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Abstract

In this paper, we use the Stein-Chen method to obtain new bounds on Poisson approximation for random sums of inde-
pendent binomial random variables. Some results related to sums of independent binomial distributed random variables
are also investigated. The received results in the present study are more general and sharper than some known results.
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1. Introduction

In recent times, Poisson approximation problem for random sums of discrete random variables has attracted the attention
of mathematicians. Readers who are interested in this problem can refer to (Hung & Giang, 2016b), (Kongudomthrap &
Chaidee, 2012), (Teerapabolarn, 2013), (Teerapabolarn, 2014b), (Vellaisamy & Upadhye, 2009) and (Yannaros, 1991) for
more details. We need to recall some results concerning the bounds in Poisson approximation for random sums of discrete
random variables.

Let Z,,Z,, ... be a sequence of independent Bernoulli random variables, each with probability of success P(Z; = 1) =

pi=1-PZ =0),i =1,2,..., and let N be a positive integer-valued random variable and independent of Z;’s. Let U,-
N N

be a Poisson random variable with mean A*, Vy = 3, Z;, A* = E (/17\,) and Ay, = 3, p;. In 1991, Yannaros gave a uniform
i=1 i=1

bound for the total variation distance between the distributions of Vy and U - as follows, see (Yannaros, 1991):

1—67/11*" al 2
LBl (M
N

i=1

dry (Vy,Up) < E

Ay = A"

Let X1, Xz, ..., X, be n independently distributed binomial random variables, each with probabilities

P(X; = k) = Cspi(1 - p)",

. ri!
where p; € (0,1);r; = 1,2,...5i = 1,2,...n;k=0,1,...ri;C’," = m

Suppose that N is a positive integer-valued random variable and independent of X;’s. Let U, be a Poisson random variable
N N

with mean A, Wy = > X;, Ay = XY ripi and 1 = E(dy). In 2014, Teerapabolarn used the Stein-Chen method to
i=1 i=1

obtain a uniform bound for the total variation distance between the distribution functions of Wy and U, as follows, see

(Teerapabolarn, 2014a):

i=1

-t & 2 . 2
dry (Wy,U)) < E = Zr,-p,. +min 1, /==t Ely = Al )

This paper is organized as follows. The second section is a brief introduction to Stein-Chen method. In section 3, we give
main results of this paper, and conclusions of this study are presented in the last section.

In addition, throughout this paper, dry is denoted the total variation distance, defined by

dry (X,Y) =sup|P(X € A)—P(Y € A)|,
A

where A C Z, :=1{0,1,2,...}.
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2. Preliminaries

The Stein-Chen method has been dealt with in detail in many articles (the reader is referred to (Chen, 1975) and (Barbour,
Holst & Janson, 1992) for fuller development). The Stein-Chen method can be summarized as follows.

Let us denote by Fy, (A) the probability distribution function of a discrete random variable W,, € A and we will be denoted
k

Ay . . .
by P,, (A) = Z e~ the Poisson distribution function (1, > 0), defined on the set A C Z.. The best known method

!
. . keA k!
for estimating

A = sup |Fy, (A) - P, (A)

is basing on the following arguments (see (Chen, 1975) for more details).

Assume that % is a bounded real-valued function defined on Z, and
=) /ln k
Py, () =™ kZ(; hk) T

Consider the function f(.) which is a solution of the Stein’s equation
A f(w + 1) =wf(w) = h(w) — P,,(h). 3)

Setting
1, if weA,

h(w):hA(W):{o if weA

Give h = hy and take the expectation of both sides of the equation (3), we have
Fy, (A) = Py, (A) = E[4,f Wy + 1) = W, f (W)]. “)
Thus, the problem of estimating A can be reduced to that of estimating the difference of the expectations
|EAnf (Wn + 1) = EW, f (W)l

According to Barbour et al. (see (Barbour, Holst & Janson, 1992), for C,,—; = {0, 1, ...,w — 1}, the solution f; of (3) is of

the form .
| w=DA,e [Py, (hance,.,) — Pa, (ha) Py, (he, )], ifw>1,
fA(W) - { O, lfW — 0 (5)

Before starting the main results in next section, we also need the following lemmas, which is directly obtained from
(Barbour, Holst & Janson, 1992) and (Teerapabolarn & Wongkasem, 2007).

Lemmal Let Vfy (W) = fa(w+ 1) — fa(w). Then, for A C Z, and k € Z.. \ {0},

sup |V fx (w)| < min {/1,,_1 (1 - e‘ﬂn) , %}

w>k

Lemma 2 Let wy € Z,. and k € 7., \ {0}, we have

- . 1 1
igIk)|VfCWO (W)| < /111 ! (é'/l" - l)mln{m, z} .

Lemma 3 Let U,, and U, denote a Poisson random variable with mean Ay and A, respectively. Then, for A C Z.., the
total variation distance between the distributions of U,, and U, satisfies the following inequality:

[2
dTv(U,lN,U,l)SmiIl{l, a}El/’.N—/u (6)

3. Main Results

The following lemma is established for proving the main results.
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n
Lemma 4 Let X, X5, ... be a sequence of independent binomial distributed random variables. Setting W,, = Y, X; and
i=1
A, = E(W,). Then,

E [/lnf (Wn + 1) - an (‘/Vn)]

= D D KCE (L= p) TE[f Wi+ k+ 1) = £ (W, + K],

i=1 k>1

where f is a bounded real-valued function defined on Z..

Proof. We have

n

E[Auf Wy + 1) = Wof (W] = D Elripif Wa+ D) = Xif (W,)]

i=1

Setting W; = W, — X;,

Elripif Wi+ Xi+ 1) = X; f (W; + X))]
= E[E[(ripif Wi+ X; + 1) = X; f (W; + X)) / Xi]]
= E[ripif Wi+ D] P(X; = 0)
+E[ripif (Wi +2) = f(Wi+ D] P(X; = 1)
+ Y E[rpif Wi+ k+1) = kf (W; + B)] P(X; = &)
k=2
= E[(ripiP (X; = 0) = P(X; = 1)) f (W; + 1)]

+ Y E[0ipiP (X; = k=1) = kP (X; = ) f (W, + k)]
k=2
= E|(ripi1 = p" = ripi1 = p) ™) f (Wi + D)
+ D VE|(rpiCl P (1 = piy T — kCE pf(1 = p ) £ (Wi + B
k>2
= —E|rp(1=p)™ f (Wi + 1)
+ D VE[(rpiCl P = oy T = (i — ke D CE R = p ) £ (Wi + B
k>2
= —E[ripi(1= p)"' f (Wi + D]
+DE [(”‘rﬁnpid;*pf“a —p) T ==k DCY i - p»’*") f Wi+ k)

1

i—k+1 —
- E [(; - 1)ripiC’:,“pif‘1(1 =) Wi+ k)
.

1

= —E[rp}(1 = p)"™ f (Wi + D]

= D E[Gi—k+ DCE N1 = py T (W )
k>2

_ZE[(r,;k

k>2

- 1) HCE P (L = p) T f (Wi + k + 1)

+ E [rip}(1 = p)"™ £ (Wi +2)]
= rpr(L = p) T E[f (Wi +2) — f(W; + 1)]

+ D kCE PN (U= p) TELf (Wit ke + 1) = f (Wi + b))
k>2

= D kCEP U= p TE[f Wi+ k+ 1) = f (Wi +K).
k>1

This finishes the proof. O
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The following theorems present non-uniform and uniform bounds for the distance between the distribution functions of
Wy and U,, which are the expected results.

3.1 A Uniform Bound on Poisson Approximation for Random Sums of Independent Binomial Random Variables

Theorem 1 For A C Z.., we have

N .
)= - 1-(-p)"\ »
dry Wy, Uy £ E min {/1 1= e ™), —}Pi
(S 120

! (7
i 2
+mins 1, A/— ¢ E Ay — 4].
Ae
Proof. Let f = f4 be defined as in (5) and applying (4), we have
/l’,‘,e‘/l"
PWy € 4) = 3 e | = |ELf (W + 1) = Waf (W)l (8)
keA ’
Taking account of Lemma 4 and Lemma 1, it follows that
|E[ripif Wa + 1) = Xif (W)
< D TKCE P = ) TREIf (Wit K+ D) = £ (W + K|
k=1
< > kCEPETI(1 = iy sup |V f (w)l
k>1 w>k
l—e 1
k  k+l ri—k 1
< ;kCnpi (1 -pp) mm{ PR k}
=min{ p,ch PR = p) K pi " Ch k(1 = po }
k>1 k>1
1-
=min{ p,ZkP(X = k), p,[ZP(x -k)—(l—p,)’f)}
A k>1 k>0
(1= ,
=min) — PiEX),pi(1=(1=p)")p.
Thus,
1-(1-p)"
|E [ripif Wy + 1) = Xif (Wp)]| < mln{ (1 —e ”)ri, Tp}p%. 9)
Combining (8) with (9), gives
i - 1-(=-p)"\ »
dry (W,,Uy) < mm{/l,,l l1—e™ r,-,—}p,.. (10)
TV 2 Z ( ) o

i=1
From Lemma 3 and (10), it follows the fact that

dry (Wy,Up) = 3" P(N = nydry Wy, Uy)

n=1

8

Z (N =n)[dry (W, Uy,) + drv (Ua,, Uy)]

n=1

P(N =n)dry (W,,Uy,) + drv (Ua,, Uy,)
_ 1-1-p)"\ »
P(N =n) mm{ —e ), —}Pi
5 120
. 2
+m1n{l, 1/—}E|/IN—/1|
Ae
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N r
<E [Z min {/1;,1 (1-e™)r, taltd (;— 2o }p?]
i=1 !

[2
+min{1, —}EI/IN -A.
Ae

This finishes the proof. O

Remark 1 For ry = r, = ... = r, = 1, we have a uniform bound on Poisson approximation for the random sums of
independent Bernoulli random variables:

N
*— -A% : 2 * *
dry (Vn,Uy) < E[/l Nl (1 —e /IN);piZ]+mm{l, WIE}E Ay — A7 (11D
Remark 2 Let us consider:
2
min {1, } <1
A*e
and N N
1—-e™ 1-(1-p) 1—e™w
min{ ¢ Ti, ( ) }pl2 < < rip%.
AN Di AN
Thus, the bounds in (7) and (11) are sharper than the bounds in (2) and (1), respectively.
Corollary 1 For N = n € Z, is fixed, then 1 = A, = Y, rip; and
i=1
- 1-(-p)e
drv (W,,Uy,) < Z min {4;1 (1=e)r, &}pf. (12)
i=1 pi

Remark 3 The result (12) is a uniform bound on Poisson approximation for sums of independent binomial random
variables. This bound is sharper than those reported in (Teerapabolarn, 2014a).

3.2 A Non-uniform Bound on Poisson Approximation for Random Sums of Independent Binomial Random Variables

Theorem 2 For wy € Z., we have

24 [2
[P(Wy <wg) — P(Uy <wp)|l £min{ ——,mins 1, 1/ —  E |[Ay — 4|
wo + 1 ed

N W (1= (1= p)7) et
+E Ay (1= min{ ¢ Pi } 2.
Zl v )™ Gt D pi b

13)

Proof. For C,, = {0, ...,w} and wy € Z,, let h,,, : Z, — R such that

1 i w<w,
he, (w) _{ 0 if w> wy.

According to Barbour et al. (see (Barbour, Holst & Janson, 1992) on p.7), the solution fCWD (w) of (3) is expressed in the
form of
w =D, e [Py, (he, ) Pa, (1= he, )| Lif - wo < w,

e W) =1 w= 11w [Py, (he, ) Pa, (1= he,, )| Hif wo 2w,

0 ,if  w=0.
Given f = fc, and h = hc, , the Stein’s equation
k

hey 0= 3 T = 4w+ 1) = wf (1)

wo k | -
k<wy ’
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Taking expectations of both sides, and applying Lemma 2 and Lemma 4, we have

|P(W, < wo) = P(U,, < w)

<>, [Z KCEpE (1= p) T ENf (Wi + e+ 1) = f (W + k)|]

i=1 \kx1

. 11

ko e+l Nk =1 A, o
< i; [k; kCip;7 (1= p)i—a, (e l)mln{w0 T k}]
pi 2, kP (Xi = k) }

= Zn:/lgl (e’l" - 1>min{kZlWT,pi Z PXi=k
i=1

k=1
= /1;1 (e/l" - l)imin{worf’_ T L= (117_ p[)’f}p%.

i=1

Thus,

_ < ri  1=-(0-=-p)i
|P(W, < wo) = P(U,, <wo)| <4, (ezn - 1) Z; min {WO T > }p,?. (14)

In addition, by using Lemma 3, Teerapabolarn showed that (see (Teerapabolarn, 2013) for more details):

A 2
],min{l, \/;}EMN—/U}. (15)

2
'P(U/IN <wg)—P (U, < W0)| < min{
wo +

Combining (14) and (15) gives
[P (Wy < wo) — P(Up < wo)

< ZP(N = 1) [P (W, < wp) — P(Uy < wo)|
n=0

< ) PN =n)|P(W, <wp) = P(U, <w)

n=0
+ |P(U,1N < W())—P(U,l < W0)|

N -t rie (1= =p)e\ ,
< P N: i s N
_; ( n) 1 ;mm{w()"'l o D;
21 [2
+ min ,min1, \/— ¢ E|Ay — 4|
wo + 1 ed
- N A (1 — Vi) A
SE(l e NZmin{r,eN a-a p,>>e~}p?)
Ay wo + 1 Di

. 24 . 2
+ min ,min<1l, \|— s E|Ay — A} .
wo + 1 ed

This finishes the proof. O

Remark 4 For ry = r, = ... = r, = 1, we have a non-uniform bound on Poisson approximation for the random sums of
independent Bernoulli random variables:

A=

2% 2
|[P(Vy < wg) — P(Uy < wp)| < min ,min{1l, \/—  E
wo + 1 eld*

1) ¢
E((w0+ 1)1;21)’2]'

i=1

(16)
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n
Corollary 2 For N = n € Z, is fixed, then A = A, = Y, rip; and
i=1

|P(W,, < wo) = P(U,, <wo)| <4 (e’l” - 1) Z min {Worf’_ T - (lpA_ pi)ri}Piz. (17)

Remark 5 The result (17) is a non-uniform bound on Poisson approximation for sums of independent binomial random
variables.
4. Conclusions

We conclude this paper with the following comments. Bounds for the distance between the distribution function of ran-
dom sums of independent binomial random variables and an appropriate Poisson distribution function were obtained.
The received results in this paper are sharper than those reported in (Teerapabolarn, 2014a), (Teerapabolarn, 2014b), and
(Yannaros, 1991). Moreover, non-uniform bounds on Poisson approximation for sums (and random sums) of independent
binomial random variables are given. The results will be more interesting and valuable if we discuss Poisson approxi-
mation for random sums of dependent binomial random variables. We shall continue studying this matter in our future
research.
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