ ≤ π+1 + · · · + π+ j, for j = 1, · · · , I − 1.

This means that Y1 is more likely to have larger values than Y2.

3.2 Multivariate Tests of SMH against Stochastic Order

For clustered matched-pair AE severity data, it may be of interest to test whether one margin is stochastically higher than
the other for each AE. Motivated by the statistic proposed by Agresti (1983), a statistic for testing SMH against stochastic
ordering is formed by comparing the marginal mean scores under two treatments.

Let π̂ j = (π̂ j1(1), · · · , π̂ j1(C), π̂ j2(1), · · · , π̂ j2(C), · · · , π̂ jk(1), · · · , π̂ jK(C))T , where π̂ jk(ck) denotes the sample proportion of
subjects with severity ck of AE k at dose j, ck = 1, 2 · · · ,C. Let

d = π̂2 − π̂1 = (d̂1(1), · · · , d̂1(C), d̂2(1), · · · , d̂2(C), · · · , d̂K(1), · · · , d̂K(C))T

denote the difference of the marginal sample proportions at two dosages. The difference of the marginal mean scores at two
dosages is formed by S = Ad, where A = diag(uk

T , k = 1, 2, · · · ,K) is a matrix with score uk
T = (uk(1), uk(2), · · · , uk(C))T

for severity levels of AE k.
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Under the assumption of multinomial distribution, the covariance matrix V of d is given in (1), (2) and (3). From S = Ad,
we have the covariance matrix of S as Σ = AVAT . Let Σ̂ denote the sample version of Σ. A multivariate Wald test is
constructed by

Wo = S T Σ̂−1S

Based on the Central Limit Theorem, Wo asymptotically follows a Chi-square distribution with d f = K when n −→ ∞,
where K is the number of AEs considered simultaneously. When K = 1, it reduces to the statistic proposed by Agresti
(1983).

By replacing π1k(ck) and π2k(ck) with the pooled estimator π̂0k(ck) = (π̂1k(ck) + π̂2k(ck))/2, we have V̂s as the pooled
estimator of V , which is given in (4). Then we have a score-type statistic

Wos = S T Σ̂−1
s S ,

which also asmptotically follows the χ2 distribution with d f = K when n −→ ∞, where Σ̂s = AV̂sAT .

The above two statistics assume that (Y1,Y2, · · · ,Yn) are n independently and identically distributed random variables from
a multinomial distribution. Similar to the non-parametric statistic in section 2.2, a non-parametric covariance estimator of
d can be considered, which is as given in (5) and (6). Then we have a non-parametric Wald test statistic Wonp = S T Σ̂−1

npS
which also asymptotically follows a χ2 distribution with d f = K when n −→ ∞, where Σ̂np = AV̂npAT .

4. Asymptotics and Power

4.1 Asymptotics of W, Ws and Wnp

In this section, the empirical size of W, Ws and Wnp are compared for sample sizes n = 25; 50; 100; 200; 300; 500
and for the number of AEs K = 2; 3; 4, under the nominal level = 0.05. And we use C = 4 categories for each AE,
To simulate a dataset under the null hypothesis (SMH), a 42K × 1 random vector of (a length of 42K is used because
two treatments are considered) multinomial probabilities is generated. Then the iterative proportional fitting procedure
(Deming and Stephan, 1940) is performed to adjust the vector to make each one of K pairs of marginal probabilities under
two treatments equivalent to a specified 4 × 1 vector of probabilites.

In practice, higher levels of severity of an AE may be observed less frequenly than lower levels and our interest is
in the performance of the tests on low incidence events. Therefore, high probabilities are assigned to the lower lev-
els of severity, while low probabilities are assigned to the higher levels in our simulation design. More specifically,
when simulating the data sets under SMH for K = 2, (0.5, 0.25, 0.24, 0.01) is used as the marginal probabilities for
AE = 1 and (0.7, 0.2, 0.05, 0.05) is used as the marginal probabilities for AE = 2 under both treatments. For K = 3,
(1/3, 1/3, 0.25, 1/12) is used as the marginal probabilities for AE = 1, (0.45, 1/3, 1/6, 0.05) is used as the marginal prob-
abilities for the AE = 2, and (0.45, 0.25, 0.25, 0.05) is used as the marginal probabilities for the AE = 3 under both
treatments. For K = 4, they are (0.5, 0.25, 0.24, 0.01), (0.7, 0.2, 0.05, 0.05), (0.4, 0.25, 0.25, 0.1) and (0.7, 0.15, 0.11, 0.04)
as the marginal probabilities for the AE = 1, 2, 3, 4, respectively, under both treatments.

Table 1. Empirical size of the W, Ws and Wnp in 5000 simulated data sets under the nominal level 0.05

Empirical Size
K Method n=25 n=50 n=100 n=200 n=300 n=500
2 W 0.168 0.112 0.077 0.058 0.055 0.057

Ws 0.015 0.035 0.047 0.042 0.045 0.056
Wnp 0.147 0.106 0.074 0.056 0.054 0.051

3 W 0.348 0.168 0.088 0.067 0.061 0.058
Ws 0.009 0.03 0.038 0.042 0.042 0.049
Wnp 0.325 0.157 0.084 0.066 0.060 0.058

4 W 0.553 0.24 0.12 0.077 0.079 0.06
Ws 0.003 0.02 0.034 0.037 0.05 0.046
Wnp 0.514 0.22 0.114 0.074 0.077 0.059

Note: The bold text indicates that the empirical size falls outside the 95% confidence interval (0.044, 0.056) of the nominal
level 0.05 .

When the simulated data set was very sparse and the test failed to work, the data set was eliminated from the summary
analysis.
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Table 1 shows the empirical size of W, Ws and Wnp at a nominal type I error rate of 0.05. The W and Wnp are too liberal
and the empirical size improves as the sample size increases. On the contrary, the Ws is too conservative and the empirical
size improves as the sample size increases. When K = 2, the Ws maintain the nominal level well when n ≥ 100 and a
larger sample size is required for W and Wnp to control the empirical size at the nominal level. When K = 3, 4, none of the
W, Ws and Wnp seem to perform reasonably if n ≤ 200. A minimum sample size of 300 is required for Ws when number
of outcomes is greater than 2.

4.2 Asymptotics of Wo, Wos and Wonp

Table 2 shows the empirical size of Wo, Wos and Wonp with scores (1, 2, 3, 4). It shows that Wos maintains the nominal
level much better than Wo and Wonp and is therefore recommended to use. When K = 2, Wos can be used even at n = 25.
When K = 3, 4, Wos can be used when sample size is at least 50.

Table 2. Empirical size of the Wo, Wos and Wonp with scores (1, 2, 3, 4) in 5000 simulated data sets under the nominal
level 0.05

Empirical Size
K Method n=25 n=50 n=100 n=200 n=300 n=500
2 Wo 0.093 0.066 0.066 0.055 0.055 0.054

Wos 0.046 0.046 0.056 0.05 0.051 0.053
Wonp 0.084 0.062 0.065 0.055 0.054 0.054

3 Wo 0.1 0.073 0.063 0.049 0.052 0.051
Wos 0.039 0.044 0.051 0.042 0.047 0.049
Wonp 0.092 0.07 0.062 0.048 0.051 0.051

4 Wo 0.127 0.09 0.068 0.063 0.058 0.055
Wos 0.031 0.044 0.049 0.054 0.051 0.052
Wonp 0.113 0.085 0.064 0.063 0.057 0.054

Note: The bold text indicates that the empirical size falls outside the 95% confidence interval (0.044, 0.056) of the nominal
level 0.05.

4.3 Power Comparison of Ws and Wos in Testing SMH against Stochastic Order

For the case of one adverse event, Agresti (1983) showed that the test using ordinal scales outperforms the test ignoring
its ordinal nature when they are used to test SMH against stochastic ordering. In this section, a simulation is performed to
verify if the test using ordinal scales is also more powerful to test SMH against stochastic ordering for the multiple AEs
case.

Based on the simulation results in section 4.1 and 4.2, it appears that the Ws and Wos performs the best. Thus, the Ws and
Wos are contrasted in this section. To ensure the nominal level can be well controlled for Ws and Wos, the sample size of
100 and 200 are utilized in the simulation.

Their power performance is investigated by extending the simulation design introduced by Agresti (1983). We randomly
sample from an underlying multivariate normal distribution having mean 0 and within-AE correlation ρ1 = 0.6 and
between-AE correlation ρ2 = 0.2. A half of the dimensions of the multivarite random vector are divided as the severity
levels c = 1, 2, 3, 4 of all AEs under treatment 1 and the other half are divided as the severity levels of all AEs under
treatment 2. The boundries for AE categories under treatment 1 are set as −0.6, 0 and 0.6. The boundries for AE categories
under treatment 2 are obtained by placing a shift ∆ = 0.2 relative to the boundaries for treatment 1. Hence, the boundaries
of the AE categories under treatment 2 are −0.4, 0.2 and 0.8. The division produces the marginal probabilities of AE
categories under treatment 1 to be (0.2743, 0.2257, 0.2257, 0.2743), and the marginal probabilities of AE categories under
treatment 2 to be (0.3446, 0.2347, 0.2089, 0.2119). Our simulation includes the settings representing the combinations of
sample size n = 100, 200 and number of AEs K = 2, 3, 4.
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Table 3 shows the power of the Ws and Wos under the nominal levels of 0.05. From table 3, we have the following
observations:

1. The power of the Wos is consistently greater than that of Ws for all the combinations of K and n we considered.

2. The ratio (1−power of the Ws)/(1−power of the Wos) is consistently greater at n = 200 than n = 100 for all K.

3. As K increases, the ratio (1−power of the Ws)/(1−power of the Wos) consistently increases for all n.

Therefore, the Wos outperforms the Ws with respect to the power when they are used to test SMH against stochastic order.
Furthermore, as the sample size or number of AEs increases, the advantage of the Wos compared to the Ws increases.

Table 3. Empirical power of the Wos and Ws in 5000 simulated data sets under the nominal level of 0.05

Empirical Power
Method n=100 n=200 n=100 n=200 n=100 n=200

Ws 0.532 0.828 0.675 0.934 0.578 0.955
Wos 0.676 0.933 0.799 0.984 0.847 0.993

Note: The marginal probabilities of AE categories are (0.2743, 0.2257, 0.2257, 0.2743) and (0.3446, 0.2347, 0.2089, 0.2119)
for treatment 1 and treatment 2, respectively.

5. Example

The data used in this article was part of a longitudinal study of criminal career patterns of former California youth authority
wards between 1965 and 1984 (Haapanen, 1990). This study investigated the patterns of criminal behavior that occurred
over 10 to 15 years for 1308 subjects whose early criminal involvement was serious enough to result in commitment to
California Youth Authority institutions. The outcomes selected from this study are yearly arrest rates for 12 types of
offenses, including murder, rape, felony assault, misdemeanor assault, armed robbery, strong-arm robbery, other personal
offenses(extortion, kidnapping), burglary, receiving stolen property, grand theft, forgery and grand theft auto, over four
four-year age blocks (18-21, 22-25, 26-29, 30-33). The 12 types of offenses are categorized according to the definition
used in the earlier study (Haapanen, 1990), which are as follows:

Violent-aggressive: murder, rape, felony assault and misdemeanor assault.

Vilent-economic: armed robbery, strong-arm robbery and other personal offenses (extortion, kidnapping).

Property: burglary, receiving stolen property, grand theft, forgery and grand theft auto. Our main interest is to test if the
yearly arrest rates for the three categories decline over time as indicated in Haapanen (1900). To apply the method we pro-
posed, the yearly arrest rates for the 12 types of offenses are all converted to a scale of 1 to 4 (represents the offense rate as
none, mild, moderate and severe), using the range: 0, (0, 1], (1, 2] and (2,∞). Scores (0.1, 0.5, 1.5, 2.5) are assigned to the
outcome categories which are approximately midpoints of the above ranges. Table 4 shows P-values from our method and
Hotelling’s Paired T 2 test. Note that the Hotelling’s Paired T 2 test is applied to continuous variables before categorization.

Table 4. P-values for comparing the yearly arrest rates in four four-year age blocks, from Wos with scores
(0.1, 0.5, 1.5, 2.5) and Hotelling’s Paired T 2 test

P-values
18 − 21 vs 22 − 25 22 − 25 vs 26 − 29 26 − 29 vs 30 − 33

Offense Wos / Hotelling′sT 2 Wos / Hotelling′sT 2 Wos /Hotelling′sT 2

Violent-aggressive 0.202 / 0.183 0.055 /0.317 0.097 /0.056
Violent-economic 0.025 /0.322 0.005 / 0.013 0.99/0.922

Property 0.000/ 0.046 0.000/ 0.007 0.000 / 0.004

Note: The bold text indicates that Wos and Hotelling’s Paired T 2 test give different conclusion for the comparison.
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From Table 4, Wos and Hotelling’s Paired T 2 test give the same conclusion for all the comparisons except the property
offense in age blocks 18 − 21 and 22 − 25. The difference might be due to the categorization and the scores assigned to
the outcome categories. with scores (0.1, 0.5, 1.5, 10), Wos gives P-value= 0.314 instead of 0.025 in Table 4. Therefore,
careful consideration should be given to scores assigned to outcome categories before applying Wos.

More specifically, in table 4, Wos indicates the yearly arrest rate in age block 22 − 25 is significantly lower than that
of 18 − 21, the yearly arrest rate in age block 26 − 29 is significantly lower than that of 22 − 25, for violent economic
offense. For property offense, the yearly arrest rate in latter age block is always significantly lower than that of earlier age
block. And significant difference is not found for other comparisons. Haapanen (1990) calculated the yearly arrest rates
for three types of offenses by using the total number of arrests occurring to all subjects divided by the number of street
years accumulated by all subjects together during the follow-up period. Table 5 (Haapanen, 1990) shows the yearly arrest
rates for the three types of offenses over four four-year age blocks.

Table 5. Mean yearly arrest rates for active adult period by age block

Offense Type 18 − 21 22 − 25 26 − 29 30 − 33
Violent-aggressive 0.202 0.198 0.153 0.143
Violent-economic 0.169 0.125 0.094 0.120

Property 0.597 0.435 0.334 0.425

No statistical test was applied by Haapanen (1990) to investigate if the yearly arrest rate declines with age. Instead,
by looking at the aggregated yearly arrest rates, it was declared that the arrest rates for the three categories of offenses
over the first three age blocks showed the same general decline, and property and violent-economic arrest rates showed
an increase for the last age block. The aggregation ignores the change over age blocks within subject. It gives valid
conclusion only when the change in yearly arrest rate over age blocks is in the same direction for at least most of the
subjects. Furthermore, the change is very slight for some comparisons, for instance, for violent aggressive offense in age
blocks 18 − 21 and 22 − 25, which are 0.202 and 0.198, differ slightly. It might be caused by mere random chance rather
than true difference in yearly arrest rates. By cross-checking the result from Wos in table 4 and table 5, it is found Wos

gives P-value < 0.05 when the mean yearly arrest rates in two adjacent age blocks differ relatively large (> 0.03), which
confirms, to a certain extent, that our method works properly.

6. Conclusion and Discussion

In this paper, we considered simultaneous testing of marginal homogeneity in matched-pair data with multivariate multi-
nomial outcome. We developed three general test statistics and proved their asymptotic χ2 distributions and then demon-
strated their performance in small samples. In general, the sample size requirement for these tests seems rather large, as
even at n = 200, the tests were too liberal, with the exception of a score-type test, which was rather conservative.

When the ordered nature of the adverse effects are taken into consideration, the power of the tests appear to improve,
judging by the empirical sizes. Again none other than the score-type test controlled the nominal level, but the improve-
ment by the additional information of ordering effects in the small sample problem is evident. The power to detect a
small departure from the SMH assumption is also demonstrated, especially when the ordered information is taken into
consideration.

The similarity between the two tests W and Wnp (also in Wo and Wonp) in the simulation results are expected, because
the data in our simulation was generated under the parametric distribution assumption for W. While Wnp may appear to
correct any departure from the assumption in the simulated data, it is essentially the same tests as W, because the only
difference is in the variance of d, which is estimated by V and Vnp under a multinomial assumption and distribution-
free, respectively. However, in actual applications where data do not conform to the specified parametric distribution, it
would make a difference, as Wnp and Wonp do not force any parametric assumptions. For example, when the data exibits
heterogeneity, severe sparsity, or overdispersion problems, we can anticipate the two non-parametrically based tests, Wnp

and Wonp, to outperform the others that are based on often unverifiable parametric assumptions. We did not pursue to
demonstrate this latter aspect of the tests in simulations in this paper. Generating overdispersed multivariate multinomial
outcome data in a matched pair is quite challenging, but we plan to investigate it further in our future research. As well,
one possible way to deal with the sparsity of the data is to add a slightly restrictive condition, for instance, an equal
correlation among the outcomes, which might be able to make the covariance matrix invertible.
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In conclusion, we draw the following conclusions and recommendations:

1. For clustered matched-pair multinomial data, when K = 2, the Ws is recommended when sample size is at least
100. Moreover, When the the number of outcomes K > 2, it requires sample size larger than 200 to be used.

2. For clustered matched-pair ordinal data, when K = 2, the Wos can be used when sample size is 25. If K > 2, then
Wos is suggested to use when sample size is at least 50.

3. If the outcomes considered are ordinal, the Wos is more powerful than Ws when the stochastic order holds in the
two treatments.

4. If an overdispersion is suspected or when the data seem sparse, we recommend to use Wnp or Wonp, especially when
the sample size is large.
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