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Abstract

As a generalization of nonparametric regression model, partially linear model has been studied extensively in the last
decades. This paper considers estimation of the semiparametric model under the situation that the covariates are measured
with additive error in the linear part and some additional stochastic linear restrictions exist on the parametric component.
Based on the corrected profile least-squares approach and mixed regression method, we propose a stochastic restricted
estimator named the corrected profile mixed estimator for the parametric component, and discuss its statistical proper-
ties. We also construct a weighted stochastic restricted estimation for the parametric component. Finally, the proposed
procedure is illustrated by simulation studies.

Keywords: partially linear models, measurement error, stochastic restricted estimation, corrected profile least-squares
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1. Introduction

In the last two decades, semiparametric measurement error (errors-in-variables) models have received considerable at-
tention in statistics and econometrics. In this paper, the following structural partially linear errors-in-variables model is
considered {

yi = xT
i β + f (ti) + εi, i = 1, 2, · · · , n,

vi = xi + ξi,
(1.1)

where yi are response, xi = (xi1, xi2, · · · , xip)T is a vector of random explanatory variables, ti is a scalar covariate, β =
(β1, β2, · · · , βp)T is a vector of p-dimensional parameters which are unknown, f (·) is an unknown smooth function, and the
residuals εi’s are independent and identical distribution with zero mean and finite variance σ2. The measurement errors ξi
are independent and identically distributedwith mean zero and covariance matrix Σξ. Σξ is assumed to be known. In the
meantime, εi’s are independent of (xT

i , ti)’s and each ξi is independent of (yi, xi, ti).

Obviously, model (1.1) is a generalization of the linear measurement error model and partially linear model, and has
been discussed by many authors in the last two decades. To estimate β, Liang et al.(1999) proposed a corrected two-step
method, Wang(1999) constructed an estimator using validation data. When the ratio of Σξ to σ2 is known, Cui and Li
(1998) proposed a profile total least-square estimator.

In practice, some outside sources can provide some prior information about the regression coefficients. Such information
can be expressed as some exact or stochastic restrictions on the unknown regression parameters. Use of such restrictions
on parameters may improve upon the efficiency of the estimator, and details can be found in Toutenburg(1982) and Rao
et al. (2008).

In recent years, measurement error models with exact or stochastic restrictions have been studied by many authors. for the
linear measurement error models, Shalabh et al. (2007) and Shalabh et al. (2009) studied the exact restricted estimation.
Shalabh et al. (2010) and Li and Yang (2013) studied the estimation of the model when stochastic linear restrictions on
regression coefficients are available. For the partially linear measurement error model with exact linear restrictions, Wei
et al. (2013) proposed a restricted corrected profile least-squares estimator for the parametric component. In this paper,
we consider the estimation of model (1.1) with the stochastic linear restrictions. The stochastic restrictions can be defined
as

b = Aβ + η, (1.2)
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where b is a k × 1 known vector and A is a k × p known matrix of full row rank. Further, the random error η is assumed
to be distributed with mean vector 0 and covariance matrix σ2Ω, where Ω is a known positive definite matrix. Based on
the corrected profile least-squares approach of Liang et al.(1999), and the mixed regression estimation method of Theil
and Goldberger (1961) and Theil (1963), a stochastic restricted estimator named corrected profile mixed estimator for the
parametric component β is defined. As a result, we extend, on one hand, the results of Shalabh et al. (2010) and Li and
Yang (2013) from linear measurement error models to semiparametric measurement error models, and on the other hand,
the results of Wei et al. (2013) from exact restrictions to the case of stochastic restrictions.

This paper is organized as follows. In Section 2, we construct the stochastic restricted estimators for the parametric
component, and discuss their statistical properties. To examine the performance of the proposed approaches, we conduct
some simulations in Section 3 . The proofs of main results are given in Section 4.

2. Corrected Profile Mixed Estimation

Let y∗i = yi − xT
i β, then we can get the following standard nonparametric regression model

y∗i = f (ti) + εi i = 1, 2, · · · , n. (2.1)

We apply the local linear approach to estimate the function f (·). For a given point t0, we have

f (t) ≈ f (t0) + f ′(t0)(t − t0)

for t in a neighborhood of t0 is available. Let K(·) be a kernel function and h be a bandwidth, the local linear regression
approach gives the solution of local parameters { f (t0), f ′(t0)} by minimizing

n∑
i=1

[
y∗i − f (t0) − f ′(t0)(ti − t0)

]2 Kh(ti − t0), (2.2)

where Kh(·) = K(·/h)/h. The solution to problem (2.2) is given by(
f̂ (t0), f̂ ′(t0)

)T
= {DT

t0 Wt0 Dt0 }−1DT
t0 Wt0 (Y − Xβ), (2.3)

where Wt0 = diag(Kh(t1 − t0),Kh(t2 − t0), · · · ,Kh(tn − t0)) and

Y =


y1
y2
...

yn

 ,X =


xT
1

xT
2
...

xT
n

 ,Dt0 =


1 t1 − t0
1 t2 − t0
...

...
1 tn − t0

 .
Replacing f (ti) in (2.1) with f̂ (ti), we can obtain the synthetic linear regression model after some algebraic operation

yi − ŷi = (xi − x̂i)Tβ + ε̃i, (2.4)

where ε̃i = εi + f (ti) − f̂ (ti), Ŷ = (ŷ1, · · · , ŷn)T = SY , X̂ = (x̂1, · · · , x̂n)T = SX, with

S =


(1 0){DT

t1 Wt1 Dt1 }−1DT
t1 Wt1

(1 0){DT
t2 Wt2 Dt2 }−1DT

t2 Wt2
...

(1 0){DT
tn Wtn DTn }−1DT

tn Wtn

 .
The profile least squares estimator for β can be obtained with linear model (2.4). While xi cannot be exactly observed in
our case, the resulting estimator is inconsistent if we ignore the measurement error and replaces xi by vi in (2.4). By the
correction for attenuation technique, the corrected profile least squares estimator of β can be defined as

β̂ = arg min
β∈Rp

[
(Ȳ − V̄β)T(Ȳ − V̄β) − nβTΣξβ

]
= (V̄TV̄ − nΣξ)−1V̄TȲ, (2.5)

where Ȳ = Y − Ŷ, V̄ = V − V̂, V̂ = (v̂1, · · · , v̂n)T = SV and V = (v1, · · · , vn)T.

According to Theil and Goldberger (1961), based on the stochastic prior information, the corrected profile least-squares
mixed estimator can be given by minimizing the following cost function

F(β) = (Ȳ − V̄β)T(Ȳ − V̄β) − nβTΣξβ + (b − Aβ)TΩ−1(b − Aβ), (2.7)
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with respect to β.

By (2.7), we can obtain the following equation

∂F(β)
∂β

= −2V̄T(Ȳ − V̄β) − 2nΣξβ − 2ATΩ−1(b − Aβ) = 0, (2.8)

Solving the equation (2.8), the corrected profile mixed estimator of β is obtained as

β̂cpm = (V̄TV̄ − nΣξ + ATΩ−1A)−1(V̄TȲ + ATΩ−1b), (2.9)

Denote E = V̄TV̄ − nΣξ, by the Theorem A.18 of Rao et al (2008)(Page. 494), we have

(V̄TV̄ − nΣξ + ATΩ−1A)−1 = E−1 − E−1AT
[
Ω + AE−1AT

]−1
AE−1, (2.10)

Then, by (2.9) and (2.10), β̂m can be rewritten as

β̂cpm = β̂ − (V̄TV̄ − nΣξ)−1AT
[
Ω + A(V̄TV̄ − nΣξ)−1AT

]−1
(Aβ̂ − b), (2.11)

where β̂ is the corrected profile least-squares estimator of β in (2.6).

The asymptotic normality of β̂cpm can be proven by the following theorem .

Theorem 2.1 Under the conditions in the Section 5, the corrected profile mixed estimator of β is asymptotically normal,
namely,

√
n(β̂cpm − β)

d−→ N(0,Ω),

whereΣ1 = E
{
[X1 − E(X1|t1)][X1 − E(X1|t1)]T

}
, Σ2 = E

{
[X1 − E(X1|t1)(ε1 − ξT

1β)]⊗2
}
+E(ε2

1ξ1ξ
T
1 )+E

{
[(ξ1ξ

T
1 − Σξ)β]⊗2

}
,

Ω = Σ−1
1 Σ2Σ

−1
1 , and A⊗2 means AAT.

The estimator β̂cpm is defined under the assumption that both the sample information and the prior information which
is expressed as stochastic restrictions are equally important and weight equally in the statistical procedure. In practice,
this assumption may violate. Schaffrin and Toutenburg (1990) proposed the weighted mixed regression estimation to fix
the problem. Li and Yang (2013) have studied the weighted stochastic restricted estimation for linear errors-in-variables
models. In the following, we consider the weighted stochastic restricted estimation for model (1.1). Similar to Li and
Yang (2013), the weighted corrected profile least-squares mixed estimator can be obtained by minimizing the following
objective function

Fw(β) = (Ȳ − V̄β)T(Ȳ − V̄β) − nβTΣξβ + ω(b − Aβ)TΩ−1(b − Aβ), (2.12)

with respect to β, and ω is a non-stochastic and non-negative scalar weight ranging from 0 to 1. By differentiating function
Fw(β) with respect to β, we have the following equation

∂Fw(β)
∂β

= −2V̄T(Ȳ − V̄β) − 2nΣξβ − 2ωATΩ−1(b − Aβ) = 0, (2.13)

Solving the equation (2.13), the weighted corrected profile mixed estimator of β is obtained as

β̂wcpm = (V̄TV̄ − nΣξ + ωATΩ−1A)−1(V̄TȲ + ωATΩ−1b), (2.14)

The following theorem gives the asymptotic normality of β̂wcpm.

Theorem 2.2 Under the conditions in the Section 5, the corrected profile mixed estimator of β is asymptotically normal,
namely,

√
n(β̂wcpm − β)

d−→ N(0,Ω).

Remark 2.1 Theorems 2.1 and 2.2 indicate that both the corrected profile mixed estimator β̂cpm and the weighted corrected
profile mixed estimator β̂wcpm and the corrected profile least-squares estimator β̂ have the same asymptotic distributions.
The results is consistent with the results of Shalabh et al. (2010) and Li and Yang (2013) on the linear ultrastructural
measurement error model with stochastic linear restrictions. As sample size increases, the results suggest that the effect
of stochastic restrictions on the properties of estimators vanishes.
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3. Simulation Studies

In this section, we conduct some simulations to examine the finite sample performance of the proposed estimation proce-
dure. The data are generated from the following partially linear errors-in-variables model{

yi = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4 + f (ti) + εi,
vki = xki + eki, i = 1, 2, · · · , n, k = 1, 2, 3, 4,

where x1i ∼ N(0, 1), x2i ∼ N(1, 2), x3i ∼ U(−2, 2), x4i ∼ U(−1, 1), ti ∼ U(0, 1) α(ui) = sin(2πti), measurement errors
ei = (e1i, e2i, e3i, e4i) ∼ N(0, 0.25I4).

To figure out the effect of the distribution of the error on our results, we take the following 4 different distributions which
are adjusted to have the common variance σ2 = 0.25, (1)εi ∼ N(0, 0.52), (2)εi ∼ U(−

√
3/2,

√
3/2), (3) εi ∼ 1

8χ
2
8 − 1,

(4)εi ∼
√

3/4t(8). Our simulation studies set the kernel function K(x) = 15
16 (1 − x2)2I|x|≤1 and bandwidth h = n−1/5 . The

true parameters are taken as (β1, β2, β3, β4) = (1, 1, 2, 2), and n = 100, 120, 150 were considered, and the stochastic linear
restrictions are β1 + β2 = 2 + η1 and β3 − β4 = η2 with

Eη1 = Eη2 = 0,Var(η1) = 0.04,Var(η1) = 0.09,Cov(η1, η2) = 0.03,

that is

A =
[

1 1 0 0
0 0 1 −1

]
,Ω =

[
0.04 0.03
0.03 0.09

]
.

The simulation applys the mean squared error (MSE) criterion to compare the performance of the estimators. For each
setting, the simulation replicates 1000. In each replication, the corrected profile least-squares estimator β̂, and the correct-
ed profile mixed estimator β̂cpm can be obtained. The estimated mean squared error (EMSE) for both β̂ and β̂cpm is given,
and more details are presented in Table 3.1. The EMSEs for the different estimators are calculated by:

EMSE(β∗) =
1

1000

500∑
j=1

4∑
k=1

(β∗k j − βk)2,

where β∗k j denotes the estimate of the kth parameter in jth replication and βk, k = 1, 2, 3, 4 are the true parameter values
above.

The simulation results can be summarized as follows. The EMSE of all the estimators decrease, as the sample size
increases. In all these cases, the corrected profile mixed estimators show better performance than the corrected profile
least-squares estimators.

Table 1. EMSEs of the estimators

εi ∼ N(0, 0.25) εi ∼ U(−
√

3
2 ,

√
3

2 ) εi ∼ 1
8χ

2
8 − 1 εi ∼

√
3

4 t(8)
n β̂ β̂cpm β̂ β̂cpm β̂ β̂cpm β̂ β̂cpm
100 0.830 0.118 0.871 0.119 0.837 0.121 0.848 0.123
120 0.515 0.101 0.546 0.102 0.535 0.100 0.553 0.104
150 0.348 0.090 0.345 0.084 0.307 0.083 0.323 0.086

4. Proof of the Main Results

To derive the main results, the following assumptions are required. They are also assumed in Wei et al. (2013). These
mild assumptions can be easily satisfied in most cases.

Assumption 1 The random variable t has a bounded support Ψ. Its density function g(·) is Lipschitz continuous and
bounded away from 0 on its support.

Assumption 2 There is an s > 2 such that E ∥ X ∥2s< ∞ and E ∥ ξ ∥2s< ∞ and for some k < 2− s−1 such that n2k−1h→ ∞.

Assumption 3 f (·) have continuous second derivative in t ∈ Ψ.

Assumption 4 The function K(·) is a symmetric density function with compact support and the bandwidth h satisfies
nh8 → 0 and nh2/(log n)2 → ∞.
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Proof of Theorem 2.1. Let ∆ = V̄TV̄ − nΣξ + ATΩ−1A and U = (ξ1, · · · , ξn)T, F =
[
f (t1), f (t2), · · · , f (tn)

]T, by the
definition of β̂cpm, we have

β̂cpm = β + ∆
−1X̄T(In − S)F + ∆−1V̄T(In − S)(ε − Uβ) + nΣξβ + ∆−1ATΩ−1η. (4.1)

By the Lemma 5.1 of Wei et al. (2013), let X̃i = Xi − E(Xi|Ti), we have

1
n

(
V̄TV̄ − nΣξ

) p
−→ Σ1. (4.2)

1
n

V̄T(In − S)F = op(n−1/2), (4.3)

1
n

V̄T(I − Sn)(ε − Uβ) =
1
n

n∑
i=1

(X̃i + ξi)(εi − ξT
i β) + op(n−1/2). (4.4)

We can obtain
1
√

n
ATΩ−1η = op(1). (4.5)

by the fact that
EATΩ−1η = 0, Cov(ATΩ−1η) = ATΩ−1A

Therefore, combining the fact that 1
n ATΩ−1A = op(1), it holds that

√
n(β̂cpm − β) = Σ−1

1
1
√

n

n∑
i=1

[
(X̃i + ξi)(εi − ξT

i β) + Σξβ
]
+ op(1). (4.6)

Denote ζ i = (X̃i + ξi)(εi − ξT
i β) + Σξβ. Then for the i.i.d random vectors ζ i, we have E(ζ i) = 0 and Cov(ζ i) = Σ2. Then,

by the multivariate central theorem, we have

1
√

n

n∑
i=1

ζ i
D−→ N(0,Σ2). (4.7)

Then, combining (4.6) and (4.7), by the Slutsky theorem, we have

√
n(β̂cpm − β)

D−→ N(0,Σ−1
1 Σ2Σ

−1
1 ).

Proof of Theorem 2.2. The proof of Theorem 2.2 is similar to the proof of Theorem 2.1, we omit the details here.
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