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Abstract 

This article discusses the local polynomial regression estimator for 𝑃 = 0 and the local polynomial regression 

estimator for 𝑃 = 1 in a finite population. The performance criterion exploited in this study focuses on the efficiency of 

the finite population total estimators. Further, the discussion explores analytical comparisons between the two estimators 

with respect to asymptotic relative efficiency. In particular, asymptotic properties of the local polynomial regression 

estimator of finite population total for 𝑃 = 0 are derived in a model based framework. The results of the local 

polynomial regression estimator for 𝑃 = 0 are compared with those of the local polynomial regression estimator for 

𝑃 = 1 studied by Kikechi et al (2018). Variance comparisons are made using the local polynomial regression estimator 

𝑇̅0 for P = 0 and the local polynomial regression estimator 𝑇̅1 for P = 1 which indicate that the estimators are 

asymptotically equivalently efficient. Simulation experiments carried out show that the local polynomial regression 

estimator 𝑇̅1 outperforms the local polynomial regression estimator 𝑇̅0 in the linear, quadratic and bump populations.  

Keywords: Asymptotic Properties, Asymptotic Relative Efficiency, Finite Population, Local Polynomial Regression, 

Model Based Framework, Nonparametric Regression, Sample Surveys 

1. Introduction 

The theory of sample surveys involves principles and methods of collecting and analyzing data from a finite population 

of 𝑁 units and then making inferences about finite population parameters on the basis of information obtained from the 

sample. For some early work on survey sampling theory, see Royall (1970a), Royall (1970b), Royall (1971), Smith 

(1976) and Pfeffermann (1993). In this study, an estimator of the finite population total is developed and its properties 

derived using the local polynomial regression procedure. Local polynomial regression is a nonparametric technique 

which is a generalization of kernel regression and is used for smoothing scatter plots and modeling functions. Under 

normal conditions, when 𝑝 = 0, this is referred to as local constant regression, when 𝑝 = 1, this is local linear regression 

and when 𝑝 ≥ 2, this is local polynomial regression. 𝑝 is the order of the local polynomial being fit. In local polynomial 

regression, a low order weighted least squares regression is fit at each point of interest 𝑥, using data from some 

neighborhood around 𝑥 ( see Cleveland (1979) and Cleveland and Devlin (1988)).  

Once a modeling approach is undertaken, there is a special feature in finite population estimation problems that the 

unknown quantities are realized values of random variables, so the basic problem has the feature of being similar to a 

prediction problem. In order to estimate 𝑚(𝑥) at a given point 𝑥, the association between the predictor variable and the 

response variable is explored. This methodology was introduced by Stone (1977). It has also been studied by Fan 

(1993), Fan and Gijbels (1996), Breidt and Opsomer (2000) and Kikechi et al (2017). Like in Stone (1977), the main 

aim of this procedure is to quantify the contribution of the covariate 𝑋 to the response 𝑌 per unit value of 𝑋 in order 

to summarize the association between the two variables, to predict the mean response for a given value 𝑋 and to 

extrapolate the results beyond the range of the observed covariate values. A weight 𝑘 .
𝑥𝑖−𝑥

ℎ
/ is assigned to the point 
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(𝑥𝑖 , 𝑦𝑖) where ℎ is the size of the local neighbourhood and 𝑘(𝑡) is the unimodal non-negative function. On the other 

hand, inferences may explore properties of the process that generate the population values (Montanari and Ranalli 

(2003)). An assumption is made from the fact that the finite population has been generated by a super population model 

𝜉 = 𝑓(𝑥, 𝑦, 𝜑) and it is of interest to estimate the population parameters 𝜑, where 𝜑 = 𝛼 + 𝛽𝑥𝑖. The super population 

model can be applied to predict the unobserved values 𝑦𝑖′𝑠 after obtaining estimates of 𝛼 and 𝛽 using the known 

auxiliary information 𝑥𝑖, 𝑖 = 1,2… ,𝑁 (see Montanari and Ranalli (2005) and Rueda and Sanchez-Borrego (2009)). 

The nonparametric approach does not restrict the functional form of the distribution nor does it specify the various 

stochastic properties such as 𝐸𝜉(. ), 𝑉𝜉(. ) and 𝑀𝑆𝐸𝜉(. ). Rather, it leaves them to cover broad classes of models, thus 

allowing for more robust inference than inference obtained in parametric approach. Using the model ξ, the 

nonparametric estimator of total, 𝑇 has been derived by Nadaraya (1964), Watson (1964), Priestly and Chao (1972), 

Gasser and Muller (1979), Dorfman (1992) ), Chambers et al (1993) and Odhiambo and Mwalili (2000). In his study, 

Dorfman (1992) has been able to prove the asymptotic unbiasedness and MSE consistency of this estimator. The 

estimator, however suffers from sparse sample problem, and more work needs to be done to come up with another 

technique that can overcome this problem. This is where the local polynomial procedure comes in. See Kikechi et al 

(2017) and Kikechi et al (2018). 

The local polynomial regression is one of the most successfully applied design adaptive non parametric regression. This 

estimation procedure is an attractive choice due to its flexibility and asymptotic performance. Having a local model 

(rather than just a point estimate) enables derivation of response adaptive methods for bandwidth and polynomial order 

selection in a straightforward manner. The procedure has also the advantage of eliminating design bias and alleviating 

boundary bias. Furthermore, the method adapts well to random, fixed, highly clustered and nearly uniform designs. The 

weighted least squares principle to be employed in the local polynomial approximation approach, opens the way to a 

wealth of statistical knowledge and thus providing easy computations and generalizations. See Fan (1992), Fan (1993), 

Ruppert and Wand (1994) and Fan and Gijbels (1996) among others. 

Kikechi et al (2018) employ a superpopulation approach to estimate the finite population total using the procedure of local 

linear regression. Explicitly, the authors derive robustness properties of the local linear regression estimator and carry out 

simulation experiments on the performances of this estimator in comparison with other estimators that exist in the 

literature. Results indicate that the local linear regression estimator is more efficient and performing better than the 

Horvitz-Thompson (1952) and Dorfman (1992) estimators, regardless of whether the model is specified or mispecified. 

In this paper, the local polynomial regression estimator of finite population total for 𝑃 = 0 is studied and asymptotic 

properties derived. Analytical comparisons are carried out between this estimator and the local polynomial regression 

estimator for 𝑃 = 1 studied by Kikechi et al (2018) which indicate that the estimators are asymptotically equivalently 

efficient. Simulation experiments however indicate that the local polynomial regression estimator 𝑇̅1 is superior and 

dominates the local polynomial regression estimator 𝑇̅0 in the linear, quadratic and bump populations. 

2. Method of Constructing the Local Polynomial Regression Estimator 𝑻̅ for 𝑷 = 𝟎 

The superpopulation model considered for estimating the finite population total is given by, 

𝑌𝑖 = 𝑚(𝑋𝑖) +  2(𝑋𝑖) 𝑖                                                                                  (1) 

Specifically, the following assumptions hold for the model considered in the nonparametric regression estimation of 

𝑚(𝑥𝑖): 

𝐸(𝑌𝑖 𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖)  

 𝑜 (𝑌𝑖 , 𝑌  𝑋𝑖 = 𝑥𝑖 , 𝑋 = 𝑥 ) = {
 2(𝑥𝑖), 𝑖 =  
 0         ,         𝑖     

     𝑖 = 1, 2, 3, … . , 𝑁      = 1,2,3, … , 𝑁 .     (2) 

The properties of the error are given by, 

𝐸( 𝑖 𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖)  

 𝑜 ( 𝑖 ,    𝑋𝑖 = 𝑥𝑖 , 𝑋 = 𝑥 ) = {
 2(𝑥𝑖), 𝑖 =  
 0         ,         𝑖     

     𝑖 = 1, 2, 3, … . , 𝑁      = 1,2,3, … , 𝑁 .     (3) 

The functions 𝑚(𝑥𝑖)   and  2(𝑥𝑖)  are assumed to be smooth and strictly positive. Consider the Taylor series 
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expansion of 𝑚(𝑥𝑖) expressed as, 

𝑚(𝑥𝑖) = 𝑚(𝑥 + ℎ𝑡) = 𝑚(𝑥 ) + ℎ𝑡𝑚 (𝑥 ) +
ℎ2𝑡2

2 
𝑚  (𝑥 ) +

ℎ3𝑡3

3 
𝑚   (𝑥 ) +              

            = 𝑚(𝑥 ) + (𝑥𝑖 − 𝑥 )𝑚
 (𝑥 ) +

(𝑥𝑖 − 𝑥 )
2

2 
𝑚  (𝑥 ) +

(𝑥𝑖 − 𝑥 )
3

3 
𝑚   (𝑥 ) +                              (4) 

The Taylor series expansion is written in a general form expressed as, 

𝑦𝑖 = 𝛼 + (𝑥𝑖 − 𝑥 )𝛽 +  𝑖                                                                                                        (5) 

where 𝑥𝑖 lies in the interval ,𝑥 − ℎ, 𝑥 + ℎ- and 

  𝑖 =
(𝑥𝑖 − 𝑥 )

2

2 
𝑚  (𝑥 ) +

(𝑥𝑖 − 𝑥 )
3

3 
𝑚   (𝑥 ) +     

The constants 𝛼 and 𝛽 are solved using the least squares procedure by making  𝑖 the subject of the formulae, squaring 

both sides, summing over all possible sample values and applying the weights to obtain a solution to the weighted least 

squares problem of the form; 

∑ 𝑖
2

𝑖  

= ∑.𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥 )/
2

𝑖  

 .
𝑥𝑖 − 𝑥 

ℎ
/                                                                 (6) 

Letting, 

𝜑 = ∑.𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥 )/
2

𝑖  

 .
𝑥𝑖 − 𝑥 

ℎ
/                                                                 (7) 

Differentiating 𝜑 with respect to 𝛼 and equating to zero, gives 

 𝜑

 𝛼
= ∑−2.𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥 )/

𝑖  

 .
𝑥𝑖 − 𝑥 

ℎ
/{{∑ .

𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

}

 1

} = 0                           (8) 

Implying that 

∑ .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼 ∑ .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

+ 𝛽 ∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/.                                         (9)

𝑖  

 

Letting 

𝑆 , = ∑ .
𝑥𝑖 − 𝑥 

ℎ
/ (𝑥𝑖 − 𝑥 )

 

𝑖  

                                                                           (10) 

Then it follows from equation (9) that 

∑ .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼(𝑆 ,0) + 𝛽(𝑆 ,1).                                                             (11) 

Similarly, differentiating 𝜑 with respect to 𝛽 and equating to zero, gives 

 𝜑

  𝛽 
= ∑−2.𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥 )/ (𝑥𝑖 − 𝑥 )

𝑖  

 .
𝑥𝑖 − 𝑥 

ℎ
/{{∑ .

𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

}

 1

} = 0           (12) 

Implying that 

∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼 ∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

+ 𝛽 ∑(𝑥𝑖 − 𝑥 )
2
 .

𝑥𝑖 − 𝑥 

ℎ
/.              (13)

𝑖  

 

and thus 

∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼(𝑆 ,1) + 𝛽(𝑆 ,2).                                           (14) 

Multiplying equation (11) and equation (14) by (𝑆 ,2) and (𝑆 ,1) respectively, gives 
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(𝑆 ,2)∑ .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼(𝑆 ,0)(𝑆 ,2) + 𝛽(𝑆 ,1)(𝑆 ,2)                                           (15) 

(𝑆 ,1)∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼(𝑆 ,1)
2
+ 𝛽(𝑆 ,1)(𝑆 ,2)                                        (16) 

Subtracting equation (16) from equation (15), gives 

(𝑆 ,2)∑ .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 − (𝑆 ,1)∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼(𝑆 ,0)(𝑆 ,2) − 𝛼(𝑆 ,1)
2
                   (17) 

Making 𝛼 the subject of the formulae, gives 

𝛼̅ = ∑{
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2  .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖}                                                                  (18)

𝑖  

 

Similarly, multiplying equation (11) and equation (14) by (𝑆 ,1) and (𝑆 ,0) respectively, gives 

(𝑆 ,1)∑ .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼(𝑆 ,0)(𝑆 ,1) + 𝛽(𝑆 ,1)
2
                                                           (19) 

(𝑆 ,0)∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛼(𝑆 ,0)(𝑆 ,1) + 𝛽(𝑆 ,0)(𝑆 ,2)                                   (20) 

Subtracting equation (20) from equation (19), gives 

(𝑆 ,1)∑ .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 − (𝑆 ,0)∑(𝑥𝑖 − 𝑥 ) .
𝑥𝑖 − 𝑥 

ℎ
/

𝑖  

𝑦𝑖 = 𝛽(𝑆 ,1)
2
− 𝛽(𝑆 ,0)(𝑆 ,2)                   (21) 

Making 𝛽 the subject of the formulae, gives 

𝛽̅ = ∑{
(𝑆 ,0(𝑥𝑖 − 𝑥 ) − 𝑆 ,1)

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2  .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖}                                                   (22)

𝑖  

 

Now it follows from equation (5) that 

𝑦̅𝑖 = 𝛼̅ + (𝑥𝑖 − 𝑥 )𝛽̅                                                                                                      (23) 

If the value assigned is zero, assuming that 𝛽̅ is a pre-assigned constant, then 

𝑦̅ = 𝛼̅                                                                                                                                (24) 

Therefore 

𝑚̅(𝑥 ) = ∑{
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2  .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖} 

𝑖  

 

             = ∑𝑤𝑖(𝑥 )𝑦𝑖

𝑖  

                                                                                                           (25) 

where 

𝑤𝑖(𝑥 ) =
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2  .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖   

Implying that the finite population total estimator 𝑇̅ for 𝑃 = 0 can be estimated using  

𝑇̅ = ∑𝑦𝑖

𝑖  

+ ∑𝑚̅(𝑥 )  

   

 

    = ∑𝑦𝑖

𝑖  

+ ∑{∑{
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2  .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖} 

𝑖  

}

   

      (26) 
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3. Properties of the Local Polynomial Regression Estimator 𝑻̅ for 𝑷 = 𝟎 

In deriving the properties of the local polynomial regression estimator, the following assumptions are made according to 

Ruppert and Wand (1994): 

(i) The 𝑥  variables lie in the interval (0, 1). 

(ii) The function 𝑚  (. ) is bounded and continuous on (0, 1). 

(iii) The kernel  (𝑡) is symmetric and supported on (−1, 1). Also  (𝑡) is bounded and continuous satisfying the 

following: ∫  (𝑥)
∞

 ∞
𝑑𝑥 = 1, ∫ 𝑥 (𝑥)

∞

 ∞
𝑑𝑥 = 0, ∫ 𝑥2 (𝑥)

∞

 ∞
𝑑𝑥 > 0, ∫  2𝑥

∞

 ∞
𝑑𝑥 < ∞, 𝑑𝑘 = ∫  2(𝑡)

∞

 ∞
𝑑𝑡 

(iv) The bandwidth ℎ is a sequence of values which depend on the sample size 𝑛 and satisfying ℎ → 0 and 𝑛ℎ → ∞, 

as 𝑛 → ∞. 

(v) The point 𝑥  at which the estimation is taking place satisfies ℎ < 𝑥 < 1 − ℎ. 

Fan (1993) imposed conditions on  (. ) and are only used for convenience in terms of technical arguments and thus can 

be relaxed.  

3.1 The Expectation of the Local Polynomial Regression Estimator 𝑇̅ for 𝑃 = 0 

The expectation of 𝑇̅ for 𝑃 = 0 is derived as,  

𝐸(𝑇̅) = ∑𝐸(𝑦𝑖) + ∑{∑{
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2 𝑘 .

𝑥𝑖 − 𝑥 

ℎ
/𝐸(𝑦𝑖)}

𝑖  

} 

   𝑖  

 

           = ∑𝑚(𝑥𝑖) + ∑{∑{
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2 𝑘 .

𝑥𝑖 − 𝑥 

ℎ
/𝑚(𝑥𝑖)}

𝑖  

}                               (27) 

      

 

Using the Taylor series expansion of the form, 

𝑚(𝑥𝑖) = 𝑚(𝑥 ) + ℎ𝑡𝑚 (𝑥 ) +
ℎ2𝑡2

2 
𝑚  (𝑥 ) +  ,                                           (28) 

Theorem 3 in Fan and Gijbels (1996) is such that under the conditions given in (i)-(v), allows 

𝐸(𝑇̅)  = ∑𝑚(𝑥𝑖) + ∑{∑{
𝑆 ,2𝑘 .

𝑥𝑖 − 𝑥 

ℎ
/

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2 (𝑚(𝑥 ) + ℎ𝑡𝑚 (𝑥 ) +

ℎ2𝑡2

2 
𝑚  (𝑥 ) +  )}

𝑖  

}

      

 

−∑{∑{
𝑆 ,1(𝑥𝑖 − 𝑥 )

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2 𝑘 .

𝑥𝑖 − 𝑥 

ℎ
/(𝑚(𝑥 ) + ℎ𝑡𝑚 (𝑥 ) +

ℎ2𝑡2

2 
𝑚  (𝑥 ) +  )}

𝑖  

}                     

   

 

= ∑𝑚(𝑥𝑖)

𝑖  

+ ∑{(
𝑆 ,0𝑆 ,2 − (𝑆 ,1)

2

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2)𝑚(𝑥 )} + ∑{(

𝑆 ,1𝑆 ,2 − 𝑆 ,1𝑆 ,2

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2)𝑚 (𝑥 )}                     

      

 

+∑{(
(𝑆 ,2)

2
− 𝑆 ,1𝑆 ,3

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2)

𝑚  (𝑥 )

2
}                                                                                                              

   

 

= ∑𝑚(𝑥𝑖)

𝑖  

+ ∑𝑚(𝑥 )

   

+ ∑{(
(𝑆 ,2)

2
− 𝑆 ,1𝑆 ,3

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2)

𝑚  (𝑥 )

2
} .                                                  (29) 

   

 

3.2 The Bias of the Local Polynomial Regression Estimator 𝑇̅ for 𝑃 = 0 

The bias of 𝑇̅ is given by 

 𝑖 𝑠(𝑇̅) = ∑{(
(𝑆 ,2)

2
− 𝑆 ,1𝑆 ,3

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2)

𝑚  (𝑥 )

2
}.                                                  (30) 

   

 

Therefore the asymptotic expression of the bias of the local polynomial regression estimator 𝑇̅ is 

 𝑖 𝑠   (𝑇̅) = ∑{
.𝑛2ℎ 𝑘2

2 + 𝑜(𝑛2ℎ )/𝑚′′(𝑥 )

2(𝑛2ℎ4𝑘2 + 𝑜(𝑛2ℎ ))
}  

   

                                                       

                       = ∑{
1

2
ℎ2𝑘2𝑚′′(𝑥 )}                                                                              (31)
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3.3 The Variance of the Local Polynomial Regression Estimator 𝑇̅ for 𝑃 = 0 

The variance of the local polynomial regression estimator 𝑇̅ is estimated using the variance of the error, thus 𝑉 𝑟(𝑇̅ −
𝑇) is derived as 

𝑉 𝑟(𝑇̅) = 𝑉 𝑟 {∑𝑦𝑖 + ∑𝑚̅(𝑥 ) − ∑𝑦𝑖

𝑖  

− ∑𝑦 

      𝑖  

}  

= 𝑉 𝑟 {∑∑𝑤𝑖(𝑥 )𝑦𝑖 − ∑𝑦 

      𝑖  

}     

                = ∑∑𝑤𝑖
2(𝑥 )

𝑖  

 2(𝑥𝑖)

   

+ ∑ 2(𝑥 )

   

                                                                   (32) 

where, 

𝑤𝑖(𝑥 ) =
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2  .

𝑥𝑖 − 𝑥 

ℎ
/.                                                             

The asymptotic expression for the variance of 𝑇̅ is given by the expression using the results of 𝑚̅(𝑥 ) that have been 

derived, thus 

𝑉 𝑟   (𝑇̅) =
1

𝑛ℎ
∑∑{ 2 .

𝑥𝑖 − 𝑥 

ℎ
/ 2(𝑥𝑖) .

𝑥𝑖 − 𝑥𝑖 1

ℎ
/}                                                   

𝑖     

 

                    = ∑
𝑑𝑘

𝑛ℎ
 2(𝑥 ).

   

                                                                                                (33) 

3.4 The MSE of the Local Polynomial Regression Estimator 𝑇̅ for 𝑃 = 0 

Theorem I in Fan (1993) allows that under condition (ii) gives, 

𝑀𝑆𝐸(𝑇̅) = * 𝑖 𝑠(𝑇̅)+2 + 𝑉 𝑟(𝑇̅)                                                                                                                                                

                 = {∑{(
(𝑆 ,2)

2
− 𝑆 ,1𝑆 ,3

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2)

𝑚  (𝑥 )

2
}

   

}

2

+ ∑∑𝑤𝑖
2(𝑥 )

𝑖  

 2(𝑥𝑖)

   

+ ∑ 2(𝑥 )                      (34)

   

 

The asymptotic expression for the MSE of the local polynomial regression estimator 𝑇̅ is given by 

𝑀𝑆𝐸   (𝑇̅) = {∑{
1

2
 ℎ2𝑘2𝑚′′(𝑥 )}

   

}

2

                                                           (35) 

Note that results for the local polynomial regression estimator of finite population total T̅ for P = 1 have been derived 

by Kikechi et al (2018). 

3.5 The Asymptotic Relative Efficiency 

The relative efficiency of two procedures is the ratio of their efficiencies, but it is often possible to use the asymptotic 

relative efficiency, defined as the limit of the relative efficiencies as the sample size grows, as the principal measure of 

comparison. Let 𝑇̅0 be the local polynomial regression estimator of finite population total for P = 0 and 𝑇̅1 be the 

local polynomial regression estimator of finite population total for P = 1 as studied by Kikechi et al (2018). 

If 𝑇̅0 and 𝑇̅1 are both unbiased estimators of 𝑇, then the relative efficiency of 𝑇̅0 to 𝑇̅1 is given by, 

𝐸𝑓𝑓(𝑇̅0, 𝑇̅1) =
𝑉 𝑟(𝑇̅1)

𝑉 𝑟(𝑇̅0)
 .                                                                                    (36) 

If 𝑇̅0 and 𝑇̅1 are both asymptotically unbiased estimators of 𝑇, then the asymptotic relative efficiency of 𝑇̅0 to 𝑇̅1 is 

given by, 

  𝐸(𝑇̅0, 𝑇̅1) =    
 →∞

𝐸𝑓𝑓(𝑇̅0, 𝑇̅1) =    
 →∞

𝑉 𝑟(𝑇̅1)

𝑉 𝑟(𝑇̅0)
 .                                                           (37) 
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Therefore, the estimators of finite population totals for 𝑇̅0 and 𝑇̅1  are respectively given by, 

𝑇̅0 = ∑𝑦𝑖

𝑖  

+ ∑{∑{
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2  .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖} 

𝑖  

}

   

 .                             (38) 

𝑇̅1 = ∑ 𝑖 + ∑{∑{
.𝑆 ,2 − 𝑆 ,1(𝑥𝑖 − 𝑥 )/

(𝑆 ,0)(𝑆 ,2) − (𝑆 ,1)
2 𝑘 .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖}

𝑖  

}                                          

   𝑖  

 

      +∑{(
𝑥𝑖 − 𝑥 

𝑆 ,0𝑆 ,2 − (𝑆 ,1)
2)∑{(𝑆 ,0(𝑥𝑖 − 𝑥 ) − 𝑆 ,1)𝑘 .

𝑥𝑖 − 𝑥 

ℎ
/ 𝑦𝑖}

   

}

   

.                          (39) 

The variance of the local polynomial regression estimator 𝑇̅0 is given by, 

𝑉 𝑟(𝑇̅0)      = ∑∑𝑤𝑖
2(𝑥 )

𝑖  

 2(𝑥𝑖)

   

+ ∑ 2(𝑥 )                                                      (40)

   

 

The asymptotic expression for the variance of the local polynomial regression estimator 𝑇̅0 is estimated by, 

𝑉 𝑟   (𝑇̅0) = ∑
𝑑𝑘

𝑛ℎ
 2(𝑥 )

   

                                                                                 (41) 

The variance of the local polynomial regression estimator 𝑇̅1 is given by, 

𝑉 𝑟(𝑇̅1   )  = ∑∑𝑤𝑖
2(𝑥 )

𝑖  

 2(𝑥𝑖)

   

+ ∑(𝑥𝑖 − 𝑥 )
2

   

∑𝑤𝑖
 2(𝑥 ) 

2(𝑥𝑖) + ∑ 2(𝑥 )

   

                      (42)

𝑖  

 

The asymptotic expression for the variance of the local polynomial regression estimator 𝑇̅1 is estimated by, 

𝑉 𝑟   (𝑇̅1) = ∑
𝑑𝑘

𝑛ℎ
 2(𝑥 )

   

 .                                                                               (43) 

Note that in Kikechi e tal (2017), 𝑉 𝑟   .𝑚̅𝐿𝐿(𝑥 )/ =
𝑑𝑘

 ℎ
 2(𝑥 ) and 𝑉 𝑟   .𝑚̅𝑁𝑊(𝑥 )/ =

𝑑𝑘

 ℎ
 2(𝑥 ) 

Thus the asymptotic relative efficiency of the local polynomial regression estimator 𝑇̅0 to the local polynomial regression 

estimator 𝑇̅1 derived by Kikechi et al (2018) is given by, 

  𝐸(𝑇̅0, 𝑇̅1) =    
 →∞

𝐸𝑓𝑓(𝑇̅0, 𝑇̅1) =    
 →∞

{
𝑉 𝑟   (𝑇̅1)

𝑉 𝑟   (𝑇̅0)
} =    

 →∞
{
∑

𝑑𝑘

𝑛ℎ
 2(𝑥 )   

∑
𝑑𝑘

𝑛ℎ
 2(𝑥 )   

} = 1 .                                        (44) 

4. Simulation Study 

4.1 Description of the Data Sets 

In this section, simulation experiments are carried out to evaluate the performance of the estimators. The data are 

generated from the regression model of the form, 

𝑌𝑖 = 𝑚(𝑋𝑖) +  2(𝑋𝑖) 𝑖             𝑖 = 1,2, … , 𝑛                                                          (45) 

The data sets are obtained by simulation using specific models having relations of the form, 

 𝑦𝑖 = 1 + 2(𝑥 − 0.5) +  𝑖                                                                             (46) 

 𝑦𝑖 = 1 + 2(𝑥 − 0.5)2 +  𝑖                                                                           (47) 

𝑦𝑖 = 1 + 2(𝑥 − 0.5) +     (−200(𝑥 − 0.5)2 +  𝑖                                           (48)  

for the linear, quadratic and bump populations respectively. The 𝑥𝑖′𝑠 are generated as independent and identically 

distributed (iid) uniform (0, 1) random variables. The errors are assumed to be independent and identically distributed 

(iid) random variables with mean 0 and constant variance. The analysis and comparison in terms of performance is based 

on the local polynomial regression estimator 𝑇̅0 and the local polynomial regression estimator 𝑇̅1. The Epanechnicov 

kernel given is used for kernel smoothing on each of the populations due to its simplicity and easy computations using 

well designed computer programs and is defined as,  
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3

4√5
(1 −

1

5
𝑡2) |𝑡| < √5                                                                             (49) 

The bandwidths are data driven and are determined by the least squares cross validation method. For each of the three 

artificial populations of size 200, samples are generated by simple random sampling without replacement using sample 

size 𝑛 = 60. For each combination of mean function, standard deviation and bandwidth, 500 replicate samples are 

selected and the estimators calculated. 

 

Table 1. Computational Formulae for the Local Polynomial Regression Estimators 𝑇̅0 and  𝑇̅1 

                  Estimator               Formulae 

 𝑃 𝐸, 𝑇̅0                                                 𝑇̅0 = ∑𝑌𝑖

𝑖  

+ ∑𝑚̅0

   

(𝑥 ) 

 𝑃 𝐸, 𝑇̅1                                                 𝑇̅1 = ∑𝑌𝑖

𝑖  

+ ∑𝑚̅1

   

(𝑥 ) 

 

 

Figure 1. Scatter Diagram for the Linear Population 

 

 

Figure 2. Scatter Diagram for the Quadratic Population 
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Figure 3. Scatter Diagram for the Bump Population 

 

4.2 Results 

The results of the bias and mean squared error (MSE) for the local polynomial regression estimator 𝑇̅0 for 𝑃 = 0 and the 

local polynomial regression estimator 𝑇̅1 for 𝑃 = 1 in the linear, quadratic and bump populations are provided in the 

table below. 

 

Table 2. The Bias and MSE for 𝑇̅0 and 𝑇̅1 in the Three Artificial Populations 

 Linear  Quadratic  Bump  

 𝑻̅𝟎 𝑻̅  𝑻̅𝟎 𝑻̅  𝑻̅𝟎 𝑻̅  

BIAS 5.507608 3.777348 4.7372 0.45116 5.293896 0.4187236 

MSE 100.8874 15.40735 18.40769 0.1601695 43.9272 0.1896261 

 

5. Discussion 

In estimating 𝑚̅(𝑥 ) for the local polynomial regression estimator 𝑇̅0, 𝛽̅ has been assumed to be a pre-assigned constant 

and in particular the value assigned is zero. It has therefore been shown in section 2 that the estimator 𝑚̅(𝑥 ) is biased 

leading to a biased estimation of the finite population total. On the other hand, when estimating 𝑚̅(𝑥 ) for the local 

polynomial regression estimator 𝑇̅1, the value of 𝛽̅ is not pre-assigned but rather determined by the set of data provided 

and thus minimizing the bias. With regard to asymptotic relative efficiency, there is no difference in the performance of 

the local polynomial regression estimator 𝑇̅0 studied in this paper and the local polynomial regression estimator 𝑇̅1 

studied by Kikechi et al (2018). The reason for this being that their ratio converges to 1 as 𝑛 becomes large, see 

equation (44). This therefore implies that the estimators are asymptotically equivalently efficient. However, it is 

observed from simulation experiments conducted that the biases and MSEs computed in table 2 for the local polynomial 

regression estimator 𝑇̅1 are small in all the three populations. The results therefore indicate that the local polynomial 

regression estimator 𝑇̅1  is superior and dominates the local polynomial regression estimator 𝑇̅0  for the linear, 

quadratic and bump populations. 

6. Conclusion 

In this article the local polynomial regression estimators 𝑇̅0 and 𝑇̅1 of finite population totals have been studied in a 

model based framework. Analytically, variance comparisons are explored using the local polynomial regression 

estimator 𝑇̅0 for P = 0 and the local polynomial regression estimator 𝑇̅1 for P = 1 in which results indicate that the 

estimators are asymptotically equivalently efficient. Simulation experiments carried out in terms of the biases and MSEs 

show that the local polynomial regression estimator 𝑇̅1 outperforms the local polynomial regression estimator 𝑇̅0 in 

all the three artificial populations and therefore, 𝑇̅1 is the most efficient estimator.  
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