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Abstract

A new generalized distribution called the log-logistic modified Weibull (LLoGMW) distribution is presented. This distri-
bution includes many submodels such as the log-logistic modified Rayleigh, log-logistic modified exponential, log-logistic
Weibull, log-logistic Rayleigh, log-logistic exponential, log-logistic, Weibull, Rayleigh and exponential distributions as
special cases. Structural properties of the distribution including the hazard function, reverse hazard function, quantile
function, probability weighted moments, moments, conditional moments, mean deviations, Bonferroni and Lorenz curves,
distribution of order statistics, L-moments and Rényi entropy are derived. Model parameters are estimated based on the
method of maximum likelihood. Finally, real data examples are presented to illustrate the usefulness and applicability of
the model.

Keywords: Generalized Distribution, Log-logistic Distribution, Modified Weibull Distribution, Log-logistic Modified
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1. Introduction

Distribution theory because of its widespread applications in many fields such as finance, economics, physics, just to
cite a few, has spawned the statistical literature. From univariate to multivariate distributions, a lot of important new
contributions have been presented. Such contributions include those of Eugene, Famoye & Lee (2002) dealing with the
beta-normal distribution, Oluyede & Yang (2015) on the beta generalized Lindley distribution, Oluyede, Huang & Pararai
(2014) on the gamma-Dagum distribution, as well general family of univariate distributions generated from Weibull
distribution introduced by Gurvich, DiBenedetto & Ranade (1997). The cumulative distribution function (cdf) given by
Gurvich et al. (1997) is

G(x;α, θ) = 1 − exp[−αH(x; θ], x ∈ C, α > 0, (1)

where C is a subset of R and H(x; θ) is a non-negative monotonically increasing function that depends on the vector of
parameters θ. The corresponding probability density function (pdf) is given by

g(x;α, θ) = α exp[−αH(x; θ)]h(x; θ), (2)

where h(x; θ) is the derivative of H(x; θ). Different choices of the function H(x; θ) lead to different models. Such choices
are for example, H(x; θ) = x, for the exponential distribution, H(x; θ) = x2, for the Rayleigh distribution, H(x; θ) =
log(x/k), for the Pareto distribution, and H(x; θ) =

(
exp(βx) − 1

)
/β, for the Gompertz distribution.

Several useful ways for generating new probability distributions from classic ones to relative new distributions have been
proposed in the literature. Nelson (1982) stated that distributions with bathtub-shaped failure rate are often complex
and difficult to model. One example of such a distribution was proposed by Hjorth (1980). To lessen the complexity
of these distribution, while Rajarshi and Rajarshi (1988) presented a revised version of these distributions, Haupt and
Schabe (1992) on the other hand put forward a new lifetime model with bathtub-shaped failure rates. These models are
unfortunately not sufficient enough to address various practical situations. Then, new classes of distributions based on
modified versions of the Weibull distribution were presented to satisfy non-monotonic failure rate. For such distributions,
the reader can refer to Mudholkar and Srivastava (1993), and Pham and Lai (2007) for more details. These authors in
their papers, summarized some generalizations of Weibull distribution. Additional generalized distributions include the
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exponentiated Weibull (EW) (Gupta and Kundu (2001)), the modified Weibull (MW) (Lai, Xie & Murthy (2003)) and
the beta exponential (BE) (Nadarajah & Kotz (2005)). Recent extensions are the generalized modified Weibull (GMW)
(Carrasco, Ortega & Cordeiro (2008)), the beta modified Weibull (BMW) (Nadarajah Cordeiro & Ortega (2011)), (Siva,
Ortega & Cordeiro (2010)), the Weibull-G family (Bourguignon, Silva & Cordeiro (2014)), the gamma-exponentiated
Weibull (GEW) (Pinho, Cordeiro & Nobre (2012)), gamma Weibull-G family (Oluyede, Pu, Makubate & Qui (2018)) and
the gamma generalized modified Weibull (GGMW) (Oluyede, Huang & Yang (2015)). A new statistical distribution for
characterizing the random strength of brittle materials was developed in Gurvich et al. (1997).

In this paper, we propose and study a new generalized distribution called the log-logistic modified Weibull distribution.
The primary motivations for considering this new distribution are the advantages it offers with respect to having hazard
functions that exhibits increasing, decreasing and bathtub shapes, as well as the versatility and flexibility in modeling
lifetime data. This new distribution inherits these desirable properties and also has quite a variety of shapes.

There is another added advantage to this model, in that it also has added dispersion parameter, depending on the overall
form that accounts for the scale of the underlying random variable. This distribution also has exponential dumping
in the upper tail making the distribution suitable for modeling samples that display power behavior for intermediate
observations and decrease in tail probability for large observations or beyond a certain threshold or specified value. Our
proposed new distribution also generalizes the log-logistic and modified Weibull distributions. Some structural properties
of this distribution are obtained and based on the method of maximum likelihood, estimates of the model parameters are
presented.

To this end, the remainder of the paper is organized as follows. Section 2 is concerned with the presentation of the
generalized distribution, log-logistic modified Weibull distribution as well as it’s hazard and reverse hazard functions,
quantile function, and various sub-models. In section 3, probability weighted moments, moments, conditional moments
and moment generating function are presented. Mean deviations, Bonferroni and Lorenz curves are derived in section 4.
Section 5 is concerned with Rényi entropy, distribution of order statistics and L-moments. Estimates of model parameters
and comparisons with other models are presented in section 6. A Monte Carlo simulation study is conducted to examine
the bias and mean square error of the maximum likelihood estimates in section 7. Estimation with censored samples are
given in section 8. Applications of the proposed model to a real data are given in section 9. The paper end with concluding
remarks in section 10.

2. Generalized Extended Weibull Distribution

The generalized class of distributions referred to as the generalized extended Weibull (GEW) distribution is given by

G(x; θ, ξ) = 1 − B(x; ξ) exp(−αH(x; θ)), (3)

where B(x; ξ) > 0 is a continuous function, H(x; θ) is a non-negative monotonically increasing function that depends on
the vector of parameters θ, and ξ is a vector of parameters corresponding to the function B(x; ξ). Putting H(x; θ) = xβeλx,
the generalized extended modified Weibull distribution is obtained. For B(x; ξ) = (1 + ( x

s )c)−1 and H(x; θ) = xβeλx, we
get the log logistic modified Weibull distribution. The choice of the functions B(x; ξ) and H(x; θ) including in particular,
H(x; θ) = xβeλx, defines a large class of distributions with applications in several areas including reliability, biometry,
economics, finance, medicine and survival analysis to mention just a few areas. To avoid potential problems or issues
with over parametrization, the parameter vectors ξ and θ can be restricted to two component vectors, respectively.

We can also have the following motivation for the model under study. Consider a series system and assume that the lifetime
of the components follow the log-logistic and modified Weibull distributions with reliability functions R1(t) = (1+ ( t

s )c)−1

and R2(t) = e−αtβeλt , respectively. The reliability R(t) = P(T > t) of the system is given by R(t) =
∏2

i=1 Ri(t). This leads
to the log-logistic modified Weibull reliability function. Note that in some context, a series model is referred to as a
competing risk model.

2.1 The Log-Logistic Modified Weibull Distribution

Some statistical properties of the new log-logistic modified Weibull (LLoGMW) distribution, including pdf, cdf, hazard
and reverse hazard functions are presented. Plots of the hazard rate function for selected values of the model parameters
are also given. First of all, we present the log-logistic and modified Weibull distributions. The log-logistic distribution
attract special attention because it has varying degrees of skewness and kurtosis. Furthermore, this distribution have
applications in a wide variety of areas in statistics and applied mathematics including modeling events associated with
fracture roughness, life testing, operational risk, option market price distributions, forestry, meteorology, modeling crop
prices, software reliability growth, and reliability analysis. The cdf of the log-logistic distribution is given by

FLLoG (x) = 1 −
(
1 +

( x
s

)c)−1
, for s, c, and x ≥ 0. (4)
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The parameters c and s are shape and scale parameters, respectively. The log-logistic distribution is a special case of the
Burr XII distribution. See Burr (1942), (1973) for additional details.

The modified Weibull (MW) (Lai et al. (2003)) distribution is given by

FMW (x;α, β, λ) = 1 − exp(−αxβeλx), x ≥ 0, α > 0, β > 0, λ ≥ 0. (5)

The corresponding pdf is given by

fMW (x;α, β, λ) = αxβ−1eλx(β + λx) exp(−αxβeλx), (6)

for x ≥ 0, α > 0, β > 0, and λ ≥ 0. It is noted that α controls the scale of the distribution, β controls the shape, whereas
λ can be considered to be an accelerating factor in the imperfection time and a factor of fragility in the survival of the
individual as time increases. The Weibull distribution is obtained by setting λ = 0. This distribution is well known and
has been extensively used for modeling data in several areas including reliability.

Now, consider the log-logistic modified Weibull (LLoGMW) distribution obtained by setting H(x; θ) = xβeλx and B(x; ξ) =
(1 + ( x

s )c)−1, (or via the competing risk model), to obtain

GLLoGMW (x) = 1 −
(
1 +

( x
s

)c)−1
exp(−αxβeλx), (7)

for s, c, α, β > 0, λ ≥ 0 and x ≥ 0. The corresponding LLoGMW pdf is given by

gLLoGMW (x) = e−αxβeλx
[
1 +

( x
s

)c]−1{
αxβ−1eλx(β + λx) +

cxc−1

(sc + xc)

}
, (8)

s, c, α, β > 0, λ ≥ 0 and x ≥ 0. For simplicity, we suppress the index-name on GLLoGMW and gLLoGMW so that G and g now
stand for the cdf and pdf of the LLoGMW, respectively.

As shown in the plot below, depending on the values of the parameters, the density and hazard functions can exhibit
different behavior. Figure 1 displays graphs of the pdf for selected values of the model parameters. The plot suggests that
the LLoGMW pdf can be right skewed or decreasing for the selected values of the parameters.

Figure 1. PDF Plots of the LLoGMW Distribution
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2.2 Some New and Known Sub-models

Under the considered choice of the functions B(x; ξ) and H(x; θ), several new and well known distributions can be ob-
tained. For the LLoGMW distribution, the sub-models include the following distributions:

• If β = 1, we obtain the log-logistic modified exponential (LLoGME) distribution.

• If β = 2, we obtain the log-logistic modified Rayleigh (LLoGMR) distribution.

• If λ = 0, we obtain the log-logistic Weibull (LLoGW) distribution.

• If λ = 0, and β = 1, we obtain the log-logistic exponential (LLoGE) distribution.

• When α→ 0+, we have the log-logistic (LLoG) distribution.

• If λ = 0, and β = 2, we have the log-logistic Rayleigh (LLoGR) distribution.

• If c = 1, s→ ∞, and λ = 0, then we obtain Weibull (W) distribution.

• If c = 1, s→ ∞, λ = 0, and β = 1, then we have the exponential (E) distribution.

• If c = 1, s→ ∞, λ = 0, and β = 2, then we have Rayleigh (R) distribution.

• If c = 1, then the LLoGMW cdf reduces to the four parameter distribution with cdf given by

G(x) = 1 −
(
1 +

( x
s

))−1
exp(−αxβeλx), (9)

for s, α, β > 0, λ ≥ 0, and x ≥ 0.

• If c = β = 1 and λ = 0, then the LLoGMW cdf reduces to the two parameter distribution given by

G(x) = 1 −
(
1 +

( x
s

))−1
exp(−αx), (10)

for s, α > 0, and x ≥ 0.

• If c = 1, λ = 0 and β = 2, then the LLoGMW cdf reduces to the two parameter model with the cdf

G(x) = 1 −
(
1 +

( x
s

))−1
exp(−αx2), (11)

for s, α > 0, and x ≥ 0.

2.3 Hazard and Reverse Hazard Functions

We present the hazard and reverse hazard functions of the LLoGMW distribution. The hazard and reverse hazard functions
of the LLoGMW distribution are respectively given by

hG (x) =

{
αxβ−1eλx(β + λx) +

(
1 +

( x
s

)c)−1 c
s

( x
s

)c−1}
= hFMW

(x) + hFB
(x),

and

τG (x) =

[
1 −

(
1 +

( x
s

)c)−1
e−αxβeλx

]−1
e−αxβeλx

[
1 +

( x
s

)c]−1{
αxβ−1eλx(β + λx) +

cxc−1

(sc + xc)

}
(12)

for x ≥ 0, s, c, α, β > 0, λ ≥ 0, where hFMW
(x) and hFB

(x) are the hazard functions of the modified Weibull and Burr XII
distributions. The limiting behavior of the hazard function of the LLoGMW distribution can be readily established and is
as follows:
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• Note that,

lim
x→0

hG (x) =



α + 1
s , c = 1, β = 1,

1
s , c = 1, β > 1,
∞, 0 < c ≤ 1, 0 < β ≤ 1,
α, c > 1, β = 1,
0, c > 1, β > 1.

• For β > 0, and for each c > 0, limx→∞ hG (x) = ∞.

Figure 2 displays graphs of the hazard function for different choice of model parameters. The graphs exhibit increasing,
bathtub and upside down bathtub followed by bathtub shapes for the selected values of the model parameters. This
very attractive flexibility makes the LLoGMW hazard function useful and suitable for non-monotonic empirical hazard
behaviors which are far more likely to be encountered in practice or real life situations.

Figure 2. Hazard Function Plots of the LLoGMW Distribution

2.4 Quantile Function

The quantile function of the LLoGMW distribution is obtained by inverting G(x) = u, where 0 ≤ u ≤ 1, and

G(x) = 1 −
(
1 +

( x
s

)c)−1
e−αxβeλx

. (13)

This is equivalent to solving the non-linear equation

αxβeλx + log
(
1 +

( x
s

)c)
+ log(1 − u) = 0, (14)

which can be done using numerical methods. Consequently, random number can be generated based on equation (14).
Some quantile results for selected parameters are given in Table 1.
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Table 1. Table of Quantiles

(s, c, α, β, λ)
u (2,0.3,0.4,1,2) (4,1,3,5,4) (1,0.5,0.5,3,0.1) (0.5,5,0.2,5,5) (0.5,2,2,0.5,1)

0.1 0.001294753 0.3112413 0.01232197 0.3200301 0.002746775
0.2 0.017397929 0.3905252 0.06242341 0.3752197 0.012095361
0.3 0.077807571 0.4320222 0.18008480 0.4163027 0.029402413
0.4 0.188905028 0.4621197 0.38289709 0.4524904 0.055597583
0.5 0.316724995 0.4872344 0.60513838 0.4871860 0.090950913
0.6 0.440165155 0.5100256 0.80003516 0.5226001 0.135980227
0.7 0.558978966 0.5323736 0.97830995 0.5608002 0.192883778
0.8 0.681372195 0.5563050 1.16080064 0.6046572 0.268591470
0.9 0.827661482 0.5861878 1.38472324 0.6608587 0.387162609

3. Probability Weighted Moments, Moments, Conditional Moments and Moment Generating Function

We now derive probability weighted moments (PWMs) (Greenwood, Landwehr, Matalas, and Willis (1997)), moments,
moment generating function and conditional moments for the LLoGMW distribution. We also present the PWMs for
the special case when λ = 0, that is, the PWMs for the log-logistic Weibull distribution. The PWMs of the submodels
given in section 2 can be readily obtained from those of the generalized distribution. Moments are necessary and crucial
in any statistical analysis, especially in applications. Moments can be used to study the most important features and
characteristics of a distribution (e.g., tendency, dispersion, skewness and kurtosis). The probability weighted moments
(PWMs) of the LLoGMW distribution is given by

E
[
XrGl(X)G

m
(X)

]
=

∫ ∞

0
xrGl(x)G

m
(x)g(x)dx

=

∫ ∞

0
xr(1 −G(x))lG

m
(x)g(x)dx

=

∞∑
j=0

(−1) jΓ(l + 1)E(Xr(G(X)) j+m)
Γ(l + 1 − j)Γ( j + 1)

,

where we have used the binomial expansion (1 −G(x))l =
∑∞

j=0
(−1) jΓ(l+1)[G(x)] j

Γ(l+1− j)Γ( j+1) . Note that

E
[
Xr(G(X)) j+m]

=

∫ ∞

0
xr

(
1 +

( x
s

)c)−(m+ j)

e−(m+ j)αxβeλx
(
1 +

( x
s

)c)−1

× e−αxβeλx
[ c

s

( x
s

)c−1 (
1 +

( x
s

)c)−1

+ αxβ−1eλx(β + λx)
]
dx

=

∞∑
k=0

(−1)k(m + j + 1)k

k!

∫ ∞

0
xr

(
1 +

( x
s

)c)−(m+ j+1)

(αxβeλx)k

×
[ c

s

( x
s

)c−1 (
1 +

( x
s

)c)−1

+ αxβ−1eλx(β + λx)
]
dx

=

∞∑
k=0

(−1)k(m + j + 1)kαk

k!

[ c
sc

∫ ∞

0
xr+kβ+c−1

(
1 +

( x
s

)c)−(m+ j+2) ∞∑
p=0

(λkx)p

p!
dx

+ α

∫ ∞

0
xr+(k+1)β−1

(
1 +

( x
s

)c)−(m+ j+1)

×
∞∑

p=0

(λ(k + 1)x)p

p!
(β + λx)dx

]
.
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Now, by setting y = (1 + (x/s)c)−1, then x = s
(
(1 − y)/y

)1/c, and dx = − s
c y−2

(
1−y

y

)(1−c)/c
dy, so that

E(Xr(G(X)) j+m) =

∞∑
k=0

(−1)k((m + j + 1)α)k

k!

[ ∞∑
p=0

(kλ)p

p!
csr+kβ+c+p−1

sc

s
c

×
∫ 1

0
ym+ j− (r+kβ+p)

c (1 − y)
r+kβ+p

c dy + α
∞∑

p=0

(λ(k + 1))p

p!

(
βsr+β(k+1)+p

( s
c

)
×

∫ 1

0
ym+ j− (r+β(k+1)+p+1)

c (1 − y)
r+β(k+1)+p+1

c −1dy + λsr+β(k+1)+p
( s

c

) ∫ 1

0
ym+ j− (r+β(k+1)+p+2)

c (1 − y)
r+β(k+1)+p+2

c −1dy
)]

=

∞∑
k=0

(−1)k(α(m + j + 1))k

k!

[ ∞∑
p=0

(kλ)p

p!
sr+kβ+pB

(
m + j + 1 − (r + kβ + p)

c
,

r + kβ + p + c
c

)
+ α

∞∑
p=0

(λ(k + 1))p

p!

(
βsr+β(k+1)+p+1

c
B

(
m + j + 1 − (r + β(k + 1) + p + 1)

c
,

r + β(k + 1) + p + 1
c

)
+
λsr+β(k+1)+p+1

c
B

(
m + j + 1 − (r + β(k + 1) + p + 2)

c
,

r + β(k + 1) + p + 2
c

))]
,

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt is the beta function.

Consequently, the PWMs of the LLoGMW distribution E
[
XrGl(X)G

m
(X)

]
is given by

E
[
XrGl(X)G

m
(X)

]
=

∞∑
j,k=0

(−1) j+kΓ(l + 1)[α( j + m + 1)]k

Γ(l + 1 − j)Γ( j + 1)k!

[ ∞∑
p=0

(kλ)p

p!
B

(
j + m + 1 − (r + kβ + p)

c
,

r + kβ + p + c
c

)
+
α

c

∞∑
p=0

(λ(k + 1))p

p!

(
βsr+β(k+1)+p+1B

(
m + j + 1 − (r + β(k + 1) + p + 1)

c
,

r + β(k + 1) + p + 1
c

)
+ λsr+β(k+1)+p+2B

(
m + j + 1 − (r + β(k + 1) + p + 2)

c
,

r + β(k + 1) + p + 2
c

))]
.

Special Cases: For λ = 0.

• When l = m = 0, we obtain the rth non-central moments given by

E(Xr) =

∞∑
k=0

(−1)kαk skβ+r

k!

(
αβsβ

c
B

(
1 − kβ + β + r

c
,

kβ + β + r
c

)
+B

(
1 − kβ + r

c
, 1 +

kβ + r
c

))
.

• When r = l = 0, we have

E
[
G

m
(X)

]
=

∞∑
k=0

(−1)k[α(m + 1)]k skβ

k!

[
B

(
m + 1 −

(kβ
c

)
,

kβ + c
c

)
+
αβsβ

c
B

(
m + 1 −

( kβ + β
c

)
,

kβ + β
c

)]
.

• When l = 0, we have, the LLOGMW PWMs reduces to

E
[
XrG

m
(X)

]
=

∞∑
k=0

(−1)k[α(m + 1)]k sr+kβ

k!

[
B

(
m + 1 −

( r + kβ
c

)
,

r + kβ + c
c

)
+
αβsβ

c
B

(
m + 1 −

( r + kβ + β
c

)
,

r + kβ + β
c

)]
.

• When m = 0, the LLOGMW PWMs reduces to

E
[
XrGl(X)

]
=

∞∑
j,k=0

(−1) j+kΓ(l + 1)[α( j + 1)]k sr+kβ

Γ(l + 1 − j)Γ( j + 1)k!

×
[
B

(
j + 1 −

( r + kβ
c

)
,

r + kβ + c
c

)
+
αβsβ

c
B

(
j + 1 −

( r + kβ + β
c

)
,

r + kβ + β
c

)]
.

• When r = m = 0, we have

E
[
Gl(X)

]
=

∞∑
j,k=0

(−1) j+kΓ(l + 1)[α( j + 1)]k skβ

Γ(l + 1 − j)Γ( j + 1)k!

[
B

(
j + 1 −

(kβ
c

)
,

kβ + c
c

)
+
αβsβ

c
B

(
j + 1 −

( kβ + β
c

)
,

kβ + β
c

)]
.
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Table 2. Table of Moments

(s, c, α, β, λ)
(2,2,3,0.5,2) (4,3,5,4,0.1) (1,0.5,0.5,2,2) (0.3,3,1,3,3) (0.5,2,2,1,1)

E(X) 0.0845717313 0.5957667 0.40712891 0.306747950 0.24692714
E(X2) 0.0172422199 0.3822143 0.25555966 0.113004619 0.09264615
E(X3) 0.0048313719 0.2597219 0.18148193 0.047702328 0.04410431
E(X4) 0.0016290716 0.1849511 0.13856127 0.022324986 0.02478445
E(X5) 0.0006243745 0.1370070 0.11147059 0.011309950 0.01579174
E(X6) 0.0002636515 0.1050065 0.09345177 0.006095448 0.01111651

SD 0.1004482064 0.1651554 0.29967601 0.137514777 0.17796948
CV 1.1877279192 0.2772149 0.73607156 0.448298926 0.72073682
CS 1.6443274503 -0.1086273 0.16019247 0.552594423 0.99089869
CK 5.7084607783 2.7524812 1.82914011 2.885772519 3.95001299

• When r = 0, we have

E
[
Gl(X)G

m
(X)) =

∞∑
j,k=0

(−1) j+kΓ(l + 1)[α( j + m + 1)]k skβ

Γ(l + 1 − j)Γ( j + 1)k!

×
[
B

(
j + m + 1 −

(kβ
c

)
,

kβ + c
c

)
+
αβsβ

c
B

(
j + m + 1 −

( kβ + β
c

)
,

kβ + β
c

)]
.

Recall that from the Taylor’s series expansion, the function etx =
∑∞

j=0(1/ j!)(tx) j. Thus, the moment generating function (MGF) of
the LLoGMW distribution is given by MX(t) = E(etX) =

∑∞
n=0(tn/n!)E(Xn), where E(Xn) is the nth raw moment of the LLoGMW

distribution and is given above. Some moments and related measures including standard deviation (SD), coefficients of variation (CV),
coefficients of skewness (CS) and coefficients of kurtosis (CK) for selected values of the model parameters are given in Table 2, where
S D = (µ2 − µ2

1)1/2, CV = (µ2/µ
2
1 − 1)1/2, CS = (µ3 − 3µ1µ2 + 2µ3

1)/(µ2 − µ2
1)3/2, and CK = (µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1)/(µ2 − µ2

1)2.

3.1 Conditional Moments

When it comes to lifetime models, it is often of interest to find the conditional moments and the mean residual lifetime function. The
rth conditional moments for LLoGMW distribution is given by

E(Xr |X > t) =
1

G(t)

∫ ∞

t
xrg(x)dx =

1

G(t)

∫ ∞

t
xr
∞∑

k=0

(−1)kαk xβkekλx

k!

[
1 +

( x
s

)c]−1

×
[ c

s

( x
s

)c−1 (
1 +

( x
s

)c)
+ αxβ−1eλx(β + λx)

]
dx (15)

=
1

G(t)

[ ∞∑
k,m=0

c
sc

(−1)k(kλ)mαk

k!m!

∫ ∞

t
xr+kβ+m+c−1

[
1 +

( x
s

)c]−2

dx

+

∞∑
k,m=0

c
sc

(−1)k((k + 1)λ)mαk

k!m!

∫ ∞

t
xr+kβ+m+c−1(β + λx)

[
1 +

( x
s

)c]−1

dx
]
.

By setting y = (1 + (x/s)c)−1, we have

E(Xr |X > t) =
1

G(t)

[ ∞∑
k,m=0

(−1)k+1(kλ)mαk

k!m!
sr+kβ+m

∫ (1+(t/s)c)−1

0
y1−

(
r+kβ+m

c

)
−1(1 − y)

(
r+kβ+m+c

c

)
−1dy

+

∞∑
k,m=0

(−1)k+1((k + 1)λ)mαk+1β

k!m!
sr+kβ+β+m

c

∫ (1+(t/s)c)−1

0
y1−

(
r+kβ+β+m

c

)
−1(1 − y)

(
r+kβ+β+m

c

)
−1dy

+

∞∑
k,m=0

(−1)k+1((k + 1)λ)mαk+1λ

k!m!
sr+kβ+β+m+1

c

∫ (1+(t/s)c)−1

0
y1−

(
r+kβ+β+m+1

c

)
−1(1 − y)

(
r+kβ+β+m+1

c

)
−1dy

]
.
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Consequently, the rth conditional moment of the LLoGMW distribution is given by

E(Xr |X > t) =
1

G(t)

[ ∞∑
k,m=0

(−1)k+1(kλ)mαk

k!m!
sr+kβ+mB(1+(t/s)c)−1

(
1 −

(
r + kβ + m

c

)
,

(
r + kβ + m + c

c

) )
+

∞∑
k,m=0

(−1)k+1((k + 1)λ)mαk+1β

k!m!
sr+kβ+β+m

c
B(1+(t/s)c)−1

(
1 −

(
r + kβ + β + m

c

)
,

(
r + kβ + β + m

c

) )
+

∞∑
k,m=0

(−1)k+1((k + 1)λ)mαk+1λ

k!m!
sr+kβ+β+m+1

c
B(1+(t/s)c)−1

(
1 −

(
r + kβ + β + m + 1

c

)
,

(
r + kβ + β + m + 1

c

) )]
,

where Bx(a, b) =
∫ x

0
ya−1(1 − y)b−1dy is the incomplete beta function. The mean residual lifetime function of the LLoGMW distribu-

tion is given by E(X|X > t) − t.

4. Mean Deviations

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean and median.
These are known as the mean deviation about the mean and the mean deviation about the median are defined by δ1(x) =

∫ ∞
0
|x−µ|g(x)dx

and δ2(x) =
∫ ∞

0
|x − M|g(x)dx, respectively, where µ = E(X) and M =Median (X). The measures δ1(x) and δ2(x) can be calculated

using the relationships δ1(x) = 2µG(µ)− 2µ+ 2
∫ ∞
µ

xg(x)dx and δ2(x) = −µ+ 2
∫ ∞

M
xg(x)dx, respectively. When r = 1, we get the mean

µ = E(X). Note that T (µ) =
∫ ∞
µ

xg(x)dx is given by

T (µ) =

∫ ∞

µ

xg(x)dx =
[ ∞∑

k,m=0

(−1)k+1(kλ)mαk

k!m!
s1+kβ+mB(1+(µ/s)c)−1

(
1 −

(
1 + kβ + m

c

)
,

(
1 + kβ + m + c

c

) )
+

∞∑
k,m=0

(−1)k+1((k + 1)λ)mαk+1β

k!m!
s1+kβ+β+m

c
B(1+(µ/s)c)−1

(
1 −

(
1 + kβ + β + m

c

)
,

(
1 + kβ + β + m

c

) )
+

∞∑
k,m=0

(−1)k+1((k + 1)λ)mαk+1λ

k!m!
skβ+β+m+2

c
B(1+(µ/s)c)−1

(
1 −

(
kβ + β + m + 2

c

)
,

(
kβ + β + m + 2

c

) )]
.

Consequently, the mean deviation about the mean and the mean deviation about the median are

δ1(x) = 2µG(µ) − 2µ + 2T (µ) and δ2(x) = −µ + 2T (M),

respectively.

4.1 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves have applications not only in economics for the study income and poverty, but also in other fields such
as reliability, demography, insurance and medicine. Bonferroni and Lorenz curves for the LLoGMW distribution are given by

B(p) =
1
pµ

∫ q

0
xg(x)dx =

1
pµ

[µ − T (q)], and L(p) =
1
µ

∫ q

0
xg(x)dx =

1
µ

[µ − T (q)],

respectively, where T (q) =
∫ ∞

q
xg(x)dx, q = G−1(p), 0 ≤ p ≤ 1.

5. Order Statistics, Moments of Order Statistics, L-Moments and Rényi Entropy

The concept of entropy plays a vital role in information theory. The entropy of a random variable is defined in terms of its probability
distribution and can be shown to be a good measure of randomness or uncertainty. In this section, we present the distribution of the
order statistic, L-moments and Rényi entropy for the LLoGMW distribution.

5.1 Order Statistics

Order statistics play an important role in probability and statistics. In this section, we present the distribution of the ith order statistic
from the LLoGMW distribution. The pdf of the ith order statistic from the LLoGMW pdf is given by

gi:n(x) =
n!g(x)

(i − 1)!(n − i)!
[G(x)]i−1[1 −G(x)]n−i

=
n!g(x)

(i − 1)!(n − i)!

n−i∑
j=0

(−1) j

(
n − i

j

)
[G(x)] j+i−1

80



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 3; 2018

by using the binomial expansion [1 −G(x)]n−i =
∑n−i

m=0

(
n−i
m

)
(−1)m[G(x)]m, so that

gi:n(x) =
1

B(i, n − i + 1)

n−i∑
m=0

(
n − i

m

)
(−1)m

m + i
(m + i)[G(x)]m+i−1g(x)

=

n−i∑
m=0

wi,mgm+i (x),

where gm+i (x) is the pdf of the exponentiated LLoGMW distribution with parameters s, c, α, β, λ and (m + i),B(., .) is the beta function
and the weights wi,m are given by

wi,m =
1

B(i, n − i + 1)
(−1)m

m + i

(
n − i

m

)
= (−1)m

(
m + i − 1

m

)(
n

m + i

)
.

5.2 Moments of Order Statistics

The tth moment of the ith order statistics from the LLoGMW distribution can be derived via a result of Barakat and Abdelkader (2004)
as follows:

E(Xt
i:n) = t

n∑
p=n−i+1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

) ∫ ∞

0
xt−1[1 −G(x)]pdx. (16)

Note that ∫ ∞

0
xt−1[1 −G(x)]pdx =

∞∑
k,m=0

(−1)k(pα)k(λk)m

k!m!

∫ ∞

0
xkβ+m+t−1[1 + (x/s)c]−pdx.

Let y = [1 + (x/s)c]−1, then

∫ ∞

0
xkβ+m+t−1[1 + (x/s)c]−pdx =

skβ+m+t

c

∫ 1

0
yp− kβ+m+t

c −1(1 − y)
kβ+m+t

c −1dy.

Now,

E(Xt
i:n) = t

n∑
p=n−i+1

∞∑
k,m=0

(−1)p−n+i+k α
k(λk)m

k!m!

(
p − 1
n − i

)(
n
p

)
skβ+m+t

c
B

(
p − kβ + m + t

c
,

kβ + m + t
c

)
. (17)

5.3 L-Moments

The L−moments (Hoskings (1990)) are expectations of some linear combinations of order statistics and they exist whenever the mean
of the distribution exits, even when some higher moments may not exist. They are relatively robust to the effects of outliers and are
given by

λk+1 =
1

k + 1

k∑
j=0

(−1) j

(
k
j

)
E(Xk+1− j:k+1), k = 0, 1, 2, ....... (18)

The L−moments of the LLoGMW distribution can be readily obtained from equation (18). The first four L−moments are given by
λ1 = E(X1:1), λ2 =

1
2 E(X2:2 − X1:2), λ3 =

1
3 E(X3:3 − 2X2:3 + X1:3) and λ4 =

1
4 E(X4:4 − 3X3:4 + 3X2:4 − X1:4), respectively.

5.4 Rényi Entropy

Recall that an entropy is a measure of uncertainty or variation of a random variable. Rényi entropy (1960) is an extension of Shannon
entropy. It is defined by

IR(v) =
1

1 − v
log

(∫ ∞

0
[g(x; s, c, α, β, λ)]vdx

)
, v , 1, v > 0, (19)

and tends to Shannon entropy as v→ 1. Putting [g(x; s, c, α, β, λ)]v = gv(x), we can be write

gv(x) =

v∑
k=0

(
v
k

) (
1 +

( x
s

))k
αk xβk−kekλx

(c
s

)v−k ( x
s

)(c−1)(v−k) (
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( x
s

)c)−2v

e−vαxβeλx

=

v∑
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(
v
k

)
(−1)pαk

p!m!
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s

)v−k
s−(c−1)(v−k)(vα)p(λ(p + k))m xβk−k+(c−1)(v−k)+βp+m

(
1 +

( x
s

)c)−2v+k

.
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Considering
∫ ∞

0
xβk−k+(c−1)(v−k)+βp+m

(
1 +

(
x
s

)c)−2v+k
dx and letting y =

(
1 +

(
x
s

)c)−1
, we have∫ ∞

0
gv(x)dx =
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k=0
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p,m=0

(
v
k

)
(−1)pαk

p!m!
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s
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(
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=
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(
v
k
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( c
s

)v−k
s−(c−1)(v−k)(vα)p(λ(p + k))m sβk−k+(c−1)(v−k)+βp+m+1

c

×
∫ 1
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c −
1
c (βk−k+(c−1)(v−k)+βp+m)(1 − y)
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Consequently, Rényi entropy is given by

IR(v) =

( 1
1 − v

)
log

[ v∑
k=0

∞∑
p,m=0

(
v
k

)
(−1)pαk

p!m!

( c
s

)v−k
(vα)p(λ(p + k))m sβk−k+βp+m+1

c

× B
(
2v − k − βk − k + (c − 1)(v − k) + βp + m + 1

c
,
βk − k + (c − 1)(v − k) + βp + m + 1

c

)]
, (20)

for v , 1, and v > 0.

6. Maximum Likelihood Estimation

Let X ∼ LLoGMW(α, β, λ, s, c) and θ = (α, β, λ, s, c)T be the parameter vector. The log-likelihood ℓ = ℓ(θ) for a single observation x
of X is given by

ℓ(θ) = −αxβeλx − 2 log(1 + (x/s)c) + log
( (

1 +
( x

s

)c)
αxβ−1eλx(β + λx) +

c
s

( x
s

)c−1 )
. (21)

The first derivative of the log-likelihood function with respect to θ are given by

∂ℓ

∂α
= −xβeλx +
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x
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)c)
xβ−1eλx(β + λx)(
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s

(
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s
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∂ℓ

∂β
= −αeλx xβ log(x) +

αeλx
(
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(
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)c)
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1 +
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x
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s

(
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∂ℓ

∂λ
= −αxβ+1eλx +

(
1 +

(
x
s

)c)
αxβ−1(xeλx(β + λx + 1))(

1 +
(

x
s
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s

(
x
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∂ℓ

∂s
= 2(1 + (x/s)c)−1(c/s)(x/s)c − (c + αxβeλx(β + λx))c(x/s)c−1(

1 +
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x
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)c)
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s

(
x
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and

∂ℓ

∂c
= −2

(x/s)c(1/s) log(x/s)
(1 + (x/s)c)

+
(1/s)(x/s)c−1[1 + (1 + αxβ−1eλx(β + λx)) log(x/s)](
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(

x
s
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s

(
x
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Given a random sample of size n drawn from the LLoGMW distribution, the total log-likelihood function is given by ℓ∗n(θ) =
∑n

i=1 ℓi(θ),
where ℓi(θ), i = 1, 2, ....., n is given by equation (21). The equations obtained by setting the above partial derivatives to zero are not in
closed form and the values of the parameters s, c, α, β, λ must be found by using iterative methods. The maximum likelihood estimates
of the parameters, denoted by θ̂ is obtained by solving the nonlinear equation

( ∂ℓ∗n(θ)
∂s ,

∂ℓ∗n(θ)
∂c ,

∂ℓ∗n(θ)
∂α
,
∂ℓ∗n(θ)
∂β
,
∂ℓ∗n(θ)
∂λ

)T
= 0, using a numerical

method such as Newton-Raphson procedure.

Let θ̂ = (ŝ, ĉ, α̂, β̂, λ̂) be the maximum likelihood estimate of θ. Under the usual regularity conditions and that the parameters are

in the interior of the parameter space, but not on the boundary, we have:
√

n(̂θ − θ) d−→ N5(0, I−1(θ)), where I(θ) is the expected
Fisher information matrix. The asymptotic behavior is still valid if I(θ) is replaced by the observed information matrix evaluated
at θ̂, that is J(̂θ). The multivariate normal distribution N5(0, J−1 (̂θ)) with mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct
confidence intervals (confidence regions) for the individual model parameters and for the survival and hazard rate functions. That is,
the approximate 100(1 − η)% two-sided confidence intervals for s, c, α, β and λ are given by:

ŝ ± Zη/2
√

I−1
ss (̂θ), ĉ ± Zη/2

√
I−1

cc (̂θ), α̂ ± Zη/2
√

I−1
αα (̂θ), β̂ ± Zη/2

√
I−1
ββ (̂θ),

and λ̂ ± Zη/2
√

I−1
λλ (̂θ), respectively, where I−1

ss (̂θ), I−1
cc (̂θ), I−1

αα (̂θ), I−1
ββ (̂θ), and I−1

λλ (̂θ), are the diagonal elements of I−1
n (̂θ) = (nI(̂θ))−1, and

Zη/2 is the upper (η/2)th percentile of a standard normal distribution.
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7. Simulation

In this section, we study the performance of the LLoGMW distribution by conducting various simulations for different sample sizes
and different parameter values. Equation (14) is used to generate random data from the LLoGMW distribution. The simulation study
is repeated for N = 1000 times each with sample size n = 25, 50, 100, 200, 400, 800 and parameter values I : s = 2, c = 5, α = 4, β =
2, λ = 6, II : s = 2, c = 10, α = 0.5, β = 3, λ = 5 and III : s = 0.3, c = 5, α = 3, β = 5, λ = 0.1. The following quantities were
computed.

(a) Mean estimate of the MLE ϑ̂ of the parameter ϑ = s, c, α, β, λ :

1
N

N∑
i=1

ϑ̂.

(b) Average bias of the MLE ϑ̂ of the parameter ϑ = s, c, α, β, λ :

1
N

N∑
i=1

(ϑ̂ − ϑ).

(c) Root mean squared error (RMSE) of the MLE ϑ̂ of the parameter ϑ = s, c, α, β, λ :√√
1
N

N∑
i=1

(ϑ̂ − ϑ)2.

Table 3 presents the Mean, Average Bias and RMSE values of the parameters s, c, α, β and λ for different sample sizes. From the
results in Table 3, we can verify that as the sample size n increases, the RMSEs decay toward zero. We also observe that for all the
parameter values, the biases decrease as the sample size n increases. Consequently, the MLE’s and their asymptotic results can be used
for estimating and constructing confidence intervals even for reasonably small sample sizes.

Table 3. Monte Carlo Simulation Results

I II III
Parameter Sample Size Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias

s 25 2.0132 0.5922 0.0132 2.0071 0.0322 0.0071 0.7576 7.2445 0.4576
50 2.0017 0.2758 0.0017 2.0080 0.0205 0.0080 0.3132 0.0444 0.0132
100 1.9987 0.0378 -0.0013 2.0066 0.0178 0.0066 0.3051 0.0166 0.0051
200 2.0006 0.0116 0.0006 2.0044 0.0137 0.0044 0.3030 0.0105 0.0030
400 2.0004 0.0040 0.0004 2.0016 0.0087 0.0016 0.3019 0.0073 0.0019
800 2.0002 0.0017 0.0002 2.0003 0.0019 0.0003 0.3008 0.0049 0.0008

c 25 5.0207 1.0932 0.0207 10.0010 0.0113 0.0010 6.7837 14.7993 1.7837
50 4.9838 0.2555 -0.0162 10.0014 0.0035 0.0014 5.6523 13.3994 0.6523
100 4.9884 0.0515 -0.0116 10.0011 0.0029 0.0011 5.0120 0.4995 0.0120
200 4.9953 0.0197 -0.0047 10.0007 0.0021 0.0007 5.0475 0.3379 0.0475
400 4.9987 0.0076 -0.0013 10.0003 0.0013 0.0003 5.0213 0.2366 0.0213
800 4.9997 0.0022 -0.0003 10.0001 0.0003 0.0001 5.0205 0.1699 0.0205

α 25 91.2716 609.5621 87.2716 20.1197 51.5365 19.6197 10.2870 18.3719 7.2870
50 42.7856 109.0369 38.7856 13.2681 26.1077 12.7681 6.3709 12.6396 3.3709
100 25.0564 53.5942 21.0564 9.0259 18.0546 8.5259 3.7501 6.2312 0.7501
200 15.0558 30.9990 11.0558 5.9891 12.9717 5.4891 2.5021 2.8763 -0.4979
400 7.6672 13.6054 3.6672 2.5072 6.4722 2.0072 2.2149 1.5971 -0.7851
800 5.3128 5.0712 1.3128 1.1594 2.3992 0.6594 2.3046 1.3399 -0.6954

β 25 2.2199 1.1656 0.2199 3.6349 2.1246 0.6349 51.9368 123.8157 46.9368
50 2.1101 0.9657 0.1101 3.4019 1.8562 0.4019 41.8406 96.4675 36.8406
100 2.1306 0.7547 0.1306 3.3875 1.5670 0.3875 30.1302 60.7255 25.1302
200 2.0958 0.5966 0.0958 3.2993 1.3341 0.2993 17.3133 35.4831 12.3133
400 2.0279 0.4084 0.0279 3.1173 0.9714 0.1173 10.5755 12.9039 5.5755
800 2.0107 0.2797 0.0107 3.0468 0.6915 0.0468 7.9879 7.5405 2.9879

λ 25 6.1041 5.1188 0.1041 4.4332 3.9634 -0.5668 44.2329 104.6951 44.1329
50 6.0555 4.3036 0.0555 4.5254 3.5493 -0.4746 31.4290 77.9436 31.3290
100 5.7192 3.3216 -0.2808 4.4157 3.0721 -0.5843 19.0590 42.0448 18.9590
200 5.7635 2.6715 -0.2365 4.5277 2.6560 -0.4723 8.7349 24.3658 8.6349
400 5.9415 1.8461 -0.0585 4.8091 1.9597 -0.1909 3.7954 7.0249 3.6954
800 5.9868 1.2654 -0.0132 4.9308 1.3994 -0.0692 2.1657 4.2199 2.0657
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8. Estimation with Censored Samples

In this section, we present maximum likelihood estimates of the parameters of the LLoGMW distribution under Type I right censoring
scheme. An application is presented in section 9.3.

8.1 MLE for Type I Right Censored Data

Type I right censored data arises when the study is conducted over a specified time period that can terminate before all the units have
failed. Each individual has a fixed censoring time Ci, so that the complete failure time of an individual will be known only if it is less
than or equal to the censoring time Ti ≤ Ci; otherwise, only a lower bound of the individual lifetime is available Ti > Ci. The data for
this design are conveniently indicated by pairs of random variables (Ti, ϵi), i = 1, . . . , n.

Let θ = (α, β, λ, s, c)T , then the likelihood function, L(θ), from LLoGMW distribution with pdf gLLoGMW (·) and survival function
S LLoGMW (·) = 1 −GLLoGMW (·) can be written as

L(θ) =
n∏

i=1

gLLoGMW (ti)ϵi S LLoGMW (ti)1−ϵi .

The log-likelihood function, l(Θ), based on data, from Equations (8) and (7) is

l(θ) =

n∑
i=1

ϵi

(
− αtβi eλti − 2 log(1 + (ti/s)c) + log

( (
1 +

( ti

s

)c)
αtβ−1

i eλti (β + λti) +
c
s

( ti

s

)c−1 ))
+

n∑
i=1

(1 − ϵi) ln
{ (

1 +
( ti

s

)c)−1

exp(−αtβi eλti )
}
. (22)

The MLEs θ̂ = (α̂, β̂, λ̂, ŝ, ĉ) are obtained from the numerical maximization of log likelihood function.

9. Applications

To illustrate the flexibility of the LLoGMW distribution and its sub-models for data modeling, real data examples are presented.
Estimates of the parameters of LLoGMW distribution with standard errors (in parentheses), Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Cramer von Mises (W∗), Anderson-Darling (A∗), and sum of squares (SS) from the probability
plots are displayed for each data set. The LLoGMW distribution is also compared with the gamma-Dagum (GD) (Oluyede et al. (2014))
and beta modified Weibull (BMW) (Nadarajah et al. (2011)) distributions. The GD and BMW pdfs are given by

gGD (x) =
λβδx−δ−1

θαΓ(α)
(1 + λx−δ)−β−1(− log[1 − (1 + λx−δ)−β])α−1[1 − (1 + λx−δ)−β]

1
θ −1, x > 0,

and

gBMW (x) =
αxγ−1(γ + λx) exp(λx)

B(a, b)
e−bαxγ exp(λx)(1 − e−αxγ exp(λx))a−1, x > 0,

respectively.

The maximum likelihood estimates (MLEs) of the LLoGMW parameters θ = (s, c, α, β, λ) are computed by maximizing the objective
function via the subroutine NLMIXED in SAS and nlm in R (2011). The estimated values of the parameters (standard error in parenthesis),
-2log-likelihood statistic, Akaike Information Criterion, AIC = 2p − 2 ln(L), and Bayesian Information Criterion, BIC = p ln(n) −
2 ln(L), where L = L(̂θ) is the value of the likelihood function evaluated at the parameter estimates, n is the number of observations,
and p is the number of estimated parameters are presented in Tables 4 and 5 . The LLoGMW distribution is fitted to the data sets
and these fits are compared to the fits using LLoGW, LLoGR, LLoGE, LLoG, W, E, R, LLoGMW(s, 1, α, β, λ), LLoGMW(s, 1, α, 1, 0),
and LLoGMW(s, 1, α, 2, 0) distributions. The issues of existence and uniqueness of the MLEs are of theoretical interest and have been
studied by several authors for different distributions including Seregin (2010), Santos Silva and Tenreyro (2010), Zhou (2009), and Xia,
Mi and Zhou (2009).

The likelihood ratio (LR) test can be used to compare the fit of the LLoGMW distribution with its sub-models for a given data set.
For example, to test β = 1, the LR statistic is ω = 2[ln(L(α̂, β̂, λ̂, ŝ, ĉ)) − ln(L(α̃, 1, λ̃, s̃, c̃))], where α̂, β̂, λ̂, ŝ, and ĉ are the unrestricted
estimates, and α̃, λ̃, s̃, and c̃ are the restricted estimates. The LR test rejects the null hypothesis if ω > χ2

ϵ
, where χ2

ϵ
denote the upper

100ϵ% point of the χ2 distribution with 1 degrees of freedom.

Plots of the histogram of the data together with the fitted densities, as well as probability plots (Chambers, Cleveland, Kleiner and
Tukey (1983)) are presented. Probability graphs are obtained by plotting GLLoGMW (x( j); ŝ, ĉ, α̂, β̂, λ̂) against ( j − 0.375)/(n + 0.25), j =
1, 2, · · · , n, where x( j) are the ordered values of the observed data. The measures of closeness are given by the sum of squares (SS),
where

S S =
n∑

j=1

[
GLLoGMW (x( j)) −

(
j − 0.375
n + 0.25

)]2

.

As described by Chen and Balakrishnan (1995), W∗ and A∗ represent the goodness-of-fit statistics. These statistics can be used to verify
which distribution fits better to the data. In general, the smaller the values of W∗ and A∗, the better the fit.
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9.1 Failure Times

The data represent the failure times of 50 components (per 1000h), (Murthy et al. (2004)). When optimizing the maximum likelihood
function, initial values for the LLoGMW model in the R code are set at s = 0.1, c = 0.1, α = 0.1, β = 0.2, λ = 0.2. Estimates
of the parameters of LLoGMW distribution and its related sub-models, AIC, BIC, W∗, A∗ and SS are give in Table 4. Plots of the
fitted densities and the histogram, observed probability vs predicted probability are given in Figures 3 and 4. The estimated variance-
covariance matrix for the LLoGMW distribution is given by:


0.239767 −0.019997 0.006535 −0.106496 −0.031479
−0.019997 0.016158 −0.001553 −0.009204 0.013308
0.006535 −0.001553 0.000819 −0.024398 −0.002090
−0.106496 −0.009204 −0.024398 2.152071 −0.190631
−0.031479 0.013308 −0.002090 −0.190631 0.051011

 ,
and the 95% confidence intervals for the model parameters are given by s ∈ (1.2938± 1.96× 0.4897), c ∈ (0.7758± 1.96× 0.1271), α ∈
(0.0082 ± 1.96 × 0.0286), β ∈ (0.7063 ± 1.96 × 1.4670) and λ ∈ (0.2456 ± 1.96 × 0.2259), respectively.

Table 4. Estimates of Models for Failure Time Data

Estimates Statistics
Model s c α β λ −2 log L AIC AICC BIC W∗ A∗ S S

LLoGMW 1.2938 0.7758 0.0082 0.7063 0.2456 197.59 207.59 208.95 217.15 0.0933 0.6106 0.0843
(0.4897) (0.1271) (0.0286) (1.4670) (0.2259)

LLoGW 0.4897 129.57 0.5439 0.6330 0.0000 195.52 203.52 204.89 211.17 0.1315 0.8097 0.1255
(0.1585) (78.0147) (0.0995) (0.0736) -

LLoGE 2.2617 0.6683 0.1171 1.0000 0.0000 203.52 209.52 210.88 215.25 0.1425 0.8946 0.1312
(1.4004) (0.1375) (0.0509) - -

LLoG 1.1325 0.9108 0.0000 0.0000 0.0000 210.97 216.97 218.33 222.71 0.2138 1.3281 0.1788
(0.3162) (0.1033) - - -

LLoGR 1.4222 0.7210 0.0089 2.0000 0.0000 199.02 205.02 206.39 210.76 0.0970 0.6464 0.0831
(0.5275) (0.1114) (0.0035) - -

W - - 0.5412 0.6613 0.0000 274.04 280.04 281.41 285.78 0.2581 1.6530 3.9656
- - (0.0995) (0.0748) -

E - - 0.2991 1.0000 0.0000 290.00 294.00 295.36 297.82 0.4295 2.6706 2.9614
- - (0.0423) - -

R - - 0.0353 2.0000 0.0000 428.51 432.51 433.88 436.34 1.1592 6.2391 2.1580
- - (0.0050) - -

LLoGMW(s, 1, α, β, λ) 1.0494 1.0000 0.0023 0.1486 0.4171 201.08 209.08 210.44 216.72 0.1407 0.8387 0.2838
(0.2695) - (0.0075) (0.9275) (0.3264)

LLoGMW(s, 1, α, 1, 0) 1.4446 1.0000 0.0584 1.0000 0.0000 208.90 212.90 214.26 216.72 0.1813 1.1210 0.3391
(0.4942) - (0.0413) - -

LLoGMW(s, 1, α, 2, 0) 1.2609 1.0000 0.0061 2.0000 0.0000 204.43 208.43 209.80 212.26 0.1405 0.8663 0.3071
(0.3500) - (0.0030) - -
λ β δ α θ

GD 2.4246 2.4620 0.2251 2.2607 0.0272 205.56 215.56 216.93 225.12 0.1700 1.0532 0.1723
(1.7710) (1.4460) (0.1048) (2.1047) (0.0399)

a b α λ γ

BMW 272.7100 95.421 1.3296 0.0043 0.0276 198.85 208.85 210.22 218.41 0.1060 0.6806 0.1112
(3.96E-05) (0.0001) (0.0146) (0.0018) (0.0047)
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Figure 3. Fitted Densities, where Model 1 (four) is LLoGMW(s, 1, α, β, λ); Model 2 (two1) is LLoGMW(s, 1, α, 1, 0); and
Model 3 (two2) is LLoGMW(s, 1, α, 2, 0).

Figure 4. Probability Plots for Failure Time Data, where Model 1 (four) is LLoGMW(s, 1, α, β, λ); Model 2 (two1) is
LLoGMW(s, 1, α, 1, 0); and Model 3 (two2) is LLoGMW(s, 1, α, 2, 0).
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Table 5. Estimates of Models for Windshield Data

Estimates Statistics
Model s c α β λ −2 log L AIC AICC BIC W∗ A∗ S S

LLoGMW 3.0369 2.9168 0.0154 0.3996 0.9283 250.99 260.99 261.76 273.15 10.3585 53.1968 0.0614
(0.4872) (0.6356) (0.0180) (0.3884) (0.3319)

LloGME 112.4109 1.8510 0.0646 1.0000 0.5427 254.37 262.37 263.14 272.10 10.2200 52.4725 0.1230
(0.0008) (6.8490) (0.0197) - (0.0788)

LloGMR 581.3116 0.5629 0.0524 2.0000 0.2440 253.16 261.16 261.93 270.88 10.3920 53.4838 0.0902
(0.0000) (0.1231) (0.0179) - (0.0877)

LLoGW 10.4114 1.1539 0.0302 3.0284 0.0000 253.78 261.78 262.54 271.50 10.3532 53.0336 0.0804
(9.3499) (0.3821) (0.0177) (0.3885) -

LLoGE 2.6623 4.3478 0.0637 1.0000 0.0000 258.94 264.94 265.71 272.23 10.8942 55.9062 0.0671
(0.1667) (0.4864) (0.0323) - -

LLoG 2.3912 3.2238 0.0000 0.0000 0.0000 279.16 283.16 283.93 288.02 9.5537 47.2562 0.0714
(0.1370) (0.2971) - - -

LLoGR 4.4454 42.1648 0.1157 2.0000 0.0000 248.44 254.44 255.21 261.73 9.2884 45.7175 0.0989
(0.0846) (14.7673) (0.0137) - -

W - - 0.0823 2.3742 0.0000 260.11 264.11 264.88 268.97 9.8635 49.5238 0.0501
- - (0.0227) (0.2096) -

E - - 0.3910 1.0000 0.0000 325.75 327.75 328.52 330.18 9.3164 45.9033 2.2868
- - (0.0427) - -

R - - 0.1286 2.0000 0.0000 263.60 265.60 266.36 268.03 9.7741 48.8861 0.2135
- - (0.0140) - -

LLoGMW(s, 1, α, β, λ) 21.6350 1.0000 0.0388 2.7396 0.0510 253.32 261.32 262.09 271.04 10.3771 53.2135 0.0865
(18.0198) - (0.0208) (1.3261) (0.3995)

LLoGMW(s, 1, α, 1, 0) 3764.6160 1.0000 0.3908 1.0000 0.0000 325.75 329.75 330.52 334.62 9.3164 45.9033 2.2868
(3.01E-09) - (0.0427) - -

LLoGMW(s, 1, α, 2, 0) 91.8791 1.0000 0.1251 2.0000 0.0000 263.16 267.16 267.93 272.02 9.8777 49.6115 0.2416
(4.60E-07) - (0.0140) - -
λ β δ α θ

GD 25.8347 0.006 4.5610 14.1593 0.4356 260.37 270.37 271.14 282.53 10.5513 53.6790 0.0722
(1.4826) (0.018) (1.7778) (6.7672) (0.2042)

a b α λ γ

BMW 5.2143 0.1818 1.1363 0.5932 0.1252 252.12 262.12 262.89 274.28 10.3435 53.1150 0.0769
(5.6362) (0.1604) (0.7337) (0.1509) (0.1909)

The LR test statistic for testing H0: LLoG against Ha: LLoGMW and H0: LLoGE against Ha: LLoGMW are 13.3803 (p-value =
0.0003) and 5.9253 (p-value = 0.0149). It is concluded that there are significant difference between LLoGMW and LLoG distributions
as well between LLoGMW and LLoGE distributions. There is no significant difference between the LLoGMW and the LLoGW or
LLoGR distributions based on the LR test. The values of the statistics: AIC, AICC, and BIC are smaller for the LLoGW distribution,
however the goodness-of-fit statistics W∗ and A∗ are the smallest and definitely points to the LLoGMW distribution as the “best”fit for
the failure time data when compared to the values for the sub-models. The goodness-of-fit statistics W∗ and A∗ are also better for the
LLoGMW distribution when compared to the values for the non-nested GD and BMW distributions. Thus, there is evidence that the
LLoGMW distribution is the “best”fit for the failure times data.

9.2 Windshield Data

This example consist of 84 Aircraft Windshield data, (Murthy et al. (2004)). When optimizing the maximum likelihood function, initial
values for the LLoGMW model in the R code are set at s = 1, c = 1, α = 1, β = 1, λ = 1. The parameters estimates of the LLoGMW
distribution and its related sub-models as well as the AIC, BIC, W∗, A∗ and SS are reported in Table 5. While Figure 5 contains
the histogram and graphs of the fitted densities, Figure 6 displays observed probability against predicted probability. The estimated
variance-covariance matrix for the LLoGMW distribution is given by:


0.23732 −0.06185 0.00567 0.07299 −0.08415
−0.06185 0.40394 0.00352 0.02730 −0.08101
0.00567 0.00352 0.00032 0.00325 −0.00546
0.07299 0.02730 0.00325 0.15084 −0.09335
−0.08415 −0.08101 −0.00546 −0.09335 0.11014

 ,
and the 95% confidence intervals for the model parameters are given by s ∈ (3.0369± 1.96× 0.4872), c ∈ (2.9168± 1.96× 0.6356), α ∈
(0.0154 ± 1.96 × 0.0180), β ∈ (0.3996 ± 1.96 × 0.3884) and λ ∈ (0.9283 ± 1.96 × 0.3319), respectively.

87



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 3; 2018

Figure 5. Fitted Densities, where Model 1 is LLoGMW(s, 1, α, β, λ); Model 2 is LLoGMW(s, 1, α, 1, 0); and Model 3 is
LLoGMW(s, 1, α, 2, 0).

Figure 6. Probability Plots for Aircraft Windshield data, where ‘four’is the four parameter model: LLoGMW(s, 1, α, β, λ);
two1 is the model: LLoGMW(s, 1, α, 1, 0); and two2 is the model: LLoGMW(s, 1, α, 2, 0).

The LR test statistic for testing H0: LLoG against Ha: LLoGMW and H0: LLoGE against Ha: LLoGMW are 28.1716 (p-value
< 0.0001) and 7.9451 (p-value = 0.0048). We can conclude that there are significant difference between LLoGMW and LLoG
distributions as well between LLoGMW and LLoGE distributions. There is also a significant difference between Weibull and LLoGMW
distributions based on the LR test statistic value of 9.12 (p-value=0.02774 < 0.05) at the 5% level. The values of AIC, AICC and BIC
as well as the goodness-of-fit statistics W∗ and A∗ shows that the LLOGMW distribution is significantly better than the non-nested
GD and comparable to the BMW distributions. The submodel LLoGR distribution seem to the better fit for the data based on the
goodness-of-fit statistics W∗ and A∗.

9.3 Type I Right Censored Data: Remission Times of Cancer Patients

This data set is remission times (in months) for 137 cancer patients, (Lee and Wang (2003)). The data is given in Table 6. Estimates
of the parameters under Type I right censoring, AIC, AICC, BIC and SS are given in Table 7. The LLoGMW distribution is compared
to the non-nested gamma log-logistic Weibull (GLLoGW) distribution (Foya, Oluyede, Fagbamigbe & Makubate (2017)), the beta
Weibull Poisson (BWP) distribution (Percontini, Blas & Cordeiro (2013)) and the gamma Dagum (GD) distribution (Oluyede et al.
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Table 6. Remission Times of Cancer Patients Data

0.08 0.2 0.4 0.5 0.51 0.81 0.87* 0.9 1.05 1.19 1.26 1.35
1.4 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62
2.64 2.69 2.69 2.75 2.83 2.87 3.02* 3.02 3.25 3.31 3.36 3.36
3.48 3.52 3.57 3.64 3.7 3.82 3.88 4.18 4.23 4.26 4.33* 4.33
4.34 4.4 4.5 4.51 4.65* 4.7* 4.87 4.98 5.06 5.09 5.17 5.32
5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 6.25 6.54 6.76 6.93
6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87
7.93 8.26 8.37 8.53 8.6* 8.65 8.66 9.02 9.22 9.47 9.74 10.06
10.34 10.66 10.75 10.86* 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63
13.11 13.29 13.8 14.24 14.76 14.77 14.83 15.96 16.62 17.12 17.14 17.36
18.1 19.13 19.36* 20.28 21.73 22.69 23.63 24.8* 25.74 25.82 26.31 32.15
34.26 36.66 43.01 46.12 79.05

Table 7. Estimates of Models for Remission Times of Cancer Patients Data

Estimates Statistics
Model s c α β λ −2 log L AIC AICC BIC S S

LLoGMW 7.5494 1.7337 0.0233 0.7537 0.0137 835.85 845.85 846.30 860.45 0.0605
(1.4867) (0.1951) (0.0216) (0.4204) (0.0275)

LLoGMR 8.2670 1.4270 0.0003 2 0.0049 843.38 851.38 851.68 863.06 0.8183
(0.0218) (0.1457) (0.0006) - (0.0216)

c α β δ θ

GLLoGW 0.0490 0.7239 0.6030 0.7243 0.1160 837.14 847.14 847.60 861.74 0.0861
(0.2863) (0.4611) (0.3346) (1.1169) (0.1340)

c k α β θ

BWP 1.7844 0.0600 0.7550 0.5238 6.5441 836.77 846.77 847.22 861.37 0.0767
(5.7104) (0.3940) (0.8203) (0.1706) (4.1910)
λ β δ α θ

GD 7.3086 4.7985 0.9948 0.3398 0.2838 837.57 847.57 848.03 862.17 0.0731
(11.9181) (7.8516) (0.8962) (0.7998) (0.5708)

(2014)). Plots of the fitted densities and the histogram (Figure 7), hazard functions (Figure 8), survival functions (Figure 9), and
observed probability vs predicted probability (Figure 10) for the remission times data are presented.

89



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 3; 2018

Figure 7. Graphs of fitted densities for remission times data.

Figure 8. Graphs of estimated hazard functions for remission times data.
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Figure 9. Graphs of estimated survival functions for remission times data.

Figure 10. Probability plots for remission times data.

The LR test statistic of the hypothesis H0 : LLoGMW against Ha : LLoGMR is 7.54 (p-value = 0.006). Also, LLoGMW distribution
gives the smallest, AIC, BIC and SS values. We can conclude that LLoGMW is the best fit for remission times data under Type I right
censoring scheme.

10. Concluding Remarks

This paper presents a new generalized distribution called the LLoGMW distribution that is shown to be suitable for applications in
various areas including reliability, survival analysis, just to mention a few areas. Some of its structural properties including hazard and
reverse hazard functions, quantile function, moments, conditional moments, mean deviations, Bonferroni and Lorenz curves, Rényi
entropy, distribution of order statistics, maximum likelihood estimates, asymptotic confidence intervals are presented. Applications of
the model to real data sets are given in order to illustrate the applicability and usefulness of the proposed distribution.
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