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Abstract 

This article review some known bivariate and bilateral (difference) gamma distributions. Some properties, advantages and 

limitations are pointed out. Two new bivariate gamma distributions using self-decomposability property are introduced. 

The corresponding bilateral gamma distributions are derived. 

Keywords: bilateral distribution, bivariate distribution, hypergeometric function, Whittaker function 

1. Introduction 

In many real-life applications, more than one variable are collected on each individual. Therefore, multivariate 

distributions are needed to model and explain these variables where strong dependencies are possible. Bivariate 

distributions can be constructed by different methods. The simplest way is the reduction method. Copulas allow creating 

different bivariate distributions with different association parameters. Hutchinson and Lai (1990) discussed some of these 

distributions. Also, some bivariate distributions using compound distributions are defined, see for example Hutchinson 

(1981). 

Bivariate gamma distributions are derived in the literature and commonly used to analyze skewed data. Balakrishnan and 

Lai (2009) listed different form of bivariate gamma distributions. Some of these have non-gamma marginal distributions 

such as Becker and Roux (1981) and Malik and Trudel (1985) who generalized Kibble bivariate gamma distribution. In 

this paper, we will focus only on bivariate gamma distributions whose marginals are gamma distributions. 

In recent years, many researchers have paid attention to the difference of two random variables belonging to the same 

family of distributions such as differences of Poisson and gamma. Here we are interested in the difference of gamma 

variables. Cheng and Berger (2003) have defined the difference of two sums of independent generalized gamma random 

variables. Holm and Alouini (2004) have introduced the difference of two independent gamma random variables for the 

case of equal shape parameters. They proved that it followed the second of MckKay’s (1932) distribution and computed 

the moments and the cumulative distribution functions. They also discussed the distribution of the difference between two 

correlated gamma random variables. The distribution of the difference of two independent sums of a finite number of 

gamma random variables with different rate parameters and integer shape parameters was obtained by Coellho and Mexia 

(2007). 

Recently, Küchler and Tappe (2008a) considered the distribution of the difference between two independent gamma 

random variables with different shapes and scales parameters and refered to it as bilateral gamma distribution. They 

studied some of its properties such as moments, self-decomposability, and closeness under convolution. Additional 

properties especially those related to the shape of the density can be found in Küchler and Tappe (2008b). Küchler and 

Tappe (2008b) also gave representations of the density in terms of the Whittaker function.  

Bilateral gamma distributions can be used to model real life applications. For example, Holm and Alouini (2004) and 

Coellho and Mexia (2007) used two special cases of bilateral gamma distributions to compute the outage probability. 

Küchler and Tappe (2008a) used the distribution to model stock prices. Küchler and Tappe (2008b) applied the bilateral 

gamma distribution to model the financial market fluctuation. Option pricing with bilateral gamma distribution in 

continuous time models had been considered by Küchler and Tappe (2009). Bellini and Mercuri (2012) considered 

modeling option pricing using bilateral gamma GARCH type model. 

As there is more than one definition of the bivariate gamma distribution, it would be of interest to discuss their 

corresponding difference distributions. The aim of the paper is to review 7 different form of the bivariate gamma 

distributions and define two new bivariate gamma distributions based on self-decomposability property. And examine the 
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similarity and dissimilarity of the resulting difference distributions. The article is organized as follows. Some bivariate 

gamma distributions are reviewed in Section 2. In Section 3, we introduce two new bivariate gamma distributions. We 

discussed the corresponding gamma difference (bilateral) distribution and derived other new bilateral gamma 

distributions in Section 4. 

Throughout we denote by Γ(𝛼, 𝜆) to the gamma distribution with probability density function  

𝑔(𝑥) =
1

𝜆Γ(𝛼)
(𝑥 𝜆⁄ )𝛼−1𝑒−𝑥 𝜆⁄  , 𝑥 > 0. 

As usual, we call 𝛼 the shape parameter and 𝜆 the scale parameter. 

The calculations involve several special functions from Gradshteyn and Ryzhik (2007) (G-R), and for ease of references 

we list them here with the corresponding pages 

The Pochhammer symbol is defined by [G-R, p. xliii] 

(𝑒)𝑘 = 𝑒(𝑒 + 1) … (𝑒 + 𝑘 − 1) =
Γ(𝑒+𝑘)

Γ(𝑒)
. 

The Gauss’ hypergeometric function is defined by [G-R, p. 1005] 

𝐹12 (𝑎, 𝑏; 𝑐; 𝑧) = ∑
(𝑎)(𝑛)(𝑏)(𝑛)𝑧𝑛

(𝑐)(𝑛)𝑛!

∞
𝑛=0 .                                 (1) 

This series converges for |𝑧| < 1. 

The integral representation of (1) is 

F12 (a, b; c; z) =
1

Β(b,c−b)
∫ tb−1(1 − t)c−b−1(1 − zt)−adt

1

0
, for c > 𝑏 > 0.           (2) 

The confluent hypergeometric function 

F11 (a; b; z) = ∑
(a)nzn

(b)nn!

∞
n=0 .                                    (3) 

This series converges for the values of |𝑧| < 1. 

The integral representation of (3) is 

F11 (a; b; z) =
21−be

1
2z

Β(a,b−a)
∫ (1 − t)b−a−1(1 + t)a−1e

1

2
ztdt

1

−1
; for 0 < 𝑎 < 𝑏.              (4) 

The Whittaker function is defined by [G-R, p. 1024] 

Wα,β(z) =
zαe

−
z
2

Γ(β−α+
1

2
)

∫ e−ttβ−α−
1

2 (1 +
t

z
)

α+β−
1

2
dt

∞

0
, for  β − α > −

1

2
.              (5) 

The confluent hypergeometric series of two variables is [G-R, p. 1031] 

Φ1(α, β, γ, x, y) = ∑
(α)m+n(β)m

(γ)m+nm!n!
xmyn∞

m,n=0 ;   |x| < 1.                      (6) 

The integral representation of (6) is [G-R, p. 349] 

Φ1(α, β, γ, x, y) =
1

Β(α,γ−α)
∫ tα−1(1 − t)γ−α−1(1 − yt)−βextdt

1

0
,                (7) 

for𝛾 > 𝛼 > 0 𝑎𝑟𝑔(1 − 𝛽) < 𝜋. 

The hypergeometric functions of two variables is [G-R, p. 1018] 

F1[α, β, β′, γ; x, y] = ∑ ∑
(α)m+n(β)m(β′)n

(γ)m+nm!n!

∞
n=0

∞
m=0 xmyn;  |x| < 1, |y| < 1.              (8) 

We also need the following important equations. 



 

 

http://ijsp.ccsenet.orgInternational Journal of Statistics and ProbabilityVol. 7, No. 2; 2018 

68 

For 𝑢 > 0, 𝑚 > 0, and 𝑟 > 0, 

∫ (x + b)2v−1(x − u)2r−1e−mx∞

u
dx =

(u+b)v+r−1

mv+r exp [
(b−u)m

2
] Γ(2r)W

v−r,v+r−
1

2

(um + bm).       (9) 

[G-R, p. 349] 

For 𝜆 > 0, 𝜇 > 0 

∫ 𝑥𝜆−1(1 − 𝑥)𝜇−1(1 − 𝑢𝑥)−𝜚(1 − 𝑣𝑥)−𝜎𝑑𝑥
1

0
= Β(𝜆, 𝜇)𝐹1[𝜆, 𝜚, 𝜎, 𝜆 + 𝜇; 𝑢, 𝑣].          (10) 

[G-R, p. 318] 

The compound negative binomial distribution with exponential compounding distribution is defined as 𝑋𝜌 = ∑ 𝐸𝑖
𝐾
𝑖=1 . 

The 𝐸𝑖 ;  𝑖 = 1,2, … are independent and identically distributed with the exponential distribution having mean 𝜌, and K 

is a negative binomial random variable with probability generating function 𝐺𝐾(𝑠) = (𝜌 (1 − (1 − 𝜌)𝑠⁄ )𝛼. As usual, it 

is assumed that {𝐸𝑖}is independent of K. Then the moment generating function (mgf) of 𝑋𝜌 is 

MX(t) = (
ρ

1−(1−ρ)
1

1−ρt

)

α

= (ρ + (1 − ρ)
1

1−t
)

α

.                           (11) 

The probability density function (pdf) of 𝑋𝜌 is 

f(x) =
1

Γ(α)

1−ρ

ρ
ραe

−
x

ρ ∑
Γ(k+α)

Γ(k)k!
(

1−ρ

ρ
x)

k−1
∞
k=0 .                             (12) 

Panjer and Willmot (1981) gave a version of the pdf with the finite sum. We denote this compound exponential negative 

binomial distribution by 𝐶𝐸𝑁𝐵(𝛼, 𝜌). 

2. Bivariate Gamma Distribution 

In the following, we list some bivariate gamma distributions. Without loss of generality, we consider bivariate gamma 

distribution with unit scale parameters, as we can always multiply each variable to get the required scale parameter. 

2.1 Double Gamma 

Let 𝑌𝑖~Γ(𝛼𝑖 , 1), 𝑖 = 1,2 be independent random variables. Then the joint pdf is 

fY1,Y2
(y1, y2) =

1

Γ(α1)Γ(α2)
y1

α1−1
y2

α2−1 exp(−y1 − y2), y1 > 0, y2 > 0 .                  (13) 

This distribution is known as double gamma distribution 𝐷𝐵Γ(𝛼1, 𝛼2, 1,1). 

The mgf is 

MY1,Y2
(t, s) = (

1

1−t
)

α1
(

1

1−s
)

α2
.                                      (14) 

The convolution of double gamma distribution with another bivariate gamma distribution with equal scale parameters 

yields a new bivariate gamma distribution with same scale parameters and different shape parameters but with smaller 

correlation in absolute value. 

2.2 Complete Dependence Bivariate Gamma 

The complete dependence or degenerated bivariate gamma is defined as 𝑌1 = 𝑋0 and 𝑌2 = 𝑋0, 

where 𝑋0~Γ(𝛼0, 1). The distribution is degenerated in the line {(𝑦1, 𝑦2): 𝑦1 =  𝑦2}. The mgf is given by 

MY1,Y2
(t, s) = (

1

1−t−s
)

α0
.                                          (15) 

Obviously, the correlation between 𝑌1 and 𝑌2 is one. 

If 𝑼 is any bivariate gamma distribution, then its convolution with complete dependence gamma distribution after 

proper scaling will yield another bivariate gamma distribution with new scaling parameters. The covariance increases 

by 𝑉𝑎𝑟(𝑋0). 
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2.3 Cheriyan’s BivariateGamma 

Cheriyan (1941) derived a bivariate gamma using reduction method. Let 𝑋𝑖~Γ(𝛼𝑖 , 1), 𝑖 = 0,1,2, be three independent 

random variables, where 𝑌𝑖 = 𝑋0 + 𝑋𝑖 , 𝑖 = 1,2. The joint pdf is 

fY1,Y2
(y1, y2) =

exp(−y1−y2)

Γ(α1)Γ(α2)Γ(α0)
∫ (y1 − y)α1−1(y2 − y)α2−1yα0−1e−ydy

y1∧y2

0
,        (16) 

for 𝑦1 > 0, 𝑦2 > 0,  and 𝛼𝑖 ≥ 0, 𝑖 = 0, 1, 2. 

The corresponding mgf is 

MY1,Y2
(t, s) = (

1

1−t
)

α1
(

1

1−s
)

α2
(

1

1−t−s
)

α0
.                   (17) 

The marginal distribution of 𝑌1 and 𝑌2 are gamma, with shape parameters 𝛼1 + 𝛼0, 𝛼2 + 𝛼0, and scale parameters 

1,respectively. 

Clearly, the distribution is the convolution of a double gamma distribution with a complete dependence bivariate 

gamma. 

2.4 Kibble’s BivariateGamma 

Kibble (1941) utilized the relation between normal distribution and gamma (chi-square) to introduced a bivariate gamma 

distribution 

fY1,Y2
(y1, y2) =

(1−ρ)−α

Γ(α)
∑ aj(y1y2)α+j−1∞

j=0 exp (−
y1+y2

1−ρ
),                 (18) 

for 𝑦1 > 0, 𝑦2 > 0, 𝛼 > 0 and 0 < 𝜌 < 1, where 𝑎𝑗 =
1

Γ(𝛼+𝑗)𝑗!

𝜌𝑗

(1−𝜌)2𝑗. 

The corresponding mgf is 

MY1,Y2
(t, s) = (

1

1−t−s+(1−ρ)ts
)

α

.                          (19) 

This distribution can be used to model the summer and winter streamflows and many other applications. 

The marginal distributions of 𝑌1 and 𝑌2 are gamma with the same shape parameter 𝛼 and scale parameter 1. Here 𝜌 

represents the correlation coefficient of the distribution. The special cases where 𝜌 = 0 and 𝜌 = 1 to correspond the 

double gamma distribution with equal shape parameters and the complete dependence gamma distribution, respectively. 

In the following, we give an alternative derivation of this distribution. 

Theorem 1. Let 𝑌1 and 𝑌2 be two random variables defined as 𝑌𝑖 = 𝑈𝑖 + 𝑉𝑖 , 𝑖 = 1,2, where 𝑈𝑖’s are iid Γ (𝛼,
1

(1−𝜌)
) 

and 𝑉𝑖 = ∑ 𝐸𝑖𝑗
𝐾
𝑗=1 , where 𝐸𝑖𝑗 , 𝑖 = 1,2, and 𝑗 = 1,2, … , 𝐾  are iid random variables with exponential distribution 

function 𝐸𝑥𝑝 (
1

1−𝜌
), and 𝐾~𝑁𝐵(𝛼, 1 − 𝜌) is independent of 𝐸𝑖𝑗’s . Then (𝑌1, 𝑌2) has Kibble’s bivariate gamma. The 

special case for 𝛼 = 1 gives Moran–Downton bivariate exponential distribution introduced by Moran (1967) and 

Downton (1970). 

Proof. 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = 𝐸[𝑒𝑡(𝑉1+𝑈1)+𝑠(𝑉2+𝑈2)] =  𝐸[𝑒𝑡𝑈1+𝑠𝑈2]𝐸[𝐸(𝑒𝑡𝑉1+𝑠𝑉2|𝐾)] 

= (
1

1 − (1 − 𝜌)𝑡
)

𝛼

(
1

1 − (1 − 𝜌)𝑠
)

𝛼

𝐸 [((
1

1 − (1 − 𝜌)𝑡
) (

1

1 − (1 − 𝜌)𝑠
))

𝐾

] 

= (
1

1 − (1 − 𝜌)𝑡
)

𝛼

(
1

1 − (1 − 𝜌)𝑠
)

𝛼

(
1 − 𝜌

1 − 𝜌 (
1

1−(1−𝜌)𝑡
) (

1

1−(1−𝜌)𝑠
)

)

𝛼

 



 

 

http://ijsp.ccsenet.orgInternational Journal of Statistics and ProbabilityVol. 7, No. 2; 2018 

70 

= (
1

1 − 𝑡 − 𝑠 + (1 − 𝜌)𝑡𝑠
)

𝛼

. 

A rescaled version of Kibble bivariate gamma distribution is the following 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) =

(1−𝜌)−𝛼

Γ(𝛼)
∑

𝑎𝑗

(𝜆1𝜆2)𝛼+𝑗
(𝑦1𝑦2)𝛼+𝑗−1∞

𝑗=0 𝑒
−(

1

1−𝜌
)(

𝑦1
𝜆1

+
𝑦2
𝜆2

)
.                      (20) 

for 𝑦1 > 0, 𝑦2 > 0, 𝛼, 𝜆1, 𝜆2 > 0 and 0 < 𝜌 < 1, where 𝑎𝑗 =
1

Γ(𝛼+𝑗)𝑗!

𝜌𝑗

(1−𝜌)2𝑗. 

The corresponding mgf is 

MY1,Y2
(t, s) = (

1

1−λ1t−λ2s+λ1λ2(1−ρ)ts
)

α

.                        (21) 

2.5 Gunst and Webster’s BivariateGamma 

Gunst and Webster (1973) considered Jensen’s bivariate gamma distribution when the scales parameters are equal. The 

joint pdf is 

fY1,Y2
(y1, y2) = y1

α1−1y2
α2−1e−(y1+y2) ∑

Γ(α+j)ρjj!

Γ(α)Γ(α1+j)Γ(α2+j)
Lj

(α1−1)
(y1)Lj

(α2−1)
(y2)∞

j=0 ,        (22) 

where 𝐿𝑗
(𝛼)(𝑦) = ∑ (

𝑗 + 𝛼
𝑗 − 𝑘

)
(−𝑦)𝑘

𝑘!

𝑗
𝑘=0 , for 𝑦1 > 0, 𝑦2 > 0, 𝛼1 > 0, 𝛼2 > 0, 0 < 𝜌 < 1, and 𝛼 < 𝑚𝑖𝑛(𝛼1, 𝛼2). 

The corresponding mgf is 

MY1,Y2
(t, s) = (

1

1−t
)

α1
(

1

1−s
)

α2
(

(1−t)(1−s)

1−t−s+(1−ρ)ts
)

α

.                     (23) 

where 𝑌1 and 𝑌2 have marginal gamma distributions, with shape parameters 𝛼1 and 𝛼2 and scale parameters 1, 

respectively. 

Since 𝛼 < 𝑚𝑖𝑛(𝛼1, 𝛼2), we can rewrite the mgf of Gunst and Webster’s bivariate gamma as 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = (

1

1 − 𝑡
)

𝛼1−𝛼

(
1

1 − 𝑠
)

𝛼2−𝛼

(
1

1 − 𝑡 − 𝑠 + (1 − 𝜌)𝑡𝑠
)

𝛼

 

Therefore, Gunst and Webster’s bivariate gamma can be considered as Kibble’s bivariate gamma convoluted with a 

double gamma distribution. 

The above result motives a new bivariate gamma distribution as 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = (

1

1−𝑡−𝑠
)

𝛽

(
1

1−𝑡−𝑠+(1−𝜌)𝑡𝑠
)

𝛼

.                             (24) 

The corresponding pdf is 

𝑓𝑌1,𝑌2
(𝑦1 , 𝑦2) =

(1 − 𝜌)−𝛼

Γ(𝛼)Γ(𝛽)
(𝑦1𝑦2)𝛼+𝑗−1𝑒

−
𝑦1+𝑦2

1−𝜌 ∑ 𝑎𝑗

∞

𝑗=0

(𝑦1 ∧ 𝑦2)𝛽Β(𝛽, 𝛼 + 𝑗) × 

Φ1 (𝛽, 1 − 𝛼 − 𝑗, 𝛼 + 𝛽 + 𝑗, (𝑦1 ∧ 𝑦2)
1+𝜌

1−𝜌
, (

𝑦1

𝑦2
)

𝛿

).                        (25) 

where Φ1(𝛼, 𝛽, 𝛾, 𝑥, 𝑦) is the confluent hypergeometric (7) and 𝛿 = {
   1    ;  𝑦1 ≤ 𝑦2

−1   ;  𝑦1 > 𝑦2
. 

A rescaled version of Gunst and Webster’s bivariate gamma distribution is the following 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) =

𝑦1
𝛼1−1𝑦2

𝛼2−1

𝜆1
𝛼1𝜆2

𝛼2 𝑒
−(

𝑦1
𝜆1

+
𝑦2
𝜆2

)
∑

Γ(𝛼+𝑗)𝜌𝑗𝑗!

Γ(𝛼)Γ(𝛼1+𝑗)Γ(𝛼2+𝑗)
𝐿𝑗

(𝛼1−1)
(

𝑦1

𝜆1
) 𝐿𝑗

(𝛼2−1)
(

𝑦2

𝜆2
)∞

𝑗=0 .               (26) 
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where 𝐿𝑗
(𝛼)(𝑦) = ∑ (

𝑗 + 𝛼
𝑗 − 𝑘

)
(−𝑦)𝑘

𝑘!

𝑗
𝑘=0 , for 𝑦1 > 0, 𝑦2 > 0, 𝛼1 > 0, 𝛼2 > 0, 𝜆1 > 0, 𝜆2 > 0, 0 < 𝜌 < 1, and 𝛼 <

𝑚𝑖𝑛(𝛼1, 𝛼2). 

The corresponding mgf is 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = (

1

1−𝜆1𝑡
)

𝛼1−𝛼

(
1

1−𝜆2𝑠
)

𝛼2−𝛼

(
1

1−𝜆1𝑡−𝜆2𝑠+(1−𝜌)𝜆1𝜆2𝑡𝑠
)

𝛼

.                  (27) 

2.6 Loaiciga and Leipnik’s BivariateGamma 

Loaiciga and Leipnik (2005) derived a bivariate gamma of two correlated gamma variables. The joint pdf is 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = ∑ ∑ ∑ 𝐴𝑛𝑗𝑘(𝑦1)𝜏1+𝑗−𝑛−1(𝑦2)𝜏2+𝑘−𝑛−1𝑛

𝑘=0
𝑛
𝑗=0

∞
𝑛=0 𝑒−𝑦1−𝑦2 ,               (28) 

for 𝑦1 > 0, 𝑦2 > 0, where 𝜏𝑖 = 𝛼𝑖(𝑛 + 𝜐), 𝑖 = 1,2 and 𝐴𝑛𝑗𝑘 are given by 

𝐴𝑛𝑗𝑘 =
(−1)𝑛+𝑗+𝑘𝛽𝑛(𝑛!)2

Γ(𝜏1)Γ(𝜏2)𝑗!𝑘!
(

−𝜈
𝑛

) (
𝜏1 − 1
𝑛 − 𝑗

) (
𝜏2 − 1
𝑛 − 𝑘

), with 𝛼1, 𝛼2, and 𝜈 > 0. 

The mgf is 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = (

1

(1−𝑡)𝛼1(1−𝑠)𝛼2−𝛽𝑡𝑠
)

𝜈

.                             (29) 

The marginal distribution of 𝑌1 and 𝑌2 are gamma, with shape parameters 𝜈𝛼1 and 𝜈𝛼2 and scale parameter 1, 

respectively. 

When 𝛼1 = 𝛼2 = 1 the Loaiciga and Leipnik bivariate gamma distribution can be considered as Kibble’s bivariate 

gamma. 

2.7 Nadarajah and Gupta’sBivariateGamma 

Nadarajah and Gupta (2006) introduced two bivariate gamma distribution. These distributions are useful for modeling 

applications in several areas such as rainfall at two nearby rain gauges, wind gust data and the dependence between 

rainfall and runoff. The first one is defined as 𝑌1 = 𝑈𝑋1 and 𝑌2 = 𝑈𝑋2, where U has beta distribution with shape 

parameters 𝛼1 and 𝛼2. 𝑋1 and 𝑋2 are independent gamma distributions with common shape parameters 𝛼1 + 𝛼2 

and scale parameters 1. Then 𝑌1 and 𝑌2 have a bivariate gamma distribution with joint pdf given by 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = 𝐶

(𝑦1𝑦2)𝛼1+𝛼2−1

(𝑦1+𝑦2)
𝛼1+1

2 +𝛼2
𝑒−(

𝑦1+𝑦2
2

)𝑊
(

𝛼1+1

2
,
𝛼1+2𝛼2

2
)
(𝑦1 + 𝑦2),                   (30) 

where 𝐶 =
1

Γ(𝛼1)Γ(𝛼1+𝛼2)
, for 𝑦1 > 0, 𝑦2 > 0, and 𝛼1, 𝛼2 > 0. 

The moment function is 

𝐸(𝑌1
𝑚𝑌2

𝑛) =
Γ(𝛼1+𝑚+𝑛)

Γ(𝛼1)

Γ(𝛼1+𝛼2+𝑚)Γ(𝛼1+𝛼2+𝑛)

Γ(𝛼1+𝛼2)Γ(𝛼1+𝛼2+𝑚+𝑛)
.                         (31) 

The marginal distribution of 𝑌1 and 𝑌2 are gamma with common shape parameters 𝛼1 and scale parameter 1. The 

correlation coefficient is 
√𝛼1𝛼2

𝛼1+𝛼2+1
. 

Here, we derive the moment generating function as 

Theorem 2. The mgf of Nadarajah and Gupta bivariate gamma distribution according to (30) is 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = 𝐹1[𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2; 𝑡, 𝑠].                         (32) 
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Proof. 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = 𝐸(𝑒𝑡(𝑈𝑋1)+𝑠(𝑈𝑋2)) = 𝐸 (𝐸(𝑒𝑈(𝑡𝑋1+𝑠𝑋2)|𝑈)) = 𝐸 ((

1

1 − 𝑡𝑈

1

1 − 𝑠𝑈
)

𝛼1+𝛼2

) 

=
1

Β(𝛼1,𝛼2)
∫

𝑢𝛼1−1(1−𝑢)𝛼2−1

(1−𝑡𝑢)𝛼1+𝛼2(1−𝑠𝑢)𝛼1+𝛼2
𝑑𝑢

1

0
= 𝐹1[𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2; 𝑡, 𝑠]. 

By using (8), where 𝐹1[𝛼, 𝛽, 𝛽′, 𝛾; 𝑥, 𝑦] is the hypergeometric function (8). 

The second Nadarajah and Gupta bivariate gamma distribution is defined as 𝑌1 = 𝑈1𝑋 and 𝑌2 = 𝑈2𝑋, where X has 

gamma distribution with shape parameter c and scale parameter 1, where 𝑎1 + 𝑏1 = 𝑎2 + 𝑏2 = 𝑐. 𝑈1 and 𝑈2 are 

independent beta distributions with shape parameters (𝑎1, 𝑏1) and (𝑎2, 𝑏2), respectively. Then 𝑌1 and 𝑌2 have a 

bivariate gamma distribution with joint pdf given by 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = 𝐶 ∑

(−1)𝑗Γ(𝑏1)Γ(𝑏2)𝑒
−

𝑦1
2

𝑗!Γ(𝑏2−𝑗)
𝑦1

𝑎1+𝑏2−𝑗−3

2 𝑦2
𝑎2+𝑗−1𝑊

(
𝑏2−𝑏1−𝑐−𝑗−1

2
,
𝑏1+𝑏2−𝑐−𝑗

2
)
(𝑦1)∞

𝑗=0 ,     (33) 

for 𝑦1 ≥ 𝑦2 > 0, 𝑎1, 𝑎2, 𝑏1, 𝑏2 > 0, and 𝑎1 + 𝑏1 = 𝑎2 + 𝑏2 = 𝑐, where the constant C is 
1

𝐶
= Γ(𝑐)Β(𝑎1, 𝑏1)Β(𝑎2, 𝑏2). 

The moment function is 

𝐸(𝑌1
𝑚𝑌2

𝑛) =
Γ(𝑐+𝑚+𝑛)Β(𝑎1+𝑚,𝑏1)Β(𝑎2+𝑛,𝑏2)

Γ(𝑐)Β(𝑎1,𝑏1)Β(𝑎2,𝑏2)
.                            (34) 

The marginal distribution of 𝑌1 , and 𝑌2  are gamma with shape parameters 𝑎1 , and 𝑎2 , and scale parameter 1, 

respectively. The correlation coefficient is 
√𝑎1𝑎2

𝑐
. 

Here, we derive the moment generating function as 

Theorem 3. The mgf of Nadarajah and Gupta bivariate gamma distribution according to (33) is 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = (

1

1−ln( 𝐹1[𝑎1;𝑐;𝑡]1 𝐹1[𝑎2;𝑐;𝑠]1 )
)

𝑐

.                           (35) 

 

Proof. 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = 𝐸(𝑒𝑡(𝑈1𝑋)+𝑠(𝑈2𝑋)) = 𝐸 (𝐸(𝑒𝑋(𝑡𝑈1+𝑠𝑈2)|𝑋)) = 𝐸 [( 𝐹1[𝑎1; 𝑐; 𝑡]1 𝐹1[𝑎2; 𝑐; 𝑠]1 )

𝑋
] 

= ∫
𝑥𝑐−1

Γ(𝑐)
𝑒−𝑥(1−𝑙𝑛[ 𝐹1[𝑎1;𝑐;𝑡]1 𝐹1[𝑎2;𝑐;𝑠]1 ])∞

0
𝑑𝑥 = (

1

1−𝑙𝑛[ 𝐹1[𝑎1;𝑐;𝑡]1 𝐹1[𝑎2;𝑐;𝑠]1 ]
)

𝑐

. 

3. Bivariate Gamma Distribution Based on Self-Decomposability 

Let 𝑌~Γ(𝛼, 1) then it is well known from the self-decomposability of gamma distribution that for every 0 < 𝜌 < 1 

there exists two independent random variables 𝑋~Γ(𝛼, 1) and 𝑋𝜌 such that 𝑌 = 𝜌𝑋 + 𝑋𝜌 where 𝑋𝜌~𝐶𝐸𝑁𝐵(𝛼, 𝜌). 

This kind of decomposition of gamma distribution can be used to introduce two different bivariate gamma distributions. 

We denote these two distributions by SD1 and SD2. 

3.1 SD1 Bivariate Gamma Distribution 

Let 𝑌1 = 𝜌𝑋1 + 𝑋𝜌  and 𝑌2 = 𝜌𝑋2 + 𝑋𝜌 , where 𝑋1  and 𝑋2  are independent Γ(𝛼, 1)  and independent of 

𝑋𝜌~𝐶𝐸𝑁𝐵(𝛼, 𝜌). Then clearly both 𝑌1 and 𝑌2 have Γ(𝛼, 1) with 𝐶𝑜𝑣(𝑌1, 𝑌2) = 𝑉𝑎𝑟(𝑋𝜌) = 𝛼(1 − 𝜌2) and hence 

𝐶𝑜𝑟𝑟(𝑌1, 𝑌2) = (1 − 𝜌2). 

The joint mgf is 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = (

1

1−𝜌𝑡
)

𝛼

(
1

1−𝜌𝑠
)

𝛼

(𝜌 + (1 − 𝜌)
1

1−𝑡−𝑠
)

𝛼

.                      (36) 

and the pdf of 𝑌1 and 𝑌2 is 
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𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = ∑

(1−𝜌)𝑘

𝜌𝛼+𝑘
∞
𝑘=0

(𝑦1𝑦2)𝛼−1

Γ(𝛼)2𝑘!
(𝑦1 ∧ 𝑦2)𝑘𝑒

−
𝑦1+𝑦2

𝜌 𝜙1 (𝛼, 1 − 𝛼, 𝛼 + 𝑘,
𝑦1∧𝑦2

𝜌
, (

𝑦1

𝑦2
)

𝛿

).      (37) 

where Φ1(𝛼, 𝛽, 𝛾, 𝑥, 𝑦) is the confluent hypergeometric (7) and 𝛿 = {
1    ;  𝑦1 ≤ 𝑦2

−1 ; 𝑦1 > 𝑦2
 . 

Proof. Appendix A.1. 

3.2 SD2 Bivariate Gamma Distribution 

Let 𝑌1 = 𝜌1𝑋 + 𝑋𝜌1
 and 𝑌2 = 𝜌2𝑋 + 𝑋𝜌2

, where 𝑋, 𝑋𝜌1
and 𝑋𝜌2

 are independent 𝑋~Γ(𝛼, 1) and 𝑋𝜌𝑖
~𝐶𝐸𝑁𝐵(𝛼, 𝜌𝑖), 

𝑖 = 1,2. Then clearly both 𝑌1 and 𝑌2 have Γ(𝛼, 1) with 𝐶𝑜𝑣(𝑌1, 𝑌2) = 𝛼𝜌1𝜌2, and  𝐶𝑜𝑟𝑟(𝑌1, 𝑌2) = 𝜌1𝜌2. The joint 

mgf is 

𝑀𝑌1,𝑌2
(𝑡, 𝑠) = (

1

1−𝜌1𝑡−𝜌2𝑠
)

𝛼

(𝜌1 + (1 − 𝜌1)
1

1−𝑡
)

𝛼

(𝜌2 + (1 − 𝜌2)
1

1−𝑠
)

𝛼

.                   (38) 

and the joint pdf is 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = ∑ ∑ 𝐴𝑘,𝑙𝑦1

𝑘+
1+𝛿

2
𝛼−1

∞

𝑙=0

∞

𝑘=0

𝑦2
𝑙+

1−𝛿

2
𝛼−1𝑒

−
𝑦1
𝜌1

−
𝑦2
𝜌2 × 

𝜙1 (𝛼, 1 − 𝑙
1+𝛿

2 − 𝑘
1−𝛿

2 , 𝛼 + 𝑘
1+𝛿

2 + 𝑙
1−𝛿

2 , (
𝑦1

𝜌1
)

1+𝛿

2
(

𝑦2

𝜌2
)

1−𝛿

2
, (

𝜌2

𝜌1

𝑦1

𝑦2
)

𝛿

),  (39) 

where 𝐴𝑘,𝑙 =
Γ(𝑙+𝛼)Γ(𝑘+𝛼)

Γ(𝛼)3Γ(𝑙)Γ(𝑘)𝑙!𝑘!
Β(𝛼, 𝑘)

1+𝛿

2 Β(𝛼, 𝑙)
1−𝛿

2
(1−𝜌1)𝑘

𝜌1
𝑘+

1+𝛿
2 𝛼−𝛼

(1−𝜌2)𝑙

𝜌2
𝑙+

1−𝛿
2 𝛼−𝛼

 , and 𝛿 = {
1    ;  

𝑦1

𝜌1
≤

𝑦2

𝜌2

−1 ; 
𝑦1

𝜌1
>

𝑦2

𝜌2

 . 

Proof. Appendix A.2. 

Explicit expressions for the pdfs of 𝑍 = 𝑌1 − 𝑌2 for these four distributions are derived in Section 4.  

4. Bilateral Gamma Distribution (𝑫𝚪) 

For fitting real-life data, it is essential to find appropriate distributions. In many practical situations, the data show a 

tendency of asymmetry and heavy-tailed distributions. Examples of such data are price movements in financial markets, 

input-output processes, the formation of sand dunes, communications, and formation of solar neutrinos, etc. For those 

issues, normal distributions often provide a poor fit. In recent years, alternative models based on the difference of two 

non-negative random variables such as gamma, Poisson and negative binomial were developed. In this section, we 

introduced several new gamma difference distributions constructed from the bivariate gamma distributions defined in 

Section 2 and Section 3. 

4.1 Bilateral Double Gamma 

The bilateral double gamma (𝐵𝐷Γ) was introduced by Küchler and Tappe (2008a), such as Z= 𝑌1 − 𝑌2, where 𝑌1 and 

𝑌2 are independent Γ(𝛼𝑖 , 𝜆𝑖), 𝑖 = 1,2. This distribution will be denoted by 𝐵𝐷Γ(𝛼1, 𝛼2, 𝜆1, 𝜆2). The probability density 

function of Z is 

𝑓(𝑧) =
(𝜆1)

𝛼2−𝛼1
2 (𝜆2)

𝛼1−𝛼2
2

Γ(𝛼1)(𝜆1+𝜆2)
𝛼1+𝛼2

2

𝑧
𝛼1+𝛼2

2
−1𝑒

−
𝑧

2
(

𝜆2−𝜆1
𝜆1𝜆2

)
𝑊𝛼1−𝛼2

2
,
𝛼1+𝛼2−1

2

(𝑧 (
𝜆1+𝜆2

𝜆1𝜆2
)) ;   𝑧 ≥ 0,              (40) 

and 𝑓(−𝑧; 𝛼2, 𝛼1, 𝜆2, 𝜆1) = 𝑓(𝑧; 𝛼1, 𝛼2, 𝜆1, 𝜆2) for 𝑧 < 0, 

where 𝛼1 > 0, 𝛼2 > 0, 𝜆1, 𝜆2 > 0. 

This pdf can be rewritten as 

𝑓(𝑧) =
(𝜆1)

𝛼2−𝛼1
2 (𝜆2)

𝛼1−𝛼2
2

(𝜆1+𝜆2)
𝛼1+𝛼2

2

|𝑧|
𝛼1+𝛼2

2
−1𝑒

−
𝑧

2
(

𝜆2−𝜆1
𝜆1𝜆2

)
𝑊

𝑠𝑖𝑔𝑛(𝑧)
𝛼1−𝛼2

2 ,
𝛼1+𝛼2−1

2

((
𝜆1+𝜆2
𝜆1𝜆2

)|𝑧|)

[Γ(𝛼1)]
1+𝑠𝑖𝑔𝑛(𝑧)

2 [Γ(𝛼2)]
1−𝑠𝑖𝑔𝑛(𝑧)

2

; −∞ < 𝑧 < ∞.      (41) 



 

 

http://ijsp.ccsenet.orgInternational Journal of Statistics and ProbabilityVol. 7, No. 2; 2018 

74 

where 𝑠𝑖𝑔𝑛(𝑥) = {
 1  𝑓𝑜𝑟 𝑥 ≥ 0
−1 𝑓𝑜𝑟 𝑥 < 0

. 

The corresponding mgf is 

𝑀𝑍(𝑡) = (
1

1−𝜆1𝑡
)

𝛼1
(

1

1+𝜆2𝑡
)

𝛼2
.                                  (42) 

The mean and the variance are 𝜇 = 𝐸(𝑍) = 𝛼1𝜆1 − 𝛼2𝜆2, and 𝜎2 = 𝑉𝑎𝑟(𝑍) = 𝛼1𝜆1
2 + 𝛼2𝜆2

2
, respectively. For the 

special case where 𝛼1 = 𝛼2 = 𝛼, we can write the mgf as 

𝑀𝑍(𝑡) = (
1

1−
𝜇

𝛼
𝑡−

𝜎2−𝜇2 𝛼⁄

2𝛼
𝑡2

)

𝛼

.                                   (43) 

In the following proposition, a general form for the n
th

 moment is given 

Theorem 4. If 𝑍 has 𝐵𝐷Γ(𝛼1, 𝛼2, 𝜆1, 𝜆2), then for 𝑛 ≥ 1 

𝐸(𝑍𝑛) =
Γ(𝛼1+𝑛)

Γ𝛼1
𝜆1

𝑛 𝐹12 (𝛼2, −𝑛; 1 − 𝛼1 − 𝑛; −
𝜆2

𝜆1
),                    (44) 

and 

𝐸[(𝑍 − 𝜇)𝑛] = ∑ (
𝑛
𝑖

)
Γ(𝛼1+𝑖)

Γ𝛼1
𝜆1

𝑖(𝛼2𝜆2 − 𝛼1𝜆1)𝑛−𝑖𝑛
𝑖=0 𝐹12 (𝛼2, −𝑖; 1 − 𝛼1 − 𝑖; −

𝜆2

𝜆1
).          (45) 

Proof. Appendix B.1.  

4.2 Cheriyan’s Bilateral Gamma 

As the components of Cheriyan and Ramabhadran bivariate gamma are 𝑌1 = 𝑋0 + 𝑋1, and 𝑌2 = 𝑋0 + 𝑋2 then their 

difference is 𝑍 = 𝑋1 − 𝑋2,which is the bilateral double gamma. Therefore Cheriyan’s Bilateral Gamma is a bilateral 

double gamma. 

4.3Kibble Bilateral Gamma 

Let the joint distribution of 𝑌1 and 𝑌2 be Kibble’s bivariate gamma distribution, with parameters 𝛼, 𝜆1, 𝜆2 > 0, and 

 0 < 𝜌 < 1. The Kibble bilateral gamma distribution is the distribution of the difference Z= 𝑌1 − 𝑌2. This distribution 

will be denoted by 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 𝜌). The probability density function is 

𝑓𝑍(𝑧) = ∑ 𝑏𝑗
∞
𝑗=0 𝑒

−𝑧

2
(

1

1−𝜌
)(

1

𝜆1
−

1

𝜆2
)
|𝑧|𝛼+𝑗−1𝑊

0,𝛼+𝑗−
1

2

(|𝑧| (
1

1−𝜌
) (

1

𝜆1
+

1

𝜆2
)) ; −∞ < 𝑧 < ∞.        (46) 

where 𝑏𝑗 =
1

Γ(𝛼)𝑗!

𝜌𝑗

(1−𝜌)𝑗

1

(𝜆1+𝜆2)𝛼+𝑗. 

The derivation of the pdf is in Appendix B.2. 

The mgf is 

𝑀𝑍(𝑡) = (
1

1−(𝜆1−𝜆2)𝑡−𝜆1𝜆2(1−𝜌)𝑡2)
𝛼

.                            (47) 

Hence, the mean and the variance are 𝜇 = 𝐸(𝑍) = 𝛼(𝜆1 − 𝜆2), and 𝜎2 = 𝛼(𝜆1 − 𝜆2)2 + 2𝛼𝜆1𝜆2(1 − 𝜌), respectively. 

In terms of the mean and the variance (47) can be written as 

𝑀𝑍(𝑡) = (
1

1−
𝜇

𝛼
𝑡−

𝜎2−𝜇2 𝛼⁄

2𝛼
𝑡2

)

𝛼

.                                (48) 

which is identical with (43). Thus the 𝐵𝐾Γ can be viewed as a special case of the 𝐵𝐷Γ. 

Remarks:  

(i)The 𝐵𝐾Γ(𝛼, 𝜆, 𝜆, 𝜌) is identical with 𝐵𝐷Γ(𝛼, 𝛼, 𝜆√1 − 𝜌, 𝜆√1 − 𝜌). 

(ii) The 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 0) is identical with 𝐵𝐷Γ(𝛼, 𝛼, 𝜆1, 𝜆2). 

(iii) For 𝜆1 > 𝜆2, the 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 1) is Γ(𝛼, 𝜆1 − 𝜆2) while for 𝜆1 < 𝜆2, the 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 1) is the negative of 
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Γ(𝛼, 𝜆2 − 𝜆1). 

4.4 Gunst and Webster’s Bilateral Gamma 

As Gunst and Webster’s bivariate gamma is the convolution of 𝐷𝐵Γ and 𝐾𝐵Γ, then the corresponding Gunst and 

Webster’s bilateral gamma is 𝐵𝐷Γ(𝛼1 − 𝛼, 𝛼2 − 𝛼, 𝜆1, 𝜆2) convoluted with 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 𝜌). 

The mgf is 

𝑀𝑍(𝑡) = (
1

1−𝜆1𝑡
)

𝛼1−𝛼

(
1

1+𝜆2𝑡
)

𝛼2−𝛼

(
1

1−(𝜆1−𝜆2)𝑡−(1−𝜌)𝜆1𝜆2𝑡2)
𝛼

.                    (49) 

The pdf can be computed in term of Whittaker function but it will be more harder to deal with in term of inference. 

4.5 Loaiciga and Leipnik’sBilateral Gamma 

Let 𝑌1, and 𝑌2 follow Loaiciga and Leipnik’s bivariate gamma distribution, with parameters 𝛼1, 𝛼2, 𝛼 > 0, 𝜆1, 𝜆2 > 0, 

and |𝛽| ≤ 𝜆1𝜆2√𝛼1𝛼2. The Loaiciga and Leipnikbilateral gamma distribution as Z= 𝑌1 − 𝑌2. This distribution will be 

denoted by 𝐵𝐿Γ(𝛼, 𝛼1, 𝛼2, 𝛽, 𝜆1, 𝜆2). The pdf is 

𝑓𝑍(𝑧) = ∑ ∑ 𝐵𝑛𝑗𝑘|𝑧|
𝜏1+𝜏2+𝑗+𝑘

2
−𝑛−1𝑛

𝑗,𝑘=0
∞
𝑛=0 𝑒𝑥𝑝 [

−𝑧

2
(

𝜆2−𝜆1

𝜆1𝜆2
)] 𝑊

𝑠𝑖𝑔𝑛(𝑧)
𝜏1−𝜏2+𝑗−𝑘

2
,
𝜏1+𝜏2+𝑗+𝑘−1

2
−𝑛

((
𝜆1+𝜆2

𝜆1𝜆2
) |𝑧|),  (50) 

for −∞ < 𝑧 < ∞, where 𝜏𝑖 = 𝛼𝑖(𝑛 + 𝛼) and 𝐵𝑛𝑗𝑘  are given by 

𝐵𝑛𝑗𝑘 =
(−1)𝑛+𝑗+𝑘𝛽𝑛(𝑛!)2(

𝜆1𝜆2
𝜆1+𝜆2

)

𝜏1+𝜏2+𝑗+𝑘
2 −𝑛

𝜆1
𝑗+𝜏1𝜆2

𝑘+𝜏2Γ(𝜏1)Γ(𝜏2)𝑗!𝑘!
(

−𝛼
𝑛

) (
𝜏1 − 1
𝑛 − 𝑗

) (
𝜏2 − 1
𝑛 − 𝑘

) [Γ(𝜏2 + 𝑘 − 𝑛)]
1+𝑠𝑖𝑔𝑛(𝑧)

2 [Γ(𝜏1 + 𝑗 − 𝑛)]
1−𝑠𝑖𝑔𝑛(𝑧)

2 . 

The derivation of the pdf is in Appendix B.3. 

The mgf is 

𝑀𝑍(𝑡) = (
1

(1−𝜆1𝑡)𝛼1(1+𝜆2𝑡)𝛼2+𝛽𝑡2)
𝛼

.                                (51) 

The mean and the variance are 𝐸(𝑍) = 𝛼(𝛼1𝜆1 − 𝛼2𝜆2), and 𝑉(𝑍) = 𝛼(𝛼1𝜆1
2 − 𝛼2𝜆2

2 − 2𝛽), respectively. 

When 𝛼1 = 𝛼2 = 1, The Loaiciga and Leipnik bilateral gamma is identical with 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 𝛽). 

The triple summation with Whittaker function in the pdf makes the distribution more complicated for getting the 

properties and parameters estimation of the distribution. 

4.6 Nadarajah and Gupta’sBilateral Gamma 

The corresponding bilateral gamma distribution to Nadarajah and Gupta’s bivariate gamma distribution has complicated 

pdf, therefore, it will not be discussed here.  

4.7 SD1 Bilateral Gamma 

Let 𝑌1,  and 𝑌2  follow SD1 bivariate gamma distribution given in Section 3, and Z = 𝑌1 − 𝑌2 , then Z has 

𝐵𝐷Γ (𝛼, 𝛼,
1

𝜌
,

1

𝜌
). So the SD1 bivariate gamma distribution does not provide a new difference distribution. 

4.8 SD2Bilateral Gamma 

Let 𝑌1 and 𝑌2 follow SD2 bivariate gamma distribution. The second self-decomposable bilateral gamma distribution 

as Z= 𝑌1 − 𝑌2. The mgf is 

𝑀𝑍(𝑡) = (
1

1−(𝜌1−𝜌2)𝑡
)

𝛼

(𝜌1𝜌2 + 𝜌2(1 − 𝜌1)
1

1−𝑡
+ 𝜌1(1 − 𝜌2)

1

1+𝑡
+ (1 − 𝜌1)(1 − 𝜌2)

1

1−𝑡2)
𝛼

.     (52) 

The mean and the variance are 𝐸(𝑍) = 0, and 𝑉(𝑍) = 2𝛼(1 − 𝜌1𝜌2), respectively. 

The pdf is very complicated and involve triple summation with Whittaker function in the pdf makes the distribution 

more complicated for setting the properties and parameters estimation of the distribution. 

5. Conclusion 

Different bivariate gamma distributions provide different bilateral gamma distributions. However, under some conditions, 
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one can see that bilateral gamma distributions are connected. By comparing the different bivariate gamma distributions, 

we found that Cheriyan and Ramabhadran bivariate gamma is the convolution of a double gamma distribution with a 

complete dependence bivariate gamma. Gunst and Webster’s bivariate gamma can be considered as Kibble’s bivariate 

gamma convoluted with double gamma distribution. Loaiciga and Leipnik’s bivariate gamma is a generalization of 

Kibble’s bivariate gamma. 

The Kibble’s bilateral gamma is a special case of the bilateral double gamma. Kibble’s bilateral gamma is equivalent to 

Loaiciga and Leipnik bilateral gamma when 𝛼1 = 𝛼2 = 1. Also, for 𝜆1 > 𝜆2, the 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 1) is Γ(𝛼, 𝜆1 − 𝜆2) 

while for 𝜆1 < 𝜆2, the 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 1) is the negative of Γ(𝛼, 𝜆2 − 𝜆1).  
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Appendix A  

SD1 Bivariate Gamma Distribution to Appendix A.1 

Let 𝑌1 = 𝜌𝑋1 + 𝑋𝜌  and 𝑌2 = 𝜌𝑋2 + 𝑋𝜌 , where 𝑋1  and 𝑋2  are independent Γ(𝛼, 1)  and independent of 

𝑋𝜌~𝐶𝐸𝑁𝐵(𝛼, 𝜌). 

The joint pdf of 𝑌1and 𝑌2 is 

𝑓(𝑥1, 𝑥2, 𝑥𝜌) = ∑
Γ(𝑘 + 𝛼)

Γ(𝛼)3Γ(𝑘)𝑘!
(

1 − 𝜌

𝜌
)

𝑘∞

𝑘=0

𝜌𝛼𝑥1
𝛼−1𝑥2

𝛼−1𝑥𝜌
𝑘−1𝑒

−𝑥1−𝑥2−
𝑥𝜌

𝜌  

𝑓(𝑦1, 𝑦2) = ∑
Γ(𝑘 + 𝛼)

Γ(𝛼)3Γ(𝑘)𝑘!
(

1 − 𝜌

𝜌
)

𝑘

𝜌𝛼−2

∞

𝑘=0

𝑒
−

𝑦1+𝑦2
𝜌 ∫ 𝑥𝑘−1 (

𝑦1 − 𝑥

𝜌
)

𝛼−1

(
𝑦2 − 𝑥

𝜌
)

𝛼−1

𝑒
𝑥

𝜌𝑑𝑥
𝑚𝑖𝑛(𝑦1,𝑦2)

0

 

= ∑
Γ(𝑘+𝛼)

Γ(𝛼)3Γ(𝑘)𝑘!

(1−𝜌)𝑘

𝜌𝛼+𝑘
∞
𝑘=0 𝑒

−
𝑦1+𝑦2

𝜌 ∫ 𝑥𝑘−1(𝑦1 − 𝑥)𝛼−1(𝑦2 − 𝑥)𝛼−1𝑒
𝑥

𝜌𝑑𝑥
𝑚𝑖𝑛(𝑦1,𝑦2)

0
. 

For 𝑦1 ≤ 𝑦2 

∫ 𝑥𝑘−1(𝑦1 − 𝑥)𝛼−1(𝑦2 − 𝑥)𝛼−1𝑒
𝑥

𝜌𝑑𝑥
𝑚𝑖𝑛(𝑦1,𝑦2)

0

= ∫ 𝑥𝑘−1(𝑦1 − 𝑥)𝛼−1(𝑦2 − 𝑥)𝛼−1𝑒
𝑥

𝜌𝑑𝑥
𝑦1

0

= 𝑦1
𝛼−1𝑦2

𝛼−1 ∫ 𝑥𝑘−1 (1 −
𝑥

𝑦1

)
𝛼−1

(1 −
𝑥

𝑦2

)
𝛼−1

𝑒
𝑥

𝜌𝑑𝑥
𝑦1

0

 

= 𝑦1
𝛼+𝑘−1𝑦2

𝛼−1 ∫ 𝑢𝑘−1(1 − 𝑢)𝛼−1 (1 −
𝑦1

𝑦2
𝑢)

𝛼−1

𝑒
𝑦1
𝜌

𝑢
𝑑𝑢

1

0
. 

By using (7) 

∫ 𝑢𝑘−1(1 − 𝑢)𝛼−1 (1 −
𝑦1

𝑦2

𝑢)
𝛼−1

𝑒
𝑦1
𝜌

𝑢
𝑑𝑢

1

0

= 𝛣(𝑘, 𝛼)𝜙1 (𝛼, 1 − 𝛼, 𝛼 + 𝑘,
𝑦1

𝜌
,
𝑦1

𝑦2

) 

then, 

𝑓(𝑦1, 𝑦2) = ∑
1

Γ(𝛼)2𝑘!

(1−𝜌)𝑘

𝜌𝛼+𝑘
∞
𝑘=0 𝑦1

𝛼+𝑘−1𝑦2
𝛼−1𝑒

−
𝑦1+𝑦2

𝜌 𝜙1 (𝛼, 1 − 𝛼, 𝛼 + 𝑘,
𝑦1

𝜌
,

𝑦1

𝑦2
) ; 𝑦1 < 𝑦2. 

For 𝑦1 > 𝑦2, by the same above way. 

SD2 Bivariate Gamma Distribution to Appendix A.2 

Let 𝑌1 = 𝜌1𝑋 + 𝑋𝜌1
 and 𝑌2 = 𝜌2𝑋 + 𝑋𝜌2

, where 𝑋, 𝑋𝜌1
and 𝑋𝜌2

 are independent 𝑋~Γ(𝛼, 1) and 𝑋𝜌𝑖
~𝐶𝐸𝑁𝐵(𝛼, 𝜌𝑖), 

𝑖 = 1,2. Then clearly both 𝑌1 and 𝑌2 have Γ(𝛼, 1).  

The joint pdf is 

𝑓(𝑥𝜌1
, 𝑥𝜌2

, 𝑥) = ∑ ∑
Γ(𝑙 + 𝛼)Γ(𝑘 + 𝛼)

Γ(𝛼)3Γ(𝑙)Γ(𝑘)𝑙! 𝑘!

∞

𝑙=0

(𝜌1𝜌2)𝛼 (
1 − 𝜌2

𝜌2

)
𝑙

(
1 − 𝜌1

𝜌1

)
𝑘

𝑥𝛼−1

∞

𝑘=0

𝑥𝜌1
𝑘−1𝑥𝜌2

𝑙−1𝑒
−

𝑥𝜌1
𝜌1

−
𝑥𝜌2
𝜌2

−𝑥
 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = ∑ ∑

Γ(𝑙 + 𝛼)Γ(𝑘 + 𝛼)

Γ(𝛼)3Γ(𝑙)Γ(𝑘)𝑙! 𝑘!

∞

𝑙=0

(
1 − 𝜌2

𝜌2

)
𝑙

(
1 − 𝜌1

𝜌1

)
𝑘∞

𝑘=0

𝜌1
𝛼+𝑘−1𝜌2

𝛼+𝑙−1𝑒
−

𝑦1
𝜌1

−
𝑦2
𝜌2

× ∫ 𝑒𝑥 (
𝑦1

𝜌1

− 𝑥)
𝑘−1

(
𝑦2

𝜌2

− 𝑥)
𝑙−1

𝑥𝛼−1𝑑𝑥

𝑦1
𝜌1

∧
𝑦2
𝜌2

0
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For 
𝑦1

𝜌1
≤

𝑦2

𝜌2
 

∫ 𝑒𝑥 (
𝑦1

𝜌1

− 𝑥)
𝑘−1

(
𝑦2

𝜌2

− 𝑥)
𝑙−1

𝑥𝛼−1𝑑𝑥

𝑦1
𝜌1

∧
𝑦2
𝜌2

0

= ∫ 𝑒𝑥 (
𝑦1

𝜌1

− 𝑥)
𝑘−1

(
𝑦2

𝜌2

− 𝑥)
𝑙−1

𝑥𝛼−1𝑑𝑥

𝑦1
𝜌1

0

= (
𝑦1

𝜌1

)
𝑘−1

(
𝑦2

𝜌2

)
𝑙−1

(
𝑦1

𝜌1

)
𝛼

∫ 𝑢𝛼−1(1 − 𝑢)𝑘−1 (1 −
𝜌2

𝑦2

𝑦1

𝜌1

𝑢)
𝑙−1

𝑒
𝑦1
𝜌1

𝑢
𝑑𝑥

1

0

 

By using (7) 

∫ 𝑢𝛼−1(1 − 𝑢)𝑘−1 (1 −
𝜌2

𝑦2

𝑦1

𝜌1

𝑢)
𝑙−1

𝑒
𝑦1
𝜌1

𝑢
𝑑𝑥

1

0

= Β(𝛼, 𝑘)𝜙1 (𝛼, 1 − 𝑙, 𝛼 + 𝑘,
𝑦1

𝜌1

,
𝑦1

𝜌1

𝜌2

𝑦2

) 

𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = ∑ ∑

Γ(𝑙+𝛼)

Γ(𝛼)2Γ(𝑙)Γ(𝑘)𝑙!𝑘!

∞
𝑙=0 (

1−𝜌2

𝜌2
)

𝑙

(
1−𝜌1

𝜌1
)

𝑘
∞
𝑘=0 𝜌2

𝛼𝑒
−

𝑦1
𝜌1

−
𝑦2
𝜌2𝑦1

𝛼+𝑘−1𝑦2
𝑙−1𝜙1 (𝛼, 1 − 𝑙, 𝛼 + 𝑘,

𝑦1

𝜌1
,

𝑦1

𝜌1

𝜌2

𝑦2
) , 

for 
𝑦1

𝜌1
>

𝑦2

𝜌2
, by the same above way. 

Appendix B  

The n
th

 Moment of Küchler and Tappe Bilateral Gamma Distribution to Appendix B.1 

If 𝑍 has Küchler and Tappe bilateral gamma distribution, then the n
th

 moment is 

𝐸(𝑍𝑛) = 𝐸[(𝑋1 − 𝑋2)𝑛]=𝐸 [∑ (
𝑛
𝑖

) 𝑋1
𝑛−𝑖(−1)𝑖𝑋2

𝑖𝑛
𝑖=0 ] 

=∑ (
𝑛
𝑖

) (−1)𝑖𝐸(𝑋1
𝑛−𝑖)𝐸(𝑋2

𝑖 )𝑛
𝑖=0 =∑ (

𝑛
𝑖

) (−1)𝑖 Γ(𝛼1+𝑛−𝑖)

Γ(𝛼1)
𝜆1

𝑛−𝑖 Γ(𝛼2+𝑖)

Γ(𝛼2)
𝑛
𝑖=0 𝜆2

𝑖
 

=
𝜆1

𝑛

Γ𝛼1Γ𝛼2
∑ (

𝑛
𝑖

) (−1)𝑖Γ(𝛼2 + 𝑖)Γ(𝛼1 + 𝑛 − 𝑖)𝜆1
−𝑖𝜆2

𝑖𝑛
𝑖=0  

=
Γ(𝛼1+𝑛)

Γ𝛼1
𝜆1

𝑛 𝐹12 (𝛼2, −𝑛; 1 − 𝛼1 − 𝑛; −
𝜆2

𝜆1
). 

𝐸[(𝑍 − 𝜇)𝑛] = 𝐸 [∑ (
𝑛
𝑖

) 𝑍𝑖(−𝜇)𝑛−𝑖𝑛
𝑖=0 ]=∑ (

𝑛
𝑖

) (−𝜇)𝑛−𝑖𝐸(𝑍𝑖)𝑛
𝑖=0  

=∑ (
𝑛
𝑖

)
Γ(𝛼1+𝑖)

Γ𝛼1
𝜆1

𝑖(𝛼2𝜆2 − 𝛼1𝜆1)𝑛−𝑖 𝐹12 (𝛼2, −𝑖; 1 − 𝛼1 − 𝑖; −
𝜆2

𝜆1
)𝑛

𝑖=0 . 

Kibble Bilateral Gamma to Appendix B.2 

Let𝑌1  and 𝑌2  follow Kibble’s bivariate gamma distribution, with parameters 𝛼, 𝜆1, 𝜆2 > 0, and  0 < 𝜌 < 1. The 

Kibble bilateral gamma distribution as Z= 𝑌1 − 𝑌2. This distribution will be denoted by 𝐵𝐾Γ(𝛼, 𝜆1, 𝜆2, 𝜌). 

𝑓(𝑧) =
(1−𝜌)−𝛼

Γ(𝛼)
∑

𝑎𝑗

(𝜆1𝜆2)𝛼+𝑗
∞
𝑗=0 𝑒

(
1

1−𝜌
)

𝑧

𝜆2 × ∫ 𝑦1
𝛼+𝑗−1(𝑦1 − 𝑧)𝛼+𝑗−1𝑒

−𝑦1(
1

1−𝜌
)(

1

𝜆1
+

1

𝜆2
)
𝑑𝑦1

∞

0∨𝑧
, 

where 𝑎𝑗 =
1

Γ(𝛼+𝑗)𝑗!

𝜌𝑗

(1−𝜌)2𝑗. 

By using (9)  

∫ 𝑦1
𝛼+𝑗−1(𝑦1 − 𝑧)𝛼+𝑗−1𝑒

−𝑦1(
1

1−𝜌
)(

1

𝜆1
+

1

𝜆2
)
𝑑𝑦1

∞

𝑧
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=
𝑧𝛼+𝑗−1Γ(𝛼 + 𝑗)

(
1

1−𝜌
)

𝛼+𝑗

(
1

𝜆1
+

1

𝜆2
)

𝛼+𝑗
𝑒

−𝑧

2
(

1

1−𝜌
)(

1

𝜆1
+

1

𝜆2
)
𝑊

0,𝛼+𝑗−
1

2

(𝑧 (
1

1 − 𝜌
) (

1

𝜆1

+
1

𝜆2

)) 

∫ 𝑦1
𝛼+𝑗−1(𝑦1 − 𝑧)𝛼+𝑗−1𝑒

−𝑦1(
1

1−𝜌
)(

1

𝜆1
+

1

𝜆2
)
𝑑𝑦1

∞

0

=
(−𝑧)𝛼+𝑗−1Γ(𝛼 + 𝑗)

(
1

1−𝜌
)

𝛼+𝑗

(
1

𝜆1
+

1

𝜆2
)

𝛼+𝑗
𝑒

−𝑧

2
(

1

1−𝜌
)(

1

𝜆1
+

1

𝜆2
)
𝑊

0,𝛼+𝑗−
1

2

(−𝑧 (
1

1 − 𝜌
) (

1

𝜆1

+
1

𝜆2

)) 

Then, 

𝑓𝑍(𝑧) = ∑ 𝑏𝑗
∞
𝑗=0 𝑒

−𝑧

2
(

1

1−𝜌
)(

1

𝜆1
−

1

𝜆2
)
|𝑧|𝛼+𝑗−1𝑊

0,𝛼+𝑗−
1

2

(|𝑧| (
1

1−𝜌
) (

1

𝜆1
+

1

𝜆2
)), 

where 𝑏𝑗 =
1

Γ(𝛼)𝑗!

𝜌𝑗

(1−𝜌)𝑗

1

(𝜆1+𝜆2)𝛼+𝑗. 

Loaiciga and Leipnik’s Bilateral Gamma to Appendix B.3 

Let 𝑌1, and 𝑌2 follow Loaiciga and Leipnik’s bivariate gamma distribution, with parameters 𝛼1, 𝛼2, 𝛼 > 0, 𝜆1, 𝜆2 > 0, 

and |𝛽| ≤ 𝜆1𝜆2√𝛼1𝛼2. The Loaiciga and Leipnikbilateral gamma distribution as Z= 𝑌1 − 𝑌2.The probability density 

function is 

𝑓𝑍(𝑧) = ∑ ∑ ∑ Anjk exp (+
z

λ2

) ∫ (x)τ1+j−n−1(x − z)τ2+k−n−1
∞

0∨z

n

k=0

n

j=0

exp (−x (
1

λ1

+
1

λ2

)) dx

∞

n=0

 

where 𝜏𝑖 = 𝛼𝑖(𝑛 + 𝜐) and 𝐴𝑛𝑗𝑘 are given by 

Anjk =
(−1)n+j+kβn(n!)2

λ1
j+τ1λ2

k+τ2Γ(τ1)Γ(τ2)
(

−ν
n

) (
τ1 − 1
n − j

) (
τ2 − 1
n − k

) 

By using (9) 

∫ (𝑥)𝜏1+𝑗−𝑛−1(𝑥 − 𝑧)𝜏2+𝑘−𝑛−1 exp (−𝑥 (
1

𝜆1

+
1

𝜆2

)) 𝑑𝑥
∞

𝑧

 

=
𝑧

𝜏1+𝑗+𝜏2+𝑘−2𝑛

2
−1

(
1

𝜆1
+

1

𝜆2
)

𝜏1+𝑗+𝜏2+𝑘−2𝑛

2

𝑒𝑥𝑝 [
−𝑧

2
(

1

𝜆1

+
1

𝜆2

)] Γ(𝜏2 + 𝑘 − 𝑛)𝑊𝜏1+𝑗−𝜏2−𝑘

2
,
𝜏1+𝑗+𝜏2+𝑘−2𝑛−1

2

(𝑧 (
1

𝜆1

+
1

𝜆2

)) 

∫ (𝑥)𝜏1+𝑗−𝑛−1(𝑥 − 𝑧)𝜏2+𝑘−𝑛−1 exp (−𝑥 (
1

𝜆1

+
1

𝜆2

)) 𝑑𝑥
∞

0

 

=
(−𝑧)

𝜏1+𝑗+𝜏2+𝑘−2𝑛
2 −1

(
1

𝜆1
+

1

𝜆2
)

𝜏1+𝑗+𝜏2+𝑘−2𝑛
2

𝑒𝑥𝑝 [
−𝑧

2
(

1

𝜆1
+

1

𝜆2
)] Γ(𝜏1 + 𝑗 − 𝑛)𝑊

−
𝜏1+𝑗−𝜏2−𝑘

2
,
𝜏1+𝑗+𝜏2+𝑘−2𝑛−1

2

(−𝑧 (
1

𝜆1
+

1

𝜆2
)). 
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