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Abstract

Certain characterizations of recently proposed univariate continuous distributions are presented in different directions.
This work contains a good number of reintroduced distributions and may serve as a source of preventing the reinvention
and/or duplication of the existing distributions in the future.
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1. Introduction

This work is a continuation of our previous works (Hamedani and Safavimanesh, 2016) , (Hamedani, 2017) and (Hamedani,
2018) on characterizations and infinite divisibility of distributions introduced in 2016-2018. The current work and our
previous published papers mentioned above may serve as a source of preventing the reinvention and/or duplication of the
existing distributions in the future. As pointed out in our papers, a good number of proposed distributions have already
been introduced in the literature. We believe the authors should do a detailed literature search before spending time on
the already existing distributions. In designing a stochastic model for a particular modeling problem, an investigator will
be vitally interested to know if their model fits the requirements of a specific underlying probability distribution. To
this end, the investigator will rely on the characterizations of the selected distribution. Thus, the problem of character-
izing a distribution is an important problem in various fields and has recently attracted the attention of many researchers.
Consequently, various characterization results have been reported in the literature. These characterizations have been
established in different directions. This work deals with various characterizations of Erlang-Lindley (EL) distribution
of Abd El-Monsef et al.; Exponentiated Transmuted Weibull Geometric (ETWG) distribution of Fattah et al.; Transmut-
ed Generalized Exponential (TGE) of Khan et al.; Truncated Inverted Generalized Exponential (TIGE) distribution of
Genç; Transmuted Generalized Inverted Exponential (TGIE) distribution of Elbatal; Kumaraswamy GEV (KumGEV)
distribution of Eljabari and Nadarajah; Generalized Exponential-G (GEG) distribution of Maurya et al.; Type II Odd
Lindley Exponential (TIIOLE) distribution of Korkmaz and Yousof; Burr-X Exponentiated Fréchet (BXEF) distribution
of Zayed and Butt; Exponentiated Lomax Geometric (ELG) distribution of Hassan and Abd-Allah; Exponential Pareto
Power Series (EPPS) distribution of Elbatal et al.; Transmuted Weibull Fréchet (TWFr) distribution of Ahsan ul Haq et
al.; Extended Burr XII (EBXII) distribution of Abouelmagd et al.; Generalized Weibull Burr XII (GWBXII) distribution
of Maksaei and Altun; Burr Type XII (BTXII) distribution of Kumar; Gamma Burr XII (GBXII) of Guerra et al.; Gen-
eralized Marshall-Olkin-Kumaraswamy-G (GMOKw-G) family of distributions of Chakraborty and Handique; Weibull
Burr X (WBX) distribution of Ibrahim et al.; Kumaraswamy Transmuted Pareto (KwTP) distribution of Chhetri et al.;
Odd Log-Logistic Logarithmic Generated (OLLL-G) family of distributions of Alizadeh et al.; Marshall-Olkin Extended
Inverse Pareto (MOEIP) distribution of Gharib et al.; Marshall-Olkin Extended Inverse Weibull (MOEIW) distribution of
Okasha et al.; Upper Truncated Lindley (UTL) distribution of Singh et al.; Transmuted Exponentiated Fréchet (TEF) dis-
tribution of Elbatal et al.; Generalized Inverted Generalized Exponential (GIGE) distribution of Oguntunde and Adejumo;
Transmuted Rayleigh (TR) distribution of Ahmad et al.; McDonald Quasi Lindley (McQL) distribution of Roozegar and
Esfandiyari; Geometric Weibull Poisson (GWP) distribution of Mansour and Abd Elrazik; SS Transformation of Expo-
nential (SSTE) distribution of Kumar et al.; Generalization of the BurrXII-Poisson (GBXIIP) distribution of Muhammad;
Log-Logistic Generated Weibull (LLGW) distribution of Abdel-Hamid and Albasuoni; Odd Generalized Exponentiated
Linear Failure Rate (OGELFR) distribution of El-Damcese et al.; Transmuted Exponentiated Inverse Rayleigh (TEIR)
distribution of Ahsan ul Haq; Transmuted Two-Parameter Lindley (TTL) distribution of Al-Khazaleh et al.; Transmuted
Janardan (TJ) distribution of Al-Omari et al.; Exponentiated Generalized Weibull-Gompertz (EGWG) distribution of El-
Bassiouny et al.; Complementary Exponentiated BurrXII Poisson (CEBXIIP) distribution of Muhammad; Kumaraswamy
Power Function (Kw-PF) distribution of Abdul-Moniem; Odd Burr III-G (OBIII-G) family of distributions of Jamal et
al.; Odd Generalized Exponential Generalized Linear Exponential (OGE-GLE) distribution of Luguterah and Nasiru;
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Exponentiated Inverse Flexible Weibull Extension (EIFWE) distribution of El-Morshedy et al.; Transmuted Weighted
Exponential (TWE) distribution of Dar et al.; Beta Transmuted Pareto (BTP) distribution of Chherti et al.; Generalized
Burr-G (GBG) family of distributions of Nasir et al.; Exponentiated Weibull-Power Function (EWPF) distribution of
Hassan and Assar; Transmuted Two-Parameter Lindley (TTL1) distribution of Kemaloglu and Yilmaz; Marshall-Olkin
Log-Logistic Extended Weibull (MOLLEW) distribution of Lepetu et al.; Modified Slash Birnbaum-Saunders (MSBS)
distribution of Reyes et al.; Inverse Power Lindley (IPL) distribution of Barco et al.; Weibull Weibull (WW) distribution
of Abouelmagd et al.; Beta Generated Kumarswamy-G (BGKw-G) family of distributions of Handique et al.; New Life
Model (NLM) of Muhammad; Marshall-Olkin Exponentiated Burr XII (MOEBXII) distribution of Cordeiro et al.; Beta
Nadarajah-Haghighi (BNH) distribution of Dias et al.; New Two-Parameter Weibull (NTPW) distribution of Rasekhi et
al.; Generalized Half-t (GHT) distribution of Bulut et al.; Gamma Extended-G (GE-G) distribution of Cordeiro et al.;
Modified Behrens-Fisher (MB-F) distribution of Nadarajah and Li; Maxwell-Weibull (M-W) distribution of Sharma et
al.; Exponentiated Weibull-Exponential (EWE) distribution of Elgarhy et al.; α Logarithmic Transformed (αLT) family of
distributions of Dey et al.; Topp-Leone Odd Log-Logistics (TLOLL) family of distributions of Brito et al.; Two-Parameter
Maxwell (TP-M) distribution of Dey et al.; Generalized Quadratic Hazard Rate (GQHR) distribution of Sarhan; New Four-
Parameter Weibull (NFPW) distribution of Yousof et al.; Odd Lindley Burr XII (OLBXII) distribution of Abouelmagd
et al.; Dagum Poisson (DP) distribution of Oluyede et al.; Burr XII Modified Weibull (BXIIMW) of Mdlongwa et al.;
Burr X Pareto (BXP) of Korkmaz et al.; General Class of Flexible Weibull (GCFW) distributions of Park and Park; Pow-
er Lomax Poisson (PLP) distribution of Hassan and Nassr; Modified Weibull Poisson (MWP) distribution of Ghorbani
et al.; Exponentiated Power Lindley Geometric (EPLG) distribution of Alizadeh et al.; Generalized Modified Weibull
Power Series (GMWPS) distribution of Bagheri et al.; Additive Modified Weibull Odd Log-Logistic-G (AMWOLLG)
family of distributions of Ghorbani Et al.; Exponentiated Power Lindley Power Series (EPLPS) distribution of Alizadeh
et al.; Weibull-R (W-R) family of distributions of Ghosh and Nadarajah; Wrapped Lindley (WL) distribution of Joshi
and Jose; Beta Weibull-G family of distributions of Makubate et al.; Transmuted Weibull Regression (TWR) distribution
of Granzotto et al.. These characterizations are presented in different directions: (i) based on the ratio of two truncated
moments; (ii) in terms of the hazard function; (iii) in terms of the reverse (reversed) hazard function and (iv) based on
the conditional expectation of certain function of the random variable. Note that (i) can be employed also when the cd f
(cumulative distribution function) does not have a closed form. In defining the above distributions we shall try to employ
the same parameter notation as used by the original authors. We follow the same order as listed above.

1) The cd f of EL is given by

F (x; θ, k) = 1 − 1
Γ (k) (1 + θ)2

{
θΓ (k) e−θx (1 + θ + θx) + (1 + θ) Γ (k, θx)

}
, (1)

x ≥ 0, where θ > 0 and k ∈ N are parameters and Γ (k, x) =
∫ ∞

x wk−1e−wdw.

2) The cd f of ETWG is given by

F (x;α, β, σ, λ, p) =

[
1 − e−(

x
σ )β

]α [
1 + λe−(

x
σ )β

]α
1 − p + p

[
1 − e−(

x
σ )β

]α [
1 + λe−(

x
σ )β

]α , x ≥ 0, (2)

where α, β, σ are all positive, |λ| ≤ 1 and p ∈ (0, 1) are parameters.

3) The cd f of TGE is given by

F (x;α, θ, λ) =
[
1 − e−θx

]α {
1 + λ − λ

(
1 − e−θx

)α}
, x ≥ 0, (3)

where α, θ both positive and |λ| ≤ 1 are parameters.

Remark 1. The TGE distribution of Khan et al. (2017b) is a special case of TEAW distribution of Nofal et al. (2017),
which has already been characterized in Hamedani (2017a). We believe that Khan et al. were not aware of Nofal et al.’s
paper.

4) The cd f of TIGE is given by

F (x;α, λ) = E −C
(
1 − e−λ/x

)α
, 0 ≤ B ≤ x ≤ A < ∞, (4)

where α, λ are positive parameters and E =
{(

1 − e−λ/A
)α − (

1 − e−λ/B
)α}−1

, C = E
(
1 − e−λ/B

)α
.
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Remark 2. The TIGE distribution of Genç (2017) is a special case of INGIW distribution of Khan et al. (2017b), which
has already been characterized in Hamedani (2017b). We believe that Genç was not aware of Khan et al.’s paper.

5) The cd f of TGIE is given by

F (x;α, θ, λ) =
(
1 −

(
1 − e−θ/x

)α) (
1 + λ

(
1 − e−θ/x

)α)
, x ≥ 0, (5)

where α, θ both positive and |λ| ≤ 1 are parameters.

Remark 3. The TGIE distribution of Elbatal (2013) is a special case of TNGIW distribution of Khan et al. (2017a), which
has already been characterized in Hamedani (2017b).

6) The cd f of KumGEV (WLOG, for µ = 0, σ = 1) is given by

F (x; a, b, η) = 1 −
[
1 − exp

{
−a (1 + ηx)−1/η

}]b
, x ≥ 0, (6)

where a, b, η are all positive parameters.

7) The cd f of GEG is given by

F (x;α) =
exp {(G (x))α} − 1

e − 1
, x ∈ R, (7)

where α > 0 is a parameter and G (x) , g (x) are cd f and pd f (probability density function) of the baseline distribution.

Remark 4. One may add another parameter to GEG and express (7) as F (x;α, β) = exp{β(G(x))α}−1
eβ−1 , x ∈ R.

8) The cd f of TIIOLE is given by

F (x; λ) = 1 − 1 + exp(−λx)
2 exp(−λx)

exp
{
1 − exp(λx)

}
, x ≥ 0, (8)

where λ > 0 is a parameter.

Remark 5. The TIIOLE distribution of Korkmaz and Yousof (2017) is a special case of OL-G distribution of Gomez-
Silva et al. (2017), which has been characterized in Hamedani (2017a).

9) The cd f of BXEF is given by

F (x; θ, λ, β, α) =

1 − exp

−
1 −

(
1 − e−αx−β

)λ(
1 − e−αx−β

)λ


2

θ

, x ≥ 0, (9)

where θ, λ, β, α are all positive parameters.

Remark 6. The BXEF distribution of Zayed and Butt (2017) is a submodel of BX-G distribution introduced by Yousof
et al. (2016), which has been characterized in Hamedani (2017a).

10) The cd f of ELG is given by

F (x;α, θ, λ, p) =

[
1 − (1 + λx)−θ

]α
1 − p

{
1 −

[
1 − (1 + λx)−θ

]α} , x ≥ 0, (10)

where α, θ, λ all positive and p (0 < p < 1) are parameters.

11) The cd f of EPPS is given by

F (x;α, θ, λ, µ) = 1 −
c
[
θe−α

(
x
µ

)λ]
c (θ)

, x ≥ 0, (11)

where α, θ, λ, µ are all positive parameters and c (θ) =
∑∞

n=1 anθ
n , an ≥ 0.
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Remark 7. The EPPS distribution of Elbatal et al. (2017) is a submodel of RGTLPS distribution introduced by Condino
and Domma (2016), which has been characterized in Hamedani (2017a).

12) The cd f of TWFr, for a = 1, is given by

F (x; β, γ, λ, 1, b) =

1 − exp

−
[

e−(
γ
x )β

1−e−(
γ
x )β

]b

 ×1 + λ exp

−
[

e−(
γ
x )β

1−e−(
γ
x )β

]b

 , x ≥ 0, (12)

where β, γ, b all positive and λ (|λ| ≤ 1) are parameters.

13) The cd f of EBXII is given by

F (x;α, β, ν, a, b) =
(
1 − exp

{
−a

[
(1 + xα)β − 1

]b
})ν

, x ≥ 0, (13)

where α, β, ν, a, b are all positive parameters.

Remark 8. The EBXII distribution of Abouelmagd et al. (2017) is a minor extension of FPBXII distribution introduced
by Afify et al. (2017), which has been characterized in Hamedani (2017a).

14) The cd f of GWBXII is given, by the authors as

F (x;α, β, s, u, k) = 1 − exp

−a
(
− log

[
1 +

( x
s

)u]−k)β , x ≥ 0.

It is easy to see that the cd f can be written as

F (x;α, β, s, u, k) = 1 − exp
{
−akβ

(
log

[
1 +

( x
s

)u])β}
, x ≥ 0.

and WLOG, we can set k = 1.

Therefore, the cd f of GWBXII (WLOG, we can set k = 1) is given by

F (x;α, β, s, u, 1) = 1 − exp
{
−a

(
log

[
1 +

( x
s

)u])β}
, x ≥ 0, (14)

where α, β, s, u are all positive parameters.

15) The cd f of BTXII is given by

F (x;α, β) = 1 − (1 + xα)−β , x ≥ 0, (15)

where α, β are all positive parameters.

Remark 9. The BTXII distribution of Kumar (2017) is a special submodel of TBTXII distribution introduced by Al-
Khazaleh (2016), which has been characterized in Hamedani (2017a).

16) The cd f of GBXII is given by

F (x; a, c, d, s) =
γ
(
a, d log

[
1 +

(
x
s

)c])
Γ (a)

, x ≥ 0, (16)

where a, c, d, s are all positive parameters and γ (a, z) =
∫ z

0 ta−1e−tdt.

39



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 3; 2018

Remark 10. The GBXII distribution of Guerra et al. (2017) is a special submodel of G-P distribution introduced by
Alzaatreh et al. (2012) as well as a special submodel of GEW distribution of Cordeiro et al.(2016). Both distributions
(G-P and GEW) have been characterized in the Research Monograph by Hamedani and Maadooliat (2017).

17) The cd f of GMOKw-G is given by

F (x;α, θ, a, b) = 1 −
 α

[
1 −G (x)a]b

1 − (1 − α)
[
1 −G (x)a]b

θ , x ∈ R, (17)

where α, θ, a, b are all positive parameters and and G (x) is the baseline cd f with corresponding pd f g (x).

Remark 11. A slightly more general case of the GMOKw-G distribution has been characterized in Hamedani (2017a).

18) The cd f of WBX is given by

F (x;α, β, θ, λ) = 1 − exp

−α
(
1 − e−(λx)2)θβ[

1 −
(
1 − e−(λx)2

)θ]β
 , x ≥ 0, (18)

where α, β, θ, λ are all positive parameters.

19) The cd f of KwTP is given by

F (x;α, θ, λ, a, b) = 1 − [
1 −G (x;α, θ, λ)a]b , x ∈ R,

= 1 −
{

1 −
[
1 −

(
θ

x

)α]a [
1 + λ

(
θ

x

)α]a}b

, x ≥ 0, (19)

where α, θ, a, b all positive and λ (|λ| ≤ 1) are parameters.

Remark 12. The distribution F (x;α, θ, λ, a, b) = 1− [
1 −G (x;α, θ, λ)a]b , x ∈ R, has been considered by several authors

before. In fact a more general case was proposed by Mahmoud et al. (2015). For λ = 0, the cd f (37) was taken up by
Bourguignon et al. (2013).

20) The cd f of OLLL-G is given by

F (x;α, β, η) =
(

1
log (1 − β)

)
log

[
1 − βG (x; η)α

G (x; η)α +G (x; η)α

]
, x ∈ R, (20)

where α > 0, 0 < β < 1 are parameters and G (x; η) is the baseline cd f with corresponding pd f g (x; η) .

Remark 13. The Zografos-Balakrishnan Odd Log-Logistic (ZBOLL-G) distribution with cd f

F (x;α, β, τ) =
1
Γ (β)

γ

[
β,− log

{
1 − G (x; τ)α

G (x; τ)α +G (x; τ)α

}]
,

where x ∈ R, α > 0, β > 0 was proposed by Cordeiro et al. (2016). The OLLL-G distribution seems to be a simple
variation of ZBOLL-G, which has been characterized in the Research Monograph by Hamedani and Maadooliat (2017).

21) The cd f of MOEIP is given by

F (x;α, β, δ) = 1 − δ
[
1 −

(
x

x + β

)α] [
δ − (δ − 1)

(
x

x + β

)α]−1

, (21)

x ≥ 0, where α, β, δ are positive parameters.

Remark 14. F (x) in equation (6) of Gharib et al. (2017) should be replaced with F (x) .

22) The cd f of MOEIW is given by
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F (x;α, β, θ) = e−αx−β
[
θ − (θ − 1) e−αx−β

]−1
, x ≥ 0, (22)

where α, β, θ are positive parameters.

Remark 15. The MOEIW distribution was introduced under the name of Marshall-Olkin Fréchet (M-OF) distribution by
Krishna et al. (2013). The latter has been characterized in the Research Monograph by Hamedani and Maadooliat (2017).

23) The cd f of UTL is given by

F (x; θ, η) =
eθη

{
1 + θ − [1 + θ (1 + x)] e−θx

}
(1 + θ)

(
eθη − 1

) − θη , 0 ≤ x ≤ η, (23)

where θ, η are positive parameters.

24) The cd f of TEF, is given by

F (x;α, β, θ, λ) =
[
1 −

(
1 − e−(

θ
x )

β
)α] [

1 + λ
(
1 − e−(

θ
x )

β
)α]

, (24)

x ≥ 0, where α, β, θ positive and λ (|λ| ≤ 1) are parameters.

25) The cd f of GIGE is given by

F (x;α, γ, λ) = 1 −
(
1 − e−γ(

λ
x ))α , x ≥ 0 , (25)

where α, γ, λ are positive parameters.

Remark 16. The GIGE distribution is a special case of, at least two distributions. We mention here, the Exponentiated-
Exponential Fréchet (EEFr) distribution of Mansoor et al. which has been characterized in the Research Monograph by
Hamedani and Maadooliat (2017).

26) The cd f of TR is given by

F (x; θ, λ) =
(
1 − exp

(
− x2

2θ2

)) (
1 + λ exp

(
− x2

2θ2

))
, x ≥ 0, (26)

where θ, λ are positive parameters.

Remark 17. The TR distribution is a special case of the Kumaraswamy-Transmuted Exponentiated Modified Weibull
(Kw-TEMW) distribution of Al-babtain et al. (Communications in Statist. Theory-Methods, forthcoming) which has
been characterized in Hamedani (IJSP, forthcoming).

27) The cd f of McQL is given by

F (x; a, b, c, α, θ) = I
([

1 − 1 + α + θx
α + 1

e−θx
]c

; a/c, b
)
, x ≥ 0, (27)

where a, b, c, θ all positive and α > −1 are positive parameters.

Remark 18. For a = c the McQL distribution of Roozegar and Esfandiary (2015) reduces to the Kumaraswamy Quasi
Lindley (KQL) distribution of Elbatal and Elgarhy (2013). The KQL distribution has characterized in the Research
Monograph by Hamedani and Maadooliat (2017).

28) The cd f of GWP is given by

F (x;α, β, λ, π) =
(1 − π)

[
1 − exp

(
−λ + λe−(βx)α

)]
1 − e−λ − π + π exp

(−λ + λe−(βx)α) , x ≥ 0, (28)

where α, β, λ all positive and π (0 < π < 1) are parameters.

29) The cd f of SSTE is given by
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F (x; θ) = cos
(
π

2
e−θx

)
, x ≥ 0, (29)

where θ > 0 is a parameter.

30) The cd f of GBXIIP is given by

F (x; a, α, β, λ) =

1 − exp
(
λ
(
(1 + xα)−β − 1

))
1 − e−λ


a

, x ≥ 0, (30)

where a, α, β, λ are positive parameters.

31) The cd f of LLGW is given by

F (x;α, β, γ) = 1 −
(
1 +

(
αxβ

))−1
, x ≥ 0, (31)

where α, β, γ are positive parameters.

Remark 19. The LLGW distribution of Abdel-Hamid and Albasuoni (2016) is a special submodel of TBTXII distribution
introduced by Al-Khazaleh (2016), which has been characterized in Hamedani (2017a). Furthermore, LLGW distribution
reduces to BTXII distribution for γ = 1, please see Remark 9.

32) The cd f of OGELFR is given by

F (x;α, β, a, b) =
[
1 − e

−α
(
eax+ b

2 x2
−1

)]β
, x ≥ 0, (32)

where α, β, a, b are positive parameters.

Remark 20. The OGELFR distribution of El-Damcese et al. (2016) is a special submodel of Exponentiated Weibull
Rayleigh (EWR) distribution of Elgarhy, which has been characterized in Hamedani (2017a).

33) The cd f of TEIR is given by

F (x;α, β, θ, λ) =
(
e−

θα

x2

) [
1 + λ − λ

(
e−

θα

x2

)]
, x ≥ 0, (33)

where α, β, θ are positive and λ (|λ| ≤ 1) are parameters.

Remark 21. The TEIR distribution of Ahsan ul Haq (2016) is a special submodel of Transmuted Kumaraswamy Expo-
nentiated Inverse Rayleigh (TKEIR) distribution of Badr (2017), which has been characterized in Hamedani (2017a).

34) The cd f of TTL is given by

F (x;α, θ, λ) =

e−2θx
[
θ
(
eθx − 1

)
+ α

(
eθx − θx − 1

)]
×[

eθx (α + θ) + λ (α + θ + αθx)
]

(α + θ)2 , x ≥ 0, (34)

where θ > 0, α > −θ, λ (|λ| ≤ 1) are parameters.

35) The cd f of TJ is given by

F (x;α, θ) = 1 −
(
1 +

θαx
θ + α2

)
e−

θ
α x, x ≥ 0, (35)

where θ > 0, α > 0 are parameters.

Remark 22. The TJ distribution of Al-Omari et al. (2017) is similar to the Maxwell Length Biased (MLB) distribution

of Saghir et al. (2016) whose cd f is F (x;α, θ) = 1−
(
1 + x2

2α2

)
e−

x2

2α2 , x ≥ 0. The MLB distribution has been characterized
in Hamedani (2017a).
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36) The cd f of EGWG is given by

F (x; a, b, c, d, θ) =
[
1 − e

−axb
(
ecxd−1

)]θ
, x ≥ 0, (36)

where a, b, c, d, θ are all positive parameters.

Remark 23. The EGWG distribution of El-Bassiouny et al. (2017) is the same as the one proposed by El-Damcese
et al. (2015). The EGWG distribution is in turn a special case of EWR distribution of Elgarhy (2015) which has been
characterized in Hamedani (2017a).

37) The cd f of CEBXIIP is given by

F (x;α, β, λ, θ) =
exp

(
λ
(
1 − (1 + xα)−β

)θ) − 1

exp (λ) − 1
, x ≥ 0, (37)

where α, β, λ, θ are all positive parameters.

Remark 24. The CEBXIIP distribution of Muhammad (2017) is a special case of Poisson-G (Po-G) family of distribu-
tions of Abouelmagd et al. (2017) if one takes G (x) =

(
1 − (1 + xα)−β

)θ
in the formula for the Po-G distribution. The

Po-G distribution has been characterized in Hamedani (2018).

38) The cd f of Kw-PF is given by

F (x; a, b, λ, θ) = 1 −
[
1 −

( x
λ

)aθ
]b

, 0 ≤ x ≤ λ, (38)

where a, b, λ, θ are all positive parameters.

39) The cd f of OBIII-G is given by

F (x; c, θ) =
[
1 +

(
1 −G (x; θ)

G (x; θ)

)c]−k

, x ∈ R, (39)

where c, k, θ are all positive parameters and G (x; θ) is the base cd f with corresponding pd f g (x; θ) .

Remark 25. The OBIII-G distribution of Jamal et al. (2017) is the same as the one proposed by Arifa et al. (2017),
called Modified Burr III G (MBIIIG) distribution, which has been characterized in Hamedani (2017a).

40) The cd f of OGE-GLE is given by

F (x;α, a, b, c, λ) =

1 − e
−λ

e
(
ax+ bx2

2

)c
−1



α

, x ≥ 0, (40)

where α, a, b, c, λ are all positive parameters.

Remark 26. The OGE-GLE distribution of Luguterah and Nasiru (2017) is a special case of the distribution of Abdelall
(2016), called Odd Generalized Exponential Modified Weibull (OGEMW) distribution, which has been characterized in
Hamedani and Safavimanesh (2017).

41) The cd f of EIFWE is given by

F (x;α, β, λ) = e−λeα/x−βx
, x ≥ 0, (41)

where α, β, λ are all positive parameters.

Remark 27. For λ = 1, the EIFWE distribution of El-Morshedy et al. (2017) is the same as the one proposed by the
same authors (listed in the different order) in (2015), called Inverse Flexible Weibull Extension (IFWE) distribution. The
IFWE has been characterized in a Research Monograph by Hamedani and Maadooliat (2017).
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42) The cd f of TWE is given by

F (x; λ, ω) =
[Γ (ω + 1) − Γ (ω + 1, λx)]

[
Γ (ω + 1) + βΓ (ω + 1, λx)

]
[Γ (ω + 1)]2 , x ≥ 0, (42)

where λ > 0, ω ≥ 0 and β (|β| ≤ 1) are parameters.

43) The cd f of BTP is given by

F (x;α, a, b, x0) =
1

B (a, b)

∫ [
1−( x0

x )α
][

1+λ( x0
x )α

]
0

wa−1 (1 − w)b−1 dw, x ≥ x0, (43)

where α, a, b, and λ (|λ| ≤ 1) are parameters.

Remark 28. For λ = 0, the BTP distribution of Chhetri et al. (2017) reduces to Generalized Beta Exponentiated Pareto
(GBEP) distribution of Mead (2014). The GBEP distribution has been characterized in the Research Monograph by
Hamedani and Maadootiat (2017).

44) The cd f of GBG is given by

F (x; c, k, η) = 1 −
[
1 +

(
− log

(
G (x; η)

))c]−k
, x ∈ R, (44)

where c, k are positive parameters and G (x; η)
(
G (x; η) = 1 −G (x; η)

)
is the baseline cd f with the corresponding pd f

g (x; η), which may depend on the vector parameter η.

45) The cd f of EWPF is given by

F (x;α, β, λ, θ, a) =

1 − exp

−α (
xθ

λθ − xθ

)βa

, (45)

0 ≤ x ≤ λ , where α, β, λ, θ, a are all positive parameters.

Remark 29. For a = 1, the EWPF distribution of Hassan and Assar (2017) reduces to Weibull Power Function (WPF)
distribution of Tahir et al. (2014). The WPF distribution has been characterized in the Research Monograph by Hamedani
and Maadootiat (2017).

46) The cd f of TTL1 is given by

F (x;α, θ, λ) = (1 + λ)
[
1 −

(
θ + α + αθx

θ + α

)
e−θx

]
− λ

[
1 −

(
θ + α + αθx

θ + α

)
e−θx

]2

, (46)

x ≥ 0, where α > 0, θ > 0, λ (|λ| ≤ 1) are parameters.

Remark 30. The TLL1 distribution of Kemaloglu and Yilmaz (2017) is the same as the TTL distribution of Al-Khazaleh
et al. (2016). The TTL distribution is numbered 34) in the present work. TTL1 (TTL) has been characterized in Hamedani
(2017a).

47) The cd f of MOLLEW is given by

F (x; c, α, δ, η) = 1 − δ (1 + xc)−1 e−αH(x;η)

1 − (1 − δ) (1 + xc)−1 e−αH(x;η)
, x ≥ 0, (47)

where α > 0, δ > 0 are parameters and H (x; η) is a non-negative differentiable function with limx→0+ H (x; η) = 0,
h (x; η) = H′ (x; η), which may depend on the parameter η.

48) The cd f of MSBS is given by

F (x;α, β, γ) =
∫ x

0

t−3/2 (t + β) γ
αβ1/2

∫ ∞

0
uγe−2uγϕ (uat (α, β)) du, (48)
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x ≥ 0 , where α, β, γ are positive parameters, ϕ (·) is pd f of standard normal distribution and ax (α, β) =
(√

x
β
−

√
β
x

)
/α.

49) The cd f of IPL is given by

F (x;α, β) =
(
1 +

βx−α

1 + β

)
e−βx−α , x ≥ 0, (49)

where α, β are positive parameters.

Remark 31. The IPL distribution of Barco et al. (2017) is the same as the Generalized Inverse Lindley (GIL) distribution
of Asgharzadeh et al. (2016). The GIL distribution has been characterized in Hamedani (2017a).

50) The cd f of WW is given by

F (x;α, β, λ, γ) = 1 − exp
{
−α

[
eλxγ − 1

]β}
, x ≥ 0, (50)

where α, β, λ, γ are positive parameters.

Remark 32. The cd f F (x;α, β, λ, a) =
[
1 − exp

{
−α

[
eλx2 − 1

]β}]a
, x ≥ 0 is of the form (50), which has been char-

acterized in Hamedani (2017a). Similarly, cd f s F (x; θ, γ, a, b) = 1 −
{
1 −

[
1 − exp

{[
− θ
γ
(eγx − 1)

]}]a}b
, x ≥ 0 and

F (x;α, β, a, b) = 1 − exp
{
−a

[
exp(eαx−β/x) − 1

]b
}
, x ≥ 0, which have been characterized in the Research Monograph

by Hamedani and Maadooliat (2017).

51) The cd f of BGKw-G is given by

F (x; a, b,m, n) =
1

B (m, n)

∫ 1−[1−G(x)a]b

0
tm−1 (1 − t)n−1 dt, (51)

x ≥ 0, where a, b,m, n are positive parameters.

Remark 33. The cd f F (x;α, β) = 1
B(α,β)

∫ Q(x)

0 tα−1 (1 − t)β−1 dt, x ∈ R, where Q (x) is an absolutely continuous cd f has

been introduced before and has been characterized in Hamedani (2016). Letting Q (x) = 1 − [
1 −G (x)a]b in F (x;α, β),

we arrive at (101).

52) The cd f of NLM is given by

F (x;α) = exα ln 2 − 1, 0 ≤ x ≤ 1, (52)

where α is a positive parameter.

53) The cd f of MOEBXII is given by

F (x;α, λ, c, p) =
1 −

{
1 −

[
1 − (1 + xc)−k

]λ}
1 − α

{
1 −

[
1 − (1 + xc)−k

]λ} , x ≥ 0, (53)

where α, λ, c, p are all positive parameters and α = 1 − α.

Remark 34. The cd f F (x;α, λ, p) =
{

1−
(
G(x)

)λ
1−p

(
G(x)

)λ
}α
, x ∈ R,where G (x) a baseline cd f was introduced by Dias et al.

(2016). Letting α = 1 , renaming p as 1 − α (for α > 0) and G (x) =
(
1 −

{
1 −

[
1 − (1 + xc)−k

]λ})1/λ
, x ≥ 0, we arrive at

(53). Thus, cd f (53) is a special case of Dias et al. distribution.

54) The cd f of BNH is given by

F (x;α, λ, a, b) =
1

B (a, b)

∫ 1−exp{1−(1+λx)α}

0
ta−1 (1 − t)b−1 dt, (54)
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x ≥ 0 , where α, λ, a, b are all positive parameters.

Remark 35. As pointed out in Remark 33, the cd f F (x;α, β) = 1
B(α,β)

∫ Q(x)

0 tα−1 (1 − t)β−1 dt, x ∈ R,where Q (x) is
an absolutely continuous cd f has been introduced before and has been characterized in Hamedani (2016). Letting
Q (x) = 1 − exp {1 − (1 + λx)α} in F (x;α, β), we arrive at (54).

55) The cd f of NTPW is given by

F (x; θ, β) =
(
1 − exp

{
−

[
exβ − 1

]2
})θ

, x ≥ 0, (55)

where θ, β are all positive parameters.

Remark 36. The cd f F (x; θ, β) give in (55) has been characterized in Hamedani (2017a) under the name BrX-W.

56) The pd f of GHT is given by

f (x;α, β, θ, η) = C1xα−1
(
1 +C2x2α

)− η
2α−

1
2 , x > 0, (56)

where α, β, θ, η are all positive parameters, C1 =
√

2αβα/2√
πηα/2θα

and C2 =
βα

2ηαθ2α .

57) The cd f of GE-G is given by

F (x;α, β, τ) =
βα

Γ (α)

∫ G(x;τ)
G(x;τ)

0
tα−1e−βtdt, x ∈ R, (57)

where α, β are all positive parameters and G (x; τ) is the baseline cd f with corresponding pd f g (x; τ) ,depending on the
parameter vector τ.

58) The cd f of MB-F is given by

F (x; a, b, c, d) =
badc

Γ (a + c)

∫ ∞

0
za+c−1e−dz erf

( √
xz/2

)
×

1F1 (a; a + c;− (b − d) z) dz,

for x ≥ 0, and

f (x; a, b, c, d) = Cx−1/2
( x
2
+ d

) 1
2−a−c

2F1

(
a; a + c − 1

2
; a + c;

d − b
x
2 + d

)
,

and

f (x; a, b, c, d) = Cx−1/2
( x
2
+ b

) 1
2−a−c

2F1

(
c; a + c − 1

2
; a + c;

b − d
x
2 + b

)

for x > 0,
∣∣∣∣ d−b

x
2+d

∣∣∣∣ < 1 and
∣∣∣∣ b−d

x
2+b

∣∣∣∣ < 1 respectively, where a, b, c, d are all positive parameters, C = badcΓ(a+c− 1
2 )√

2πΓ(a+c)
.

We will take up here the more interesting case of b = d. Similar conclusions can be made for the above two cases as well.

The cd f of MB-F, for the case of b = d, is given by

F (x; a, b, c) =
2ba+c

Γ (a + c)

∫ ∞

0
z2a+2c−1e−bz2

erf
(√

x
2

z
)

dz, (58)

where C1 =
ba+cΓ(a+c− 1

2 )√
2πΓ(a+c)

.

59) The cd f of M-W is given by
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F (x; θ, η) =
2
√
π

∫ xη

2θ2

0
u1/2e−udu, x ≥ 0, (59)

where θ, η are positive parameters.

60) The cd f of EWE is given by

F (x;α, β, λ, a) =
[
1 − exp

(
−α

(
eλx − 1

)β)]a
, x ≥ 0, (60)

where α, β, λ, a are positive parameters.

Remark 37. The cd f F (x;α, β, λ, a) give in (60) is a special case of the Exponentiated Weibull Rayleigh (EWR)
distribution of Elgarhy. The EWR distribution has been characterized in Hamedani (2017a).

61) The cd f of αLT are given by

F (x;α) =
{

1− log[α−(α−1)G(x)]
logα , i f α > 0 , α , 1

G(x) , i f α = 1 , x ∈ R, (61)

where α is a parameter and G (x) is the baseline cd f with pd f g (x).

62) The cd f of TLOLL is given by

F (x; a, b, ξ) =

1 −
[
1 − G (x; ξ)a

G (x; ξ)a +G (x; ξ)a

]2


b

, x ∈ R,

where a, b are positive parameters and G (x; ξ) is the baseline cd f with pd f (x; ξ), which depends on the parameter vector
ξ.

Remark 38. The cd f F (x; a, b, ξ) given above is similar to the New Family (NF) of distributions of Alizadeh et al.
(2015). The cd f of NF distribution is given by

F (x; a, b, α, ξ) = 1 −
{

1 −
[

G (x; ξ)a

G (x; ξ)a +G (x; ξ)a

]α}b

, x ∈ R. (62)

The NF distribution has been characterized in the Research Monograph by Hamedani and Maadooliat(2017).

63) The cd f of TW-M is given by

F (x; θ, µ) =
2
√
π

∫ θ(x−µ)2

0
u1/2e−udu, x ≥ µ, (63)

where θ > 0 and µ ∈ R are parameters.

64) The cd f of GQHR is given by

F (x; a, b, c, d) =
[
1 − e−(ax+ b

2 x2+ c
3 x3)]d

, x ≥ 0, (64)

where a ≥ 0, c ≥ 0, d > 0 and b ≥ −2
√

ac are parameters.

Remark 39. The cd f F (x; a, b, c, d) given in (64) is a special case of the Exponentiated Generalized (EG) class of
distributions of Cordeiro et al. (2013). The cd f of EG distribution is given by

F (x;α, β) =
[
1 − {1 −G (x)}α]β , x ∈ R,

where G (x) is the baseline distribution. Taking α = 1,G (x) = 1 − e−(ax+ b
2 x2+ c

3 x3), x > 0, we arrive at (64) .The EG
distribution has been characterized in Hamedani (2016). The cd f given in (64) is also a special case of the Kumaraswamy
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Quadratic Hazard Rate (KQHR) distribution of Elbatal and Aryal (2013). The KQHR has been characterized in Hamedani
(2017).

65) The cd f of NFPW is given by

F (x; a, b, β, λ) =
[
1 − e(−axβ)]b

×
{
1 + λ − λ

[
1 − e(−axβ)]b

}
, x ≥ 0, (65)

where a, b, β and λ (|λ| ≤ 1) are parameters.

Remark 40. The cd f given in (65) is a special case of the Kumaraswamy-Tansmuted Exponentiated Modified Weibull
(KwTEMW) distributions of Al-babtain et al. (2015). The cd f of KwTEMW distribution is given by

F (x;α, β, θ, γ, a, b, λ) = 1 −
{

1 −
[
1 − e−(θx+γxβ)

]aα ×
[
1 + λ − λ

(
1 − e−(θx+γxβ)

)α]a }b
,

x ≥ 0, where α, β, θ, γ, a, b, λ (|λ| ≤ 1) are parameters. Taking a = b = 1 and θ = 0, we arrive at (65) .The KwTEMW
distribution has been characterized in Hamedani (2018).

66) The cd f of OLBXII is given by

F (x;α, β, σ, θ) = 1 −
1 + θ

[
1 +

(
x
σ

)α]β
1 + θ

exp
{
θ

(
1 −

[
1 +

( x
σ

)α]β)}
, (66)

x ≥ 0 , where α, β, σ, θ are positive parameters.

67) The cd f of DP is given by

F (x; λ, γ, β, θ) =
1 − exp

(
θ
[
1 + λx−γ

]−β)
1 − eθ

, x ≥ 0, (67)

where λ, γ, β, θ are all positive parameters.

68) The cd f of BXIIMW is given by

F (x; c, k, α, β, λ) = 1 − (1 + xc)−k e−αxβeλx
, x ≥ 0, (68)

where c, k, α, β all positive and λ ≥ 0 are parameters.

69) The cd f of BXP is given by

F (x;α, β, δ) =

1 − exp

−
[(

x
β

)α
− 1

]2
δ , x ≥ β, (69)

where α, β, δ are positive parameters.

Remark 41. The cd f given in (69) is a special case of the Exponentiated Weibull-Pareto (EW-P) distributions of Afify
et al. (2016). The cd f of EW-P distribution is given by

F (x;α, θ, a, b) =
(
1 − exp

{
−

[( x
θ

)a
− 1

]b})α
, x ≥ θ,

where α, θ, a, b are positive parameters. Taking b = 2, we arrive at (69) .The EW-P distribution has been characterized in
Hamedani and Maadooliat (2017).

70) The cd f of GCFW is given by

F (x;α, β, µ) = 1 − exp
{− exp

{
µ + α log H1 (x) + β log H2 (x)

}}
, (70)

where α > 0, β > 0 and µ are parameters, Hi (x) , i = 1, 2 are non-negative and nondecreasing for all x ≥ 0 with Hi (0) = 0,
limx→∞ Hi (x) = ∞ and hi (x) = d

dx Hi (x) .
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71) The cd f of PLP is given by

F (x;α, β, θ, λ) =
eθ − e−θ

[
1−λα(λ+xβ)−α

]
eθ − 1

, x ≥ 0, (71)

where α, β, θ and λ are positive parameters.

Remark 42. The cd f given in (71) is a special case of the Truncated Weibull-G (TW-G) distributions of Najarzadegan
et al. (2017). The TW-G distribution of Najarzadegan et al. is not new either since this distribution was introduced by
Gomes et al. (2015), which is characterized in Hamedani and Maadooliat (2017).

72) The cd f of MWP is given by

F (x;α, β, γ, θ) =
exp

{
θ
(
1 − e−αx−βxγ

)}
eθ − 1

, x ≥ 0, (72)

where α, β ≥ 0, α + β > 0, γ, θ > 0 are parameters.

73) The cd f of EPLG is given by

F (x;α, β, λ, θ) =
(1 − θ)

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α
1 − θ

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α , x ≥ 0, (73)

where α, β, λ, θ > 0 are parameters.

74) The cd f of GMWPS is given by

F (x;α, β, γ, λ, θ) =
C

(
θ
(
1 − exp

{
−αxγeλx

})β)
C (θ)

, x ≥ 0, (74)

where α, β, θ > 0 and λ, γ ≥ 0 are parameters and C (θ) =
∑∞

n=1 anθ
n, a′i s are nonnegative real numbers.

Remark 43. The cd f given in (146) is a special case of the general form of

F (x) =
C (θt (x)α)

C (θ)
, x ≥ 0,

mentioned in Tahmasebi and Jafari (2016) in which they set t (x) = 1−exp
{
− β
γ

(eγx − 1)
}
. Taking t (x) =

(
1 − exp

{
−αxγeλx

})β
in the above F (x), yields (74). The distribution of Tahmasebi and Jafari (2016) is characterized in Hamedani and Safavi-
manesh (2017b).

75) The cd f of AMWOLLG (WLOG, for δ = η = 1) is given by

F (x;α, β, γ, λ) = 1 − exp
{
−

(
α
(
− log G (x;Θ)

))
eγ

(
− log G(x;Θ)

)
+ eλ

(
− log G(x;Θ)

)
−β − e−β

}
, x ∈ R (75)

where α, β > 0 and λ, γ ≥ 0 are parameters.

76) The cd f of EPLPS is given by

F (x;α, β, λ, θ) = 1 −
C

(
θ − θ

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α)
C (θ)

, x ≥ 0, (76)

where α, β, λ, θ > 0 are parameters and C (θ) =
∑∞

n=1 anθ
n, a′i s are nonnegative real numbers.

77) The cd f of W-R is given by

F (x; γ, c) = 1 − exp
{
− 1
γc

[− log (1 − FR (x))
]c
}
, x ∈ R, (77)
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where γ, c > 0 are parameters and FR (x) , fR (x) are cd f and pd f of the special distribution taken in Ghosh and Nadarajah
(2018).

78) The cd f of WL is given by

F (x; λ) =
1

1 − e−2π

(
1 − e−λx − λx

λ + 1
e−λx

)
+

2πλ
λ + 1

(
1 − e−λx

)
×

 e−2πλ(
1 − e−2πλ)2

 , (78)

0 ≤ x ≤ 2π , where λ > 0 is a parameter.

79) The cd f of BW-G is given by

F (x;α, β, a, b) =
1

B (a, b)

∫ 1−exp
{
−α

[
G(x;θ)
G(x;θ)

]β}
0

, x ∈ R, (79)

where α, β, a, b are positive parameters and G
(
x; θ

)
, g

(
x; θ

)
are cd f and pd f of the baseline distribution which depends

on the parameter vector θ.

Remark 44. The cd f F (x;α, β) = 1
B(α,β)

∫ Q(x)

0 tα−1 (1 − t)β−1 dt, x ∈ R, where Q (x) is an absolutely continuous cd f

has been introduced before and has been characterized in Hamedani (2016). Letting Q (x) = 1 − exp
{
−α

[
G(x;θ)
G(x;θ)

]β}
in

F (x;α, β), we arrive at (79).

80) The cd f of TWR is given by

F (x|β, λ, γ (t)) = 1 − exp
− (

x
γ (t)

)β × 1 − λ + λ exp
− (

x
γ (t)

)β , x ≥ 0, (80)

where β > 0, λ (|λ| ≤ 1) are parameters and γ (t) as a parameter depending on a covariate vector t =
(
1, t1, ..., tp

)′
given by

γ (t) = γ0 + γ1t1 + ... + γptp.

2. Characterizations of Distributions

We present our characterizations (i) − (iv) in four subsections.

2.1 Characterizations Based on Two Truncated Moments

This subsection deals with the characterizations of distributions listed in Section 1 based on the ratio of two truncated
moments. Our first characterization employs a theorem due to Glänzel (1987), see Theorem 1 of Appendix A . The result,
however, holds also when the interval H is not closed, since the condition of the Theorem is on the interior of H.

Proposition 1.1. Let X : Ω → (0,∞) be a continuous random variable and let q2 (x) =
(
1 −

(
1 − β

(
ax + b

2 x2
))1/β

)1−α

and q1 (x) = q2 (x)
(
1 − β

(
ax + b

2 x2
))−1

for x > 0. Then for β < 0, the random variable X has cd f (1) if and only if the
function ξ defined in Theorem 1 is of the form

ξ (x) = (1 − β)
(
1 − β

(
ax +

b
2

x2
))
, x > 0.

Proof. Suppose the random variable X has cd f (1), then

(1 − F (x)) E
[
q1 (X) | X ≥ x

]
=

α

1 − β

(
1 − β

(
ax +

b
2

x2
)) 1

β−1

, x > 0,

and

(1 − F (x)) E
[
q2 (X) | X ≥ x

]
= α

(
1 − β

(
ax +

b
2

x2
))1/β

, x > 0.
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Further,

ξ (x) q1 (x) − q2 (x) = −βq2 (x) > 0 , f or x > 0.

Conversely, if ξ is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x) − q2 (x)
=

(1 − β) (a + bx)

1 − β
(
ax + b

2 x2
) , x > 0,

and consequently

s (x) = −1 − β
β

log
{

1 − β
(
ax +

b
2

x2
)}
, x > 0.

Now, according to Theorem 1, X has cd f (1) .

Corollary 1.1. Let X : Ω → (0,∞) be a continuous random variable and let q2 (x) be as in Proposition 1.1. For β < 0,
the random variable X has cd f (1) if and only if there exist functions q1 and ξ defined in Theorem 1 satisfying the
following differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
(1 − β) (a + bx)

1 − β
(
ax + b

2 x2
) , x > 0.

Remark 1.1. The general solution of the differential equation in Corollary 1.1 is

ξ (x) =
[
1 − β

(
ax +

b
2

x2
)]1− 1

β

 − ∫
(1 − β) (a + bx)

[
1 − β

(
ax + b

2 x2
)] 1

β−2 ×
(q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant. We like to point out that one set of functions satisfying the above differential equation is given in
Proposition 1.1 with D = 0. Clearly, there are other triplets (q1, q2, ξ) which satisfy conditions of Theorem1.

Clearly, a Proposition, a Corollary and a Remark similar to the Proposition 1.1, Corollary 1.1 and Remark 1.1 can be
stated for each of the distributions mentioned in the Introduction. For each of these distributions, we give below, the
functions q1, q2 and ξ corresponding to Theorem 1.

2. q1 (x) =

{
1−p+p

[
1−e−(

x
σ )β

]α[
1+λe−(

x
σ )β

]α}2

[
1−λ+2λe−(

x
σ )β

][
1+λe−(

x
σ )β

]α−1 , q2 (x) = q1 (x)
[
1 − e−(

x
σ )β

]α
and ξ (x) = 1

2

{
1 +

[
1 − e−(

x
σ )β

]α}
for x > 0.

6. q1 (x) =
[
1 − exp

{
−a (1 + ηx)−1/η

}]1−b
, q2 (x) = q1 (x) exp

{
−a (1 + ηx)−1/η

}
and ξ (x) = 1

2

{
1 + exp

{
−a (1 + ηx)−1/η

}}
for x > 0.

7. q1 (x) ≡ 1 , q2 (x) = exp {(G (x))α} and ξ (x) = 1
2
{
e + exp {(G (x))α}} , for x ∈ R.

10. q1 (x) =
{
1 − p

{
1 −

[
1 − (1 + λx)−θ

]α}}2
, q2 (x) = q1 (x)

[
1 − (1 + λx)−θ

]α
and ξ (x) = 1

2

{
1 +

[
1 − (1 + λx)−θ

]α}
for

x > 0.

12. q1 (x) =

[
1−e−(

γ
x )β

]b+1

exp


 e
−( γ

x )β

1−e
−( γ

x )β


b1−λ+2λ exp

−
 e
−( γ

x )β

1−e
−( γ

x )β


b


, q2 (x) = q1 (x) e−b( γ
x )β and ξ (x) = 1

2

{
1 + e−b( γ

x )β
}

for x > 0.

14. q1 (x) ≡ 1 , q2 (x) = exp
{
−a

(
log

[
1 +

(
x
s

)u])β}
and ξ (x) = 1

2 exp
{
−a

(
log

[
1 +

(
x
s

)u])β}
for x > 0.

18. q1 (x) =

[
1−

(
1−e−(λx)2

)θ]β+1

(
1−e−(λx)2

)θβ−1 exp

−α
(
1−e−(λx)2

)θβ
[
1−

(
1−e−(λx)2

)θ]β
 , q2 (x) = q1 (x) e−(λx)2

and ξ (x) = 1
2 e−(λx)2

for x > 0.
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19. q1 (x) =
{
1 −

[
1 −

(
θ
x

)α]a [
1 + λ

(
θ
x

)α]a}1−b
, q2 (x) = q1 (x)

{[
1 −

(
θ
x

)α] [
1 + λ

(
θ
x

)α]}a
and

ξ (x) = 1
2

{
1 +

[
1 −

(
θ
x

)α]a [
1 + λ

(
θ
x

)α]a}
for x > 0.

21. q1 (x) = x1−α
[
δ − (δ − 1)

(
x

x+β

)α]2
, q2 (x) = q1 (x) (x + β)−1 and ξ (x) = α

α+1 (x + β)−1 for x > 0.

23. q1 (x) = (1 + x)−1 , q2 (x) = q1 (x) e−θ(x−η) and ξ (x) = 1
2

(
1 + e−θ(x−η)

)
for 0 < x < η.

24. q1 (x) =
[
1 − λ + 2λ

(
1 − e−(

θ
x )

β
)α]−1

, q2 (x) = q1 (x)
(
1 − e−(

θ
x )

β
)

and ξ (x) = α
α+1

(
1 − e−(

θ
x )

β
)

for x > 0.

28. q1 (x) = e−λ(βx)α
[
1 − e−λ − π + π exp

(
−λ + λe−(βx)α

)]2
, q2 (x) = q1 (x) e−(βx)α and ξ (x) = 1

2 e−(βx)α for x > 0.

29. q1 (x) =
[
sin

(
π
2 e−θx

)]−1
, q2 (x) = q1 (x) e−θx and ξ (x) = 1

2 e−θx for x > 0.

30. q1 (x) =
[
1 − exp

(
λ
(
(1 + xα)−β − 1

))]1−a
, q2 (x) = q1 (x) exp

(
λ
(
(1 + xα)−β − 1

))
and ξ (x) = 1

2

{
exp

(
λ
(
(1 + xα)−β − 1

))
+ 1

}
for x > 0.

38. q1 (x) =
[
1 −

(
x
λ

)aθ
]1−b

, q2 (x) = q1 (x)
(

x
λ

)aθ
and ξ (x) = 1

2

[
1 +

(
x
λ

)aθ
]

for 0 < x < λ.

42. q1 (x) = (λx)−ω
[
(1 − β) Γ (ω + 1) + 2βΓ (ω + 1, λx)

]−1 , q2 (x) = xq1 (x) and ξ (x) = x + 1
λ

for x > 0.

43. q1 (x) =
[
1 − λ + 2λ

(
x0
x

)α]−1 [
1 + λ

(
x0
x

)α]1−a {(
x0
x

)α [
1 − λ + λ

(
x0
x

)α]}1−b
, q2 (x) = q1 (x)

[
1 −

(
x0
x

)α]a
and ξ (x) =

1
2

{
1 +

[
1 −

(
x0
x

)α]a}
for x > x0.

44. q1 (x) =
(
1 +

(
− log

(
G (x; η)

))c)k−1
, q2 (x) = q1 (x)

(
1 +

(
− log

(
G (x; η)

))c)−1
and ξ (x) = 1

2

(
1 +

(
− log

(
G (x; η)

))c)−1

for x ∈ R.
47. q1 (x) =

[
1 − (1 − δ) (1 + xc)−1 e−αH(x;η)

]2
, q2 (x) = q1 (x) (1 + xc)−1 e−αH(x;η) and ξ (x) = 1

2 (1 + xc)−1 e−αH(x;η) for
x > 0.

48. q1 (x) =
{
(x + β)

∫ ∞
0 uγe−2uγϕ (uax (α, β)) du

}−1
, q2 (x) = x−1q1 (x) and ξ (x) = 1

2 x−1/2 for x > 0.

50. q1 (x) ≡ 1 , q2 (x) = exp
{
−α

[
eλxγ − 1

]β
+ λxγ

}
and ξ (x) = 1

2 exp
{
−α

[
eλxγ − 1

]β}
for x > 0.

52. q1 (x) = e−xα ln 2 , q2 (x) = q1 (x) (ln 2) xα and ξ (x) = 1
2 {1 + (ln 2) xα} for 0 < x < 1.

55. q1 (x) = xα
(
1 = C2x2α

)−1/2
, q2 (x) = q1 (x)

(
1 = C2x2α

)−1/2
and ξ (x) = η

η+α

(
1 +C2x2α

)−1/2
for x > 0.

56. q1 (x) = G (x; τ)α+1 exp
{
βG(x;τ)
G(x;τ)

}
, q2 (x) = q1 (x) G (x; τ)α and ξ (x) = 1

2 (1 +G (x; τ)α) for x ∈ R.

57. q1 (x) = x1/2 , q2 (x) = q1 (x)
(

x
2 + b

)ε
and ξ (x) = 2(a+c)−3

2(a+c)−(3+2ε)

(
x
2 + b

)ε
for x > 0 and ε any positive number.

58. q1 (x) = x−η/2 , q2 (x) = q1 (x) e−
xη

2θ2 and ξ (x) = 1
2 e−

xη

2θ2 for x > 0.

60. q1 (x) = [α − (α − 1) G (x)] , q2 (x) = q1 (x) G (x) and ξ (x) = 1
2 {1 +G (x)} for x ∈ R.

62. q1 (x) = (x − µ)−1 , q2 (x) = q1 (x) e−θ(x−µ)2
and ξ (x) = 1

2 e−θ(x−µ)2
for x > µ.

65. q1 (x) ≡ 1 , q2 (x) = exp
{
θ
(
1 −

[
1 +

(
x
σ

)α]β)}
and ξ (x) = 1

2 exp
{
θ
(
1 −

[
1 +

(
x
σ

)α]β)}
for x > 0.

66. q1 (x) = exp
(
−θ [1 + λx−γ

]−β) , q2 (x) = q1 (x)
[
1 + λx−γ

]−β and ξ (x) = 1
2

{
1 + (1 + λx−γ)−β

}
for x > 0.

67. q1 (x) ≡ 1 , q2 (x) = (1 + xc)−k e−αxβeλx
and ξ (x) = 1

2 (1 + xc)−k e−αxβeλx
for x > 0.

69. q1 (x) ≡ 1 , q2 (x) = exp
{− exp

{
µ + α log H1 (x) + β log H2 (x)

}}
and ξ (x) = 1

2 exp
{− exp

{
µ + α log H1 (x) + β log H2 (x)

}}
for x > 0.

71. q1 (x) = exp
{
−θ

(
1 − e−αx−βxγ

)}
, q2 (x) = q1 (x) e−αx−βxγ and ξ (x) = 1

2 e−αx−βxγ for x > 0.

72. q1 (x) =
(
1 − θ

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α)2
, q2 (x) = q1 (x)

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α
and ξ (x) = 1

2

{
1 +

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α}
for x > 0.
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74. q1 (x) =
(

1
G(x;Θ)

{
αeγ

(
− log G(x;Θ)

) (
γ
(
− log G (x;Θ)

)
+ 1

)
+ λeλ

(
− log G(x;Θ)

)
−β

}
× exp

{
−

(
α
(
− log G (x;Θ)

))
eγ

(
− log G(x;Θ)

)
+ eλ

(
− log G(x;Θ)

)
−β − e−β

})−1
, q2 (x) = q1 (x) G (x;Θ) and ξ (x) = 1

2 {1 +G (x;Θ)}
for x > 0.

75. q1 (x) =
(
C′

(
θ − θ

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α))−1
, q2 (x) = q1 (x)

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α
and ξ (x) = 1

2

{
1 +

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α}
for x > 0.

76. q1 (x) ≡ 1 , q2 (x) = exp
{
− 1
γc

[− log (1 − FR (x))
]c
}

and ξ (x) = 1
2 exp

{
− 1
γc

[− log (1 − FR (x))
]c
}

for x ∈ R.

77. q1 (x) =
[

1+x
1−e−2πλ +

2πe−2πλ

(1−e−2πλ)2

]−1
, q2 (x) = q1 (x) e−λx and ξ (x) = 1

2

[
e−λx + e−2πλ

]
for x ∈ (0, 2π) .

78. q1 (x) =
{
1 − λ + 2λ exp

[
−

(
x
γ(t)

)β]}−1
, q2 (x) = q1 (x) exp

[
−

(
x
γ(t)

)β]
and ξ (x) = 1

2 exp
[
−

(
x
γ(t)

)β]
for x > 0.

2.2 Characterization in Terms of Hazard Function

The hazard function, hF , of a twice differentiable distribution function, F, satisfies the following first order differential
equation f ′(x)

f (x) =
h′F (x)
hF (x) −hF(x). It should be mentioned that for many univariate continuous distributions, the above equation

is the only differential equation available in terms of the hazard function. In this subsection we present non-trivial
characterizations of EL (for k = 1), ETWG (for λ = 0), KumGEV, GEG, ELG (for α = 1), TWFr (for λ = 0), GWBXII,
WBX, KwTP, MOEIP, UTL, TEF (for λ = 0), GBXIIP (for a = 1), TTL (for λ = 0), Kw-PF, GBG, WW, NLM, αTL
, OLBXII, BXIIMW, GCFW, MWP, AMWOLLG, EPLPS, W-G and TWR distributions in terms of the hazard function,
which are not of the above trivial form.

Proposition 2.1. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (1) (for k = 1)
if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − θ2

θ2 (x + 1) + (1 + θ)
hF (x) = −

θ3 (1 + θ)
[
θ2 (x + 1) + (1 + θ)

]
[
θ2 (1 + θ) x + (1 + θ)3]2 , x > 0.

Proof. If X has cd f (1) for k = 1, then clearly the above differential equation holds. If the differential equation holds,
then

d
dx

{[
θ2 (x + 1) + (1 + θ)

]−1
hF (x)

}
= − θ3 (1 + θ)[

θ2 (1 + θ) x + (1 + θ)3]2

= θ
d
dx

{[
θ2 (1 + θ) x + (1 + θ)3

]−1
}
,

from which we arrive at the hazard function corresponding to the cd f (1) .

A Proposition similar to that of Proposition 2.1 will be stated (without proof) for each one of the distributions listed in
subsection 2.1.

Proposition 2.2. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has cd f (2) (for λ = 0),
if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) +
βxβ−1

σβ
hF (x) =

αβ

σ
e−(

x
σ )β d

dx


(

x
σ

)β−1
[
1 − e−(

x
σ )β

]α−1

[
1 − e−(

x
σ )β

] {
1 − p + p

[
1 − e−(

x
σ )β

]α [
1 + λe−(

x
σ )β

]α}
 , x > 0.

Proposition 2.3. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has cd f (6), if and only
if its hazard function hF (x) satisfies the following differential equation

h′F (x) − a (1 + ηx)−
(

1
η+1

)
hF (x) = ab exp

{
−a (1 + ηx)−1/η

} d
dx

 (1 + ηx)−
(

1
η+1

)
1 − exp

{
−a (1 + ηx)−1/η

}
 , x > 0.
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Proposition 2.4. Let X : Ω → R be a continuous random variable. The random variable X has cd f (7), if and only if
its hazard function hF (x) satisfies the following differential equation

h′F (x) − αg (x) (G (x))α−1 hF (x) = α exp {(G (x))α} d
dx

{
g (x) (G (x))α−1

e − exp {(G (x))α}

}
, x ∈ R.

Proposition 2.5. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has cd f (10), for α = 1,
if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) + λ (1 + λx)−1 hF (x) = − pλ2θ2 (1 + λx)−(θ+2)[
1 − p (1 + λx)−θ

]2 , x > 0.

Proposition 2.6. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has cd f (12), for λ = 0,
if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − bβx−(β+1)hF (x) = bβγβe−b( γ
x )β d

dx


x−(β+1)[

1 − e−(
γ
x )β

]b+1

 , x > 0.

Proposition 2.7. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (14), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (u − 1) x−1hF (x) = αβuxu−1 d
dx


(
log

[
1 +

(
x
s

)u])β−1

xu + su

 , x > 0.

Proposition 2.8. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (18), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) + 2λ2xhF (x) = 2αβλ2θe−(λx)2 d
dx


x
(
1 − e−(λx)2)θβ−1[

1 −
(
1 − e−(λx)2

)θ]β+1

 , x > 0.

Proposition 2.9. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (38), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) +
α + 1

x
hF (x) =

abαθαx−(α+1) d
dx


[
1 − λ + 2λ

(
θ
x

)α] {[
1 −

(
θ
x

)α] [
1 + λ

(
θ
x

)α]}a−1

1 −
[
1 −

(
θ
x

)α]a [
1 + λ

(
θ
x

)α]a

 , x > 0.

Proposition 2.10. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (21), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − α − 1
x + β

hF (x) = αβ (x + β)α−1 d
dx

{
xα−1[

(x + β)α − xα
] [
δ (x + β)α − (δ − 1) xα

]} , x > 0.

Proposition 2.11. Let X : Ω → (0, η) be a continuous random variable. The random variable X has pd f (46), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) + θhF (x) =
θ2

(1 + θ)2

1 + θ + θ
[
x + θ (1 + x)2

]
e−θx − (1 + θ + θη) e−θη[

(1 + θ + θx) e−θx − (1 + θ + θη) e−θη
]2

 , 0 < x < η.
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Proposition 2.12. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (24), for
λ = 0, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − βθβx−(β+1)hF (x) = αβθβe−(
θ
x )

β


x−(β+2)

[(
β + 1 − βθβx

)
e−(

θ
x )

β

− (β + 1)
]

(
1 − e−(

θ
x )

β
)2

 , x > 0.

Proposition 2.13. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (30), for
a = 1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − α − 1
x

hF (x) = −aα2βλx2(α−1) (1 + xα)−β−2
+ aαβλe−λxα−1 d

dx

 (1 + xα)−β−1

exp
(
λ
(
(1 + xα)−β − 1

))
− e−λ

 , x > 0.

Proposition 2.14. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (34), for
λ = 0, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − α

1 + αx
hF (x) = −αθ3 (1 + αx) (θ + α + αθx)−2 , x > 0.

Proposition 2.15. Let X : Ω → (0, λ) be a continuous random variable. The random variable X has cd f (38), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − aθ − 1
x

hF (x) =
a2bθ2

λ2

( x
λ

)2(aθ−1)
[
1 −

( x
λ

)aθ
]−2

, 0 < x < λ.

Proposition 2.16. Let X : Ω → R be a continuous random variable. The random variable X has cd f (44), if and only
if its hazard function hF (x) satisfies the following differential equation

h′F (x) − g′ (x; η)
g (x; η)

hF (x) = ckg (x; η)
d
dx


(
− log

(
G (x; η)

))c−1 (
1 +

(
− log

(
G (x; η)

))c)
G (x; η)

 , x ∈ R.

Proposition 2.17. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (50), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − γ − 1
x

hF (x) = αβ (β − 1) λ2γ2x2(γ−1)eλxγ
[
eλxγ − 1

]β−2
, x > 0.

Proposition 2.18. Let X : Ω → (0, 1) be a continuous random variable. The random variable X has pd f (104), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − α − 1
x

hF (x) = 0, 0 < x < 1.

Proposition 2.19. Let X : Ω → R be a continuous random variable. The random variable X has cd f (60), if and only
if its hazard function hF (x) satisfies the following differential equation

h′F (x) − g′ (x)
g (x)

hF (x) = (α − 1) g (x)
d
dx

{
[α − (α − 1) G (x)]−1

log [α − (α − 1) G (x)]

}
x ∈ R.

Proposition 2.20. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (65), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − α − 1
x

hF (x) = θ2αβσ−αxα−1 d
dx


[
1 +

(
x
σ

)α]2β−1

1 + θ
[
1 +

(
x
σ

)α]β
 , x > 0.
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Proposition 2.21. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (67) if and
only if its hazard function hF (x) satisfies the differential equation

h′F (x) +
cxc−1

1 + xc hF (x) = (1 + xc)−1 d
dx

{
kcxc−1 + (1 + xc)αeλxxβ−1 (β + λx)

}
, x > 0.

Proposition 2.22. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (69) if and
only if its hazard function hF (x) satisfies the differential equation

h′F (x) −
(
α

h1 (x)
H1 (x)

+ β
h2 (x)
H2 (x)

)
hF (x) = exp

{
µ + α log H1 (x) + β log H2 (x)

} d
dx

{(
α

h1 (x)
H1 (x)

+ β
h2 (x)
H2 (x)

)}
, x > 0.

Proposition 2.23. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (71) if and
only if its hazard function hF (x) satisfies the differential equation

h′F (x) +
(
α + βγxγ−1

)
hF (x) = θe−αx−βxγ d

dx

{
αx + βγxγ−1

exp
{
θe−αx−βxγ } − 1

}
, x > 0.

Proposition 2.24. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (74) if and
only if its hazard function hF (x) satisfies the differential equation

h′F (x) − g′ (x;Θ)
g (x;Θ)

hF (x) = αg (x;Θ) × d
dx

αeγ
(
− log G(x;Θ)

) (
γ
(
− log G (x;Θ)

)
+ 1

)
+ λeλ

(
− log G(x;Θ)

)
−β

G (x;Θ)

 , x > 0.

Proposition 2.25. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (75) if and
only if its hazard function hF (x) satisfies the differential equation

h′F (x) + λβxβ−1hF (x) = αβθλ2e−λxβ×

d
dx

 xβ−1
(
1 + xβ

)
e−λxβ

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α−1
C′

(
θ − θ

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α)
C

(
θ − θ

[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α)
 , x > 0.

Proposition 2.26. Let X : Ω→ R be a continuous random variable. The random variable X has cd f (76) if and only if
its hazard function hF (x) satisfies the differential equation

h′F (x) −
f ′R (x)
fR (x)

hF (x) =
c
γc

d
dx


[− log (1 − FR (x))

]c−1

1 − FR (x)

 , x ∈ R.

Proposition 2.27. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (79) if and
only if its hazard function hF (x) satisfies the differential equation

h′F (x) − β − 1
x

hF (x) =
βxβ−1

(γ (t))β
d
dx


1 − λ + 2λ exp

[
−

(
x
γ(t)

)β]
1 − λ + λ exp

[
−

(
x
γ(t)

)β]
 , x > 0.

2.3 Characterization in Terms of the Reverse (or Reversed) Hazard Function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined as rF (x) = f (x)
F(x) , x ∈ support

o f F. In this subsection we present characterizations of ETWG (for λ = 0), GEG, ELG (for α = 1), KwTP (for b = 1),
MOEIP, SSTE, GBXIIP, OLBXII, MWP, EPLG distributions in terms of the reverse hazard function.
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Proposition 3.1. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (4) (for λ = 0)
if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) +
βxβ−1

σβ
rF (x) =

αβ (1 − p)
σ

e−(
x
σ )β d

dx


(

x
σ

)β−1[
1 − e−(

x
σ )β

] {
1 − p + p

[
1 − e−(

x
σ )β

]α [
1 + λe−(

x
σ )β

]α}
 , x > 0.

Proof. If X has pd f (4) for λ = 0, then clearly the above differential equation holds. If the differential equation holds,
then

d
dx

{
e( x

σ )βrF (x)
}
=
αβ (1 − p)

σ

d
dx


(

x
σ

)β−1[
1 − e−(

x
σ )β

] {
1 − p + p

[
1 − e−(

x
σ )β

]α [
1 + λe−(

x
σ )β

]α}
 ,

from which we arrive at the hazard function corresponding to the cd f (2) .

A Proposition similar to that of Proposition 3.1 will be stated (without proof) for each one of the distributions listed in
subsection 3.1.

Proposition 3.2. Let X : Ω→ R be a continuous random variable. The random variable X has cd f (7) if and only if its
reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − αg (x) (G (x))α−1 rF (x) = α exp {(G (x))α} d
dx

{
g (x) (G (x))α−1

exp {(G (x))α} − 1

}
, x ∈ R.

Proposition 3.3. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (20), for α = 1,
if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + λ (1 + λx)−1 rF (x) = (1 − p) λθ (1 + λx)−(θ+1) d
dx


[
1 − (1 + λx)−θ

]−1

1 − p (1 + λx)−θ

 , x > 0.

Proposition 3.4. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has cd f (19), for b = 1,
if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) +
α + 1

x
rF (x) = abαθαx−(α+1) d

dx


[
1 − λ + 2λ

(
θ
x

)α][
1 −

(
θ
x

)α] [
1 + λ

(
θ
x

)α]
 , x > 0.

Proposition 3.5. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (21), if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − α − 1
x + β

rF (x) = αβδ (x + β)α−1 d
dx

{
1

x
[
δ (x + β)α − (δ − 1) xα

]} , x > 0.

Proposition 3.6. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (29), if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + θrF (x) = −π
2
θ2e−2θx

[
1 + tan2

(
π

2
e−θx

)]
, x > 0.

Proposition 3.7. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (30), if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − α − 1
x

rF (x) = a2αβ (β + 1) λx2(α−1) (1 + xα)−β−2
+ aαβλxα−1 d

dx

 (1 + xα)−β−1

1 − exp
(
λ
(
(1 + xα)−β − 1

))
 , x > 0.
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Proposition 3.8. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has cd f (65), if and only
if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − α − 1
x

rF (x) = θαβσ−αxα−1 d
dx


[
1 +

(
x
σ

)α]2β−1

1 + θ
[
1 +

(
x
σ

)α]β
 , x > 0.

Proposition 3.9. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (71), if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) +
(
α + βγxγ−1

)
rF (x) = θe−αx−βxγ d

dx

{
αx + βγxγ−1

1 − exp
{−θ(1 − e−αx−βxγ )

}} , x > 0.

Proposition 3.10. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has cd f (72), if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + λβxβ−1rF (x) =
αβλ2

λ + 1
e−λxβ × d

dx

 xβ−1
(
1 + xβ

) [
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]−1

1 − θ
[
1 −

(
1 + λxβ

λ+1

)
e−λxβ

]α
 , x > 0.

2.4 Characterization Based on the Conditional Expectation of Certain Function of the Random Variable

In this subsection we employ a single function ψ (or ψ1) of X and characterize the distribution of X in terms of the
truncated moment of ψ (X) (or ψ1 (X)). The following propositions have already appeared in Hamedani’s previous work
(2013), so we will just state them here which can be used to characterize some of the distributions listed in Section 1.

Proposition H1. Let X : Ω → (e, f ) be a continuous random variable with cd f F . Let ψ (x) be a differentiable
function on (e, f ) with limx→e+ ψ (x) = 1. Then for δ , 1 ,

E
[
ψ (X) | X ≥ x

]
= δψ (x) , x ∈ (e, f ) ,

if and only if
ψ (x) = (1 − F (x))

1
δ−1 , x ∈ (e, f ) .

Proposition H2. Let X : Ω → (e, f ) be a continuous random variable with cd f F . Let ψ1 (x) be a differentiable
function on (e, f ) with limx→ f − ψ1 (x) = 1. Then for δ1 , 1 ,

E
[
ψ1 (X) | X ≤ x

]
= δ1ψ1 (x) , x ∈ (e, f ) ,

implies
ψ1 (x) = (F (x))

1
δ1
−1
. x ∈ (e, f ) .

Remarks 4.1. (A) For (e, f ) = (0,∞) , ψ (x) = 1 − exp
{
−a (1 + ηx)−1/η

}
and δ = b

1+b , Proposition H1 provides a

characterization of KumGEV distribution. (B) For (e, f ) = (0,∞) , ψ (x) = exp
{
−

(
log

[
1 +

(
x
s

)u])β}
and δ = α

1+α , Propo-

sition H1 provides a characterization of GWBXII distribution. (C) For (e, f ) = (0,∞) , ψ (x) = exp

−
(
1−e−(λx)2

)θβ
[
1−

(
1−e−(λx)2

)θ]β


and δ = α
1+α , Proposition H1 provides a characterization of WBX distribution. (D) For (e, f ) = (0,∞) , ψ (x) =

1 −
[
1 −

(
θ
x

)α]a [
1 + λ

(
θ
x

)α]a
and δ = b

1+b , Proposition H1 provides a characterization of KwTP distribution. (E) For

(e, f ) = (0,∞) , λ = 0, ψ (x) =
(
1 − e−(

θ
x )

β
)

and δ = α
1+α , Proposition H1 provides a characterization of TEF distribu-

tion. (F) For (e, f ) = (0,∞) , ψ (x) = 1−exp(λ((1+xα)−β−1))
1−e−λ and δ = a

1+a , Proposition H2 provides a characterization of

GBXIIP distribution. (G) For (e, f ) = (0,∞) , λ = 0, ψ (x) =
(
θ+α+αθx
θ+α

)1/θ
e−x and δ = θ

1+θ , Proposition H1 provides

a characterization of TLL distribution. (H) For (e, f ) = (0, λ) , ψ (x) =
[
1 −

(
x
λ

)aθ
]

and δ = b
1+b , Proposition H1
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provides a characterization of Kw-PF distribution. (I) For (e, f ) = R, ψ (x) =
(
1 +

(
− log

(
G (x; η)

))c)−1
and δ = k

1+k

, Proposition H1 provides a characterization of GBG distribution. (J) For (e, f ) = (0,∞) , ψ (x) = exp
{
−

[
eλxγ − 1

]β}
and δ = α

1+α , Proposition H1 provides a characterization of WW distribution. (K) For (e, f ) = (0, 1) , ψ (x) = exα

and δ = ln 2
1+ln 2 , Proposition H1 provides a characterization of NLM distribution. (L) For (e, f ) = (0,∞) , ψ (x) =(

1+θ[1+( x
σ )α]β

1+θ

)1/θ

exp
{(

1 −
[
1 +

(
x
σ

)α]β)}
and δ = θ

1+θ , Proposition H1 provides a characterization of OLBXII distribu-

tion. (M) For (e, f ) = (0,∞) , ψ (x) = (1 + xc)−1 e−
α
k xβeλx

and δ = k
1+k , Proposition H1 provides a characterization of

BXIIMW distribution. (N) For (e, f ) = R, ψ (x) = exp
{
− [− log (1 − FR (x))

]cγc}1/γc

and δ = 1
1+γc , Proposition H1

provides a characterization of W-R distribution.

3. Infinite Divisibility

Bondesson (1979) showed that all the members of the following families

f (x) = C xβ−1 (1 + c xα)−γ , x > 0 , 0 < α ≤ 1 , (B1)

f (x) = C xβ−1 exp {−c xα} , x > 0 , 0 < |α| ≤ 1 , (B2)

f (x) = C xβ−1 exp
{
−

(
c1x + c2x−1

)}
, x > 0,−∞ < β < ∞, (B3)

f (x) = C x−1 exp
{
− (

log x − µ)2 /
(
2σ2

)}
, x > 0, (B4)

where the natural restrictions are put on the unspecified parameters, are infinitely divisible. The last one is the lognormal
density.

Remark 3.1. Bondesson (1992, Theorem 6.2.4) pointed out that multiplying densities (B1) − (B4) by C1 (δ + x)−ν for
δ > 0 and ν > 0 , will result in densities which are also infinitely divisible.

Remark 3.2. The distributions, listed in Section 1, whose densities can be expressed, in view of Remark 3.1, in the form
(B1) are: BTXII , ZBXII (for a = 1), MOEIP (for δ = 1), LLGW and MB-F (for a + c > 1) ; in the form (B2) are: EBXII
(for β = ν = b = 1, |α| ≤ 1) , McQL (for a = b = 1); in the form of (B3) are: TIGE for α = 1, TGIE (for α = 1, λ = 0),
MOEIW (for θ = β = 1) and TEF (for α = β = 1, λ = 0).

4. Concluding Remarks

In designing a stochastic model for a particular modeling problem, an investigator will be vitally interested to know if
their model fits the requirements of a specific underlying probability distribution. To this end, the investigator will vitally
depend on the characterizations of the selected distribution. A good number of recently introduced distributions which
have important applications in many different fields have been mentioned in this work. Certain characterizations of these
distributions have been established. We hope that these results will be of interest to the investigators who may believe
their models have distributions mentioned here and are looking for justifying the validity of their models. It is known
that determining a distribution is infinitely divisible or not via the existing representations is not easy. We have used
Bondesson’s classifications to show that some of the distributions taken up in this work are infinitely divisible. This could
be helpful to some researchers. Finally, we like to mention that the distributions mentioned in this work may be a source
of preventing duplications of the existing distributions.
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Genç, A. (2017). Truncated inverted generalized exponential distribution and its properties. Commun. Statist. Simul.
Comp. (CSSC), 46(6), 4654-4670.

Gharib, M., Mohammed, B. I., & Aghel, W. E. R. (2017). Marshall-Olkin extended inverse Pareto distribution and its
application. IJSP, 6(6), 71-84.

Ghorbani, M., Bagheri, S. F., & Alizadeh, M. (2014). A new lifetime distribution: The modified Weibull Poisson distri-
bution. International journal of Operational Research and Decision Science Studies, 1(2), 28-47.

Ghorbani, M., Bagheri, S. F., & Alizadeh, M. (2017). A new family of distributions: The additive modified Weibull odd
log-logistic-G Poisson family, properties and applications. Ann. Data Sci., 4(2), 249-287.

Ghosh, I., & Nadarajah, S. On some further properties and application of Weibull-R family of distributions, Annals of
Data Science. (Forthcoming).

Glänzel, W. (Bad Tatzmannsdorf, 1986). A characterization theorem based on truncated moments and its application to
some distribution families, Mathematical Statistics and Probability Theory, Vol. B, Reidel, Dordrecht, 1987, 75–84.

Glänzel, W. (1990). Some consequences of a characterization theorem based on truncated moments. Statistics: A Journal
of Theoretical and Applied Statistics, 21(4), 613–618.

Glänzel, W., & Hamedani, G. G. (2001). Characterizations of univariate continuous distributions. Studia Sci. Math.
Hungar., 37, 83-118.

Gomez-Silva, F. S., Percontini, A., de Brito, E., Ramos, M. W., Venancio, R., & Coreiro, G. M. (2017). The odd Lindley-G
family of distributions. Austrian J. Stat., 49(1), 57-79.

Granzotto, D. C. T., Santos, C. A., & Louzada, F. (2018). The transmuted Weibull regression model: an application to
type 2 diabetes Mellitus data. IJSP, 7(2), 1-11.

Guerra, R. R., Peña-Ramirez, S. A., & Cordeiro, G. M. (2017). The gamma Burr XII distribution: Theory and application.
Journal of Data Science, 15, 467-494.

Hamedani, G.G. (2016). On characterizations and infinite divisibility of recently introduced distribution. SMH, 53(4),
467-511.

Hamedani, G. G. (2013). On certain generalized gamma convolution distributions II, Technical Report No. 484. MSCS,
Marquette University.

Hamedani, G. G. (2018). Characterizations and infinite divisibility of certain 2016-2017 univariate continuous distribu-
tions III. IJSP, 7(1), 39-71.

Hamedani, G. G. (2017a). Characterizations and infinite divisibility of certain 2016-2017 univariate continuous distribu-
tions II. IMF (International Mathematical Forum), 12(12), 565-609.

Hamedani, G. G., & Maadooliat, M. (Research Monograph, 2017). Characterizations of recently introduced univariate
continuous distributions.

Hamedani, G. G., & Safavimanesh, F. (2017b). Characterizations and infinite divisibility of certain 2016 univariate
continuous distributions. IMF, 12(5), 195-228.

62



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 3; 2018

Handique, L., Chakraborty, S., & Ali, M. M. (2017). Beta generated Kumarswamy-G family of distributions. Pak.J.Statist.,
33(6), 467-490.

Hassan, A. S., & Abd-Allah, M. (2017a). Exponentiated Lomax geometric distribution: properties and Applications.
Pak.j.stat.oper.res., XIII(2), 545-566.

Hassan, A. S., & Assar, S. M. (2017). The exponentiated Weibull-Power Function distribution. JDS, 15, 589-614.

Hassan, A. S., & Nssar, S. G. (2018). Power Lomax Poisson distribution: properties and estimation. JDS, 18, 105-128.

Ibrahim, N. A., Khaleel, M. A., Merovci, F., Kilicman, A., & Shitan, M. (2017). Weibull Burr X distribution: Properties
and Application. Pak.J.Statist., 33(5), 315-336.

Jamal, F., Nasir, M. A., Tahir, M. H., & Montazeri, N. H. (2017). The odd Burr-III family of distributions. J. Stat. Appl.
Pro., 6(1), 105-122.

Joshi, S., & Jose, K. K. (2018). Wrapped Lindley distribution. CSTM, 47(5), 1013-1021.

Kemaloglu, S. A., & Yilmaz, M. (2017). Transmuted two-parameter Lindley distribution. CSTM, 46(23), 11866-11879.

Khan, M. S., King, R., & Hudson, I. L. (2017a). Transmuted new generalized inverse Weibull distribution. Pak.j.stat.oper.res.,
XIII(2), 227-296.

Khan, M. S., King, R., & Hudson, I. L. (2017b). Transmuted generalized exponential distribution: A generalization of
the exponential distribution with applications to survival data. Commun. Statist. Simul. Comp., 46(6), 4377-4398.

Korkmaz, M. C., Altun, E., Yousof, H. M., Afify, A. Z., & Nadarajah, S. (2018). The Burr X Pareto distribution:
properties, application and VaR estimate. J. of Risk and Financial Management, 11(1), 1-16.

Korkmaz, M. C., & Yousof, M. H. (2017). The one-parameter odd Lindley exponential model: Mathematical properties
and Applications. Stochastics and Quality Control, 32(1), 25-35.
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for some d < b (a = −∞, b = ∞
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might as well be allowed) . Let X : Ω → H be a continuous random variable with the distribution function F and let q1
and q2 be two real functions defined on H such that

E
[
q2 (X) | X ≥ x

]
= E

[
q1 (X) | X ≥ x

]
ξ (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that the equation ξq1 = q2 has no real solution in the interior
of H. Then F is uniquely determined by the functions q1, q2 and ξ , particularly

F (x) =
∫ x

a
C

∣∣∣∣∣ ξ′ (u)
ξ (u) q1 (u) − q2 (u)

∣∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = ξ′ q1
ξq1−q2

and C is the normalization constant, such that∫
H dF = 1.
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