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Abstract

We define a new term unreliable service and construct the corresponding embedded Markov Chain to an M/M/1 queue
with so defined protocol. Sufficient conditions for positive recurrence and closed form of stationary distribution are
provided. Furthermore, we compute the probability generating function of the stationary queue length and Laplace-
Stieltjes transform of the stationary waiting time. In the course of the analysis an interesting decomposition of both the
queue length and waiting time has emerged. A number of queueing models can be recovered from our work by taking
limits of certain parameters.
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1. Introduction

Queueing theory covers a large body of models including queues with interruptions, breakdowns, batch arrivals, batch
service, and the like. A typical assumption made for these models reads: at the moment of service time completion,
the customer is assumed to have been served. This, however, need not be the case! Imagine for example that a service
representative (server) has a message to communicate (in audible words) to an arriving client (customer) in a loud noisy
environment. The customer is expected to hear the message spoken by the server but due to the noisy environment, the
service may fail. That is, the person who was supposed to hear the message could not fully understand the message.
Under this scenario, it was not the servers fault but instead the external interference that caused the service to fail. This is
the prevailing idea which motivated our work in this paper.

Specifically, we seek to consider and analyze an M/M/1 queue with what we call ’unreliable service.’ In this model, the
term ’unreliable service’ refers to the fact that the server may not always complete its service successfully. While service
failure has been studied extensively in the literature, our model is different in that the failure is not due to the server itself
by means of a ’breakdown,’ nor is it due to the customer leaving the queue during the service time. Rather, the success or
failure of a job is due to external forces and entirely random. Furthermore, neither the customer nor server know whether
a job has failed or was successful until after the job’s service time has been completed. The application of such a queue
can come from many different areas and fields – all that is necessary is for some sort of quality check to be performed
after service. This quality check would look at some set of measurements with certain thresholds and would conclude that
the service was either successful or not.

Another key aspect to our model is that it will preserve the FCFS (First Come First Serve) discipline structure of the queue.
Namely, when a customer’s service fails, the customer does not lose its place in the queue and the service is repeated until
it is successful. Our approach utilizes an embedded Markov chain methodology, similar to that done by Xu, Xiuli and
Tian, Naishuo (Xu & Tian, 2009). It should be noted that one can construct an M/PH/1 queue with similar properties.
However, such a model will impose an additional, undesirable restriction: µ > β1 + β2 (Latouche & Ramaswami, 1999)
See below for definitions of these parameters.

2. Definitions

We begin by defining our process, state space, and parameters.

Definition 2.1. Let {N(t) | t > 0} be the number of customers in the queue at time t, and

S(t) =

{
1 immediately after service is rendered
0 otherwise

Then {(N(t), S(t)) | t > 0} is a Markov process on the state space:
Ω = {(0, 0)} ∪ {(k, s) | k ∈ N, s ∈ {0, 1}}

Define the following parameters:
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• λ : the rate of the Poisson arrivals process.
• µ : the rate of service, successful or not.
• β1 : the rate of a successful service.
• β2 : the rate of a failed service.

To visualize such a Markovian process, it is helpful to construct the state transition rate diagram.

Figure 1. Markovian state transition rate diagram.

Formally, we define a ’successful service’ to be a transition from (n, 1) −→ (n − 1, 0), which is represented in the state
transition diagram as having rate β1. Similarly, we define a ’failed service’ to be a transition from (n, 1) −→ (n, 0)
with transition rate β2. Accordingly, we can compute the probabilities of a ’successful’ or ’failed’ service explicitly by
considering the transition probabilities of the embedded Markov Chain.

ps =
β1

β1 + β2 + λ

∞∑
i=0

(
λ

β1 + β2 + λ

)i

pf =
β2

β1 + β2 + λ

∞∑
i=0

(
λ

β1 + β2 + λ

)i

(1)

ps =
β1

β1 + β2 + λ

(
1

1 − λ
β1+β2+λ

)
pf =

β2

β1 + β2 + λ

(
1

1 − λ
β1+β2+λ

)

ps =
β1

β1 + β2 + λ

(
1

β1+β2
β1+β2+λ

)
pf =

β2

β1 + β2 + λ

(
1

β1+β2
β1+β2+λ

)

ps =
β1

β1 + β2 + λ

(
β1 + β2 + λ

β1 + β2

)
pf =

β2

β1 + β2 + λ

(
β1 + β2 + λ

β1 + β2

)
ps =

β1

β1 + β2
pf =

β2

β1 + β2

From here, we can list the countable state space in lexicographical order; formally defined below.

Definition 2.2. Lexicographical Ordering
We say (k1, s1) < (k2, s2) if and only if k1 < k2 or (k1 = k2 and s1 < s2)

Using this re-ordering convention (see pg. 353 of Ibe, Oliver 2013), we can write Ω as follows:
Ω = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), . . . }. Furthermore, we can define the corresponding infinitesimal matrix Q.

3. Infinitesimal Matrix Q

Q =


Â Ĉ 0 0 0 . . .
B̂ A C 0 0 . . .
0 B A C 0 . . .
...

...
...

. . .
...

...

 (2)

where

Â =
[
−λ
]

B̂ =

[
0
β1

]
Ĉ =

[
λ 0

]
A =

[
−(λ+ µ) µ

β2 −(β1 + β2 + λ)

]
B =

[
0 0
β1 0

]
C =

[
λ 0
0 λ

]
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4. Positive Recurrence

Since the matrix Q has a block-tridiagonal structure, we have a QBD (Quasi Birth Death) Markovian process. Accordingly,
we apply Theorem 1.5.1 from Neuts (Neuts, 1981) to prove a lemma that will be used to show positive recurrence and
find the stationary distribution explicitly. To this end, we need the following lemma.

Lemma 4.1. The irreducible, block-tridiagonal Markov process with infinitesimal matrix Q is positive recurrent if and
only if:

• the minimal non-negative solution R of quadratic matrix equation:

R2B + RA + C = 0 (3)

has sp(R) < 1, and

• there exists a positive vector (x0, x1) such that (x0, x1)B[R] = 0 where:

B[R] =

[
Â Ĉ
B̂ A + RB

]
, and (x0, x1) is normalized by x0e + x1(I − R)−1e = 1

The stationary distribution satisfying:

{
πQ = 0
πe = 1

is given by: πk =


x0 if k = 0
x1 if k = 1
x1Rk−1 if k > 2

Our lemma, unlike Theorem 1.5.1 (Neuts, 1981), is stated in terms of the infinitesimal matrix Q rather than a Markov
chain transition probability matrix.

Proof. Let P = I + τ−1Q, where τ = −min{diag(Â) ∪ diag(A)} > 0. Then we have:

P =


Â ′ Ĉ ′ 0 0 0 . . .
B̂ ′ A ′ C ′ 0 0 . . .
0 B ′ A ′ C ′ 0 . . .
...

...
...

. . .
...

...

 =


I + τ−1Â τ−1Ĉ 0 0 0 . . .
τ−1B̂ I + τ−1A τ−1C 0 0 . . .

0 τ−1B I + τ−1A τ−1C 0 . . .
...

...
...

. . .
...

...

 (4)

Since Pe = (I + τ−1Q)e = Ie = e
=⇒ P is a stochastic probability matrix of a discrete time Markov chain.

Moreover, if πP = π =⇒ π(I + τ−1Q) = π =⇒ πQ = 0
and πQ = 0 =⇒ π+ τ−1πQ = π =⇒ π(I + τ−1Q) = π =⇒ πP = π

=⇒ πQ = 0 ⇐⇒ πP = 1

Theorem 1.5.1 from (Neuts, 1981) states that P, and consequently Q, is positive recurrent
if and only if:

• the minimal non-negative solution R of quadratic matrix equation:

R2B ′ + RA ′ + C ′ = R (5)

has sp(R) < 1, and

• there exists a positive vector (x0, x1) such that (x0, x1)B ′[R] = (x0, x1) where:

B ′[R] =

[
Â ′ Ĉ ′

B̂ ′ A ′ + RB ′

]
, and (x0, x1) is normalized by x0e + x1(I − R)−1e = 1

The stationary distribution satisfying:

{
πP = π

πe = 1
is given by: ßk =


x0 if k = 0
x1 if k = 1
x1Rk−1 if k > 2

To finish our proof, we must restate the conditions on P in terms of conditions on Q:
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R2B ′ + RA ′ + C ′ = R ⇐⇒ τ−1R2B + R(I + τ−1A) + τ−1C = R
⇐⇒ τ−1R2B + τ−1RA + τ−1C = 0
⇐⇒ R2B + RA + C = 0

and

(x0, x1)B ′[R] = (x0, x1) ⇐⇒ (x0, x1)

[
Â ′ Ĉ ′

B̂ ′ A ′ + RB ′

]
= (x0, x1)

⇐⇒ (x0, x1)

[
I + τ−1Â τ−1Ĉ
τ−1B̂ I + τ−1(A + RB)

]
= (x0, x1)

⇐⇒ (x0, x1)(I + τ−1B[R]) = (x0, x1)
⇐⇒ (x0, x1)B[R] = 0 �

5. The Quadratic Matrix Equation

Thanks to Lemma 4.1, we seek the minimal non-negative solution R to the quadratic matrix equation:

R2B + RA + C = 0 (6)

There are many methods for solving such equations in the literature. Some are numerical in nature (Guo, 2014), (S. Seo, J.
Seo & H. Kim, 2014), others are analytical for particular cases (Adan, Wessels, & Zijm, 1993). However, pure analytical
methods are generally preferred to numerical ones when they are feasible. In our case, we employ the direct method
whereby we solve the system of equations generated by equating the matrices entry by entry.

Let R =

[
r11 r12
r21 r22

]
=⇒ (6) can be restated at the following system of equations:

λ− (λ+ µ)r11 + (r11r12 + r12r22)β1 + r12β2 = 0
µr11 − r12 (λ+ β1 + β2) = 0
−(λ+ µ)r21 +

(
r12r21 + r2

22

)
β1 + r22β2 = 0

λ+ µr21 − r22 (λ+ β1 + β2) = 0

(7)

The analytical minimal non-negative solution to (7) is given by:
r11 = λ(λ+β1+β2)

µβ1

r12 = λ
β1

r21 = λ(λ+β2)
µβ1

r22 = λ
β1

=⇒ R =

[
λ(λ+β1+β2)

µβ1

λ
β1

λ(λ+β2)
µβ1

λ
β1

]
=

λ

β1

[
λ+β1+β2

µ
1

λ+β2
µ

1

]
(8)

6. The Spectral Radius of R

At this point, we can compute the spectral radius of R explicitly and construct a more readily verifiable sufficient condition
under which our model will be positive recurrent.

Corollary. By Lemma 4.1, the infinitesimal matrix Q given in equation (2) is positive recurrent if and only if:
β1(µ− λ) − λ(µ+ β2) > 0.

Proof. We compute the spectral radius of R by solving the scalar quadratic equation generated by det(R − ρiI) = 0,
yielding that ρi satisfies the following quadratic equation:

µβ1ρ
2
i − λ(λ+ µ+ β1 + β2)ρi + λ2 = 0 (9)

=⇒ ρi =
λ
(
λ+µ+β1+β2+(−1)i

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

, i = 1, 2

It is clear by inspection that the largest of these eigenvalues in (9) will contain the positive radical. Thus, by Lemma
4.1, Q is positive recurrent if and only if:

ρ0 =
λ
(
λ+µ+β1+β2+

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

< 1
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⇐⇒ λ+ µ+ β1 + β2 +
√
(λ+ µ+ β1 + β2) 2 − 4µβ1 < 2µβ1

λ

⇐⇒
√
(λ+ µ+ β1 + β2) 2 − 4µβ1 < 2µβ1

λ
− (λ+ µ+ β1 + β2)

⇐⇒ (λ+ µ+ β1 + β2)
2 − 4µβ1 <

4µ2β2
1

λ2 − 4µβ1(λ+µ+β1+β2)
λ

+ (λ+ µ+ β1 + β2)
2

⇐⇒ −4µβ1 <
4µ2β2

1
λ2 − 4µβ1(λ+µ+β1+β2)

λ

⇐⇒ −4µβ1λ
2 < 4µ2β2

1 − 4µβ1λ(λ+ µ+ β1 + β2)
⇐⇒ 0 < 4µβ1λ

2 + 4µ2β2
1 − 4λµβ1(λ+ µ+ β1 + β2)

⇐⇒ 0 < λ2 + µβ1 − λ(λ+ µ+ β1 + β2)
⇐⇒ 0 < µβ1 − λ(µ+ β1 + β2)
⇐⇒ β1(µ− λ) − λ(µ+ β2) > 0 �

7. The Stationary Distribution

7.1 The Explicit form of Rk

Proposition 7.1. Using the scalar-factored form of R in (8), we find:

Rk =

 (β1ρ0−λ)ρk
0 +ρk

1 (λ−β1ρ1)
β1(ρ0−ρ1)

λ(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

λ(λ+β2)(ρk
0 −ρk

1 )
µβ1(ρ0−ρ1)

(λ−β1ρ1)ρ
k
0 +ρk

1 (β1ρ0−λ)
β1(ρ0−ρ1)

 (10)

Proof. By Mathematical Induction, we will show this is true for k = 1, assume it is true for arbitrary k, then show it is
true for k+ 1.
k=1

R1 =

[
(β1ρ0−λ)ρ0+ρ1(λ−β1ρ1)

β1(ρ0−ρ1)
λ(ρ0−ρ1)
β1(ρ0−ρ1)

λ(λ+β2)(ρ0−ρ1)
µβ1(ρ0−ρ1)

(λ−β1ρ1)ρ0+ρ1(β1ρ0−λ)
β1(ρ0−ρ1)

]

=

[
β1ρ

2
0−λρ0+λρ1−β1ρ

2
1

β1(ρ0−ρ1)
λ
β1

λ(λ+β2)
µβ1

λρ0−β1ρ1ρ0+β1ρ1ρ0−λρ1
β1(ρ0−ρ1)

]

=

β1(ρ2
0−ρ2

1)−λρ0+λρ1

β1(ρ0−ρ1)
λ
β1

λ(λ+β2)
µβ1

λρ0−λρ1
β1(ρ0−ρ1)


=

[
β1(ρ0−ρ1)(ρ0+ρ1)−λ(ρ0−ρ1)

β1(ρ0−ρ1)
λ
β1

λ(λ+β2)
µβ1

λ(ρ0−ρ1)
β1(ρ0−ρ1)

]

=

[
β1(ρ0+ρ1)−λ

β1

λ
β1

λ(λ+β2)
µβ1

λ
β1

]

=

[
λ(λ+β1+β2)

µβ1

λ
β1

λ(λ+β2)
µβ1

λ
β1

]
, where ρ0 + ρ1 = λ(λ+µ+β1+β2)

µβ1

k+1

RkR =

 (β1ρ0−λ)ρk
0 +ρk

1 (λ−β1ρ1)
β1(ρ0−ρ1)

λ(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

λ(λ+β2)(ρk
0 −ρk

1 )
µβ1(ρ0−ρ1)

(λ−β1ρ1)ρ
k
0 +ρk

1 (β1ρ0−λ)
β1(ρ0−ρ1)

[λ(λ+β1+β2)
µβ1

λ
β1

λ(λ+β2)
µβ1

λ
β1

]

=


λ(λ+β1+β2)

(
(β1ρ0−λ)ρk

0 +ρk
1 (λ−β1ρ1)

)
+λ2(λ+β2)(ρk

0 −ρk
1 )

µβ2
1(ρ0−ρ1)

λ
β1

(
(β1ρ0−λ)ρk

0 +ρk
1 (λ−β1ρ1)+λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)

)
λ(λ+β2)

(
λ(λ+β1+β2)(ρk

0 −ρk
1 )+(λ−β1ρ1)µρk

0 +µρk
1 (β1ρ0−λ)

)
µ2β2

1(ρ0−ρ1)
λ
β1

(
λ(λ+β2)(ρk

0 −ρk
1 )+(λ−β1ρ1)µρk

0 +µρk
1 (β1ρ0−λ)

µβ1(ρ0−ρ1)

)


=


λ(λ+β1+β2)

(
β1(ρk+1

0 −ρk+1
1 )−λ(ρk

0 −ρk
1 )
)
+λ2(λ+β2)(ρk

0 −ρk
1 )

µβ2
1(ρ0−ρ1)

λ
β1

(
β1ρ

k+1
0 −β1ρ

k+1
1

β1(ρ0−ρ1)

)
λ(λ+β2)

(
λ(λ+µ+β1+β2)(ρk

0 −ρk
1 )−µβ1ρ1ρ

k
0 +µβ1ρ

k
1 ρ0

)
µ2β2

1(ρ0−ρ1)
λ
β1

(
λ(λ+µ+β2)(ρk

0 −ρk
1 )−µβ1ρ1ρ

k
0 +µβ1ρ

k
1 ρ0

µβ1(ρ0−ρ1)

)


=

 λ(λ+β1+β2)(ρk+1
0 −ρk+1

1 )−λ2(ρk
0 −ρk

1 )
µβ1(ρ0−ρ1)

λ(ρk+1
0 −ρk+1

1 )
β1(ρ0−ρ1)

λ(λ+β2)
(
(ρ0+ρ1)(ρk

0 −ρk
1 )−ρ1ρ

k
0 +ρk

1 ρ0

)
µβ1(ρ0−ρ1)

λ
β1

(
λ(λ+µ+β1+β2)(ρk

0 −ρk
1 )−λβ1(ρk

0 −ρk
1 )−µβ1ρ1ρ

k
0 +µβ1ρ

k
1 ρ0

µβ1(ρ0−ρ1)

)
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=

µβ1(ρ0+ρ1)(ρk+1
0 −ρk+1

1 )−λµ(ρk+1
0 −ρk+1

1 )−µβ1ρ0ρ1(ρk
0 −ρk

1 )
µβ1(ρ0−ρ1)

λ(ρk+1
0 −ρk+1

1 )
β1(ρ0−ρ1)

λ(λ+β2)(ρk+1
0 −ρk+1

1 )
µβ1(ρ0−ρ1)

λ
β1

(
µβ1(ρk+1

0 −ρk+1
1 )−λβ1(ρk

0 −ρk
1 )

µβ1(ρ0−ρ1)

)
=

β1(ρk+2
0 −ρk+2

1 )−λ(ρk+1
0 −ρk+1

1 )
β1(ρ0−ρ1)

λ(ρk+1
0 −ρk+1

1 )
β1(ρ0−ρ1)

λ(λ+β2)(ρk+1
0 −ρk+1

1 )
µβ1(ρ0−ρ1)

λ(ρk+1
0 −ρk+1

1 )−β1ρ0ρ1(ρk
0 −ρk

1 )
β1(ρ0−ρ1)


=

 (β1ρ0−λ)ρk+1
0 +ρk+1

1 (λ−β1ρ1)

β1(ρ0−ρ1)

λ(ρk+1
0 −ρk+1

1 )
β1(ρ0−ρ1)

λ(λ+β2)(ρk+1
0 −ρk+1

1 )
µβ1(ρ0−ρ1)

(λ−β1ρ1)ρ
k+1
0 +ρk+1

1 (β1ρ0−λ)

β1(ρ0−ρ1)

 = Rk+1

Remark. Two substitutions were needed in this derivation, namely: ρ0 + ρ1 = λ(λ+µ+β1+β2)
µβ1

and ρ0ρ1 = λ2

µβ1
. These

can easily be verified from (9).

�

7.2 The Initial Terms of π

Next we turn our attention to computing B[R], and a positive vector (x0, x1), such that (x0, x1)B[R] = 0:

(x0, x1)B[R] = (x0, x1)

[
Â Ĉ
B̂ A + RB

]
= (x0, x1)

−λ λ 0
0 −µ µ

β1 λ+ β2 −(λ+ β1 + β2)

 = 0 (11)

=⇒ (x0, x1) = (1, (λ(β1+β2+λ)
β1µ

, λ
β1
))

We now seek to normalize the solution in order to generate the first three terms of π:

K(x0e + x1(I − R)−1e) = 1 =⇒ K =
β1(µ− λ) − λ (β2 + µ)

β1µ
= (1 − ρ0)(1 − ρ1) (12)

=⇒ (π00,π10,π11) = K(x0, x1) =⇒


π00 = β1(µ−λ)−λ(β2+µ)

β1µ
= K

π10 = λ(β1+β2+λ)(β1(µ−λ)−λ(β2+µ))

β2
1µ

2 = λK(β1+β2+λ)
β1µ

π11 = λ(β1(µ−λ)−λ(β2+µ))

β2
1µ

= λK
β1

Remark. We observe that the condition given by the Corollary to Lemma 4.1 for positive recurrence: β1(µ− λ) − λ(µ+
β2) > 0 is equivalent to K > 0.

Proposition 7.2. The remaining elements {(πk0,πk1) | k > 2} of our stationary distribution satisfying (πk0,πk1) =

(π10,π11)Rk−1 and π00 +
∞∑

k=1
(πk0 + πk1) = 1 are given by:πk0 = K

(
ρk+1

0 −ρk+1
1

ρ0−ρ1
−

λ(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

)
πk1 =

λK(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

(13)

Proof. To motivate the proof, we begin by noting that:
(πk0,πk1) = (π10,π11)Rk−1 ⇐⇒ (πk0,πk1) = (π10,π11)Rk−2R

⇐⇒ (πk0,πk1) = (πk−1,0,πk−1,1)R
and consider:

(πk−1,0,πk−1,1)R = λK
β1

(
ρk

0 −ρk
1

ρ0−ρ1
−

λ(ρk−1
0 −ρk−1

1 )
β1(ρ0−ρ1)

,
λ(ρk−1

0 −ρk−1
1 )

β1(ρ0−ρ1)

)[λ+β1+β2
µ

1
λ+β2

µ
1

]
= λK

β1

(
λ+β1+β2

µ

ρk
0 −ρk

1
ρ0−ρ1

− λ+β1+β2
µ

λ(ρk−1
0 −ρk−1

1 )
β1(ρ0−ρ1)

+ λ+β2
µ

λ(ρk−1
0 −ρk−1

1 )
β1(ρ0−ρ1)

,

ρk
0 −ρk

1
ρ0−ρ1

−
λ(ρk−1

0 −ρk−1
1 )

β1(ρ0−ρ1)
+

λ(ρk−1
0 −ρk−1

1 )
β1(ρ0−ρ1)

)
= λK

β1

(
λ+β1+β2

µ

ρk
0 −ρk

1
ρ0−ρ1

− β1
µ

λ(ρk−1
0 −ρk−1

1 )
β1(ρ0−ρ1)

, ρk
0 −ρk

1
ρ0−ρ1

)
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= K

(
λ(λ+β1+β2)

µβ1

ρk
0 −ρk

1
ρ0−ρ1

−
λ2(ρk−1

0 −ρk−1
1 )

µβ1(ρ0−ρ1)
,
λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)

)
= K

(
λ(λ+µ+β1+β2)

µβ1

ρk
0 −ρk

1
ρ0−ρ1

−
λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)
−

λ2(ρk−1
0 −ρk−1

1 )
µβ1(ρ0−ρ1)

,
λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)

)
= K

(
(ρ0+ρ1)(ρk

0 −ρk
1 )

ρ0−ρ1
−

λ(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

−
ρ0ρ1(ρk−1

0 −ρk−1
1 )

(ρ0−ρ1)
,
λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)

)
= K

(
ρk+1

0 −ρk+1
1

ρ0−ρ1
−

λ(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

,
λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)

)
= (πk0,πk1)

We have:
π00 +

∞∑
k=1

(πk0 + πk1) =
∞∑

k=0
(πk0 + πk1), where (13) is valid for all k ∈ N ∪ {0}

= K
∞∑

k=0

(
ρk+1

0 −ρk+1
1

ρ0−ρ1
−

λ(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

+
λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)

)
= K

∞∑
k=0

(
ρk+1

0 −ρk+1
1

ρ0−ρ1

)
= K

ρ0−ρ1

∞∑
k=0

ρk+1
0 −

∞∑
k=0

ρk+1
1

= K
ρ0−ρ1

(
ρ0

1−ρ0
− ρ1

1−ρ1

)
= K

ρ0−ρ1

(
ρ0(1−ρ1)−ρ1(1−ρ0)

(1−ρ0)(1−ρ1)

)
= K

ρ0−ρ1

(
ρ0−ρ1

(1−ρ0)(1−ρ1)

)
= K

(1−ρ0)(1−ρ1)
= 1, since K = (1 − ρ0) (1 − ρ1). �

8. Decomposition

8.1 Decomposition of N

Theorem 8.1. If K > 0, then the stationary number of customers in steady-state, N, can be decomposed into the sum of
two independent geometric random variables parameterized by 1 − ρ0 and 1 − ρ1. Namely: N = X0 + X1, where:
X0 ∼ Geometric(1 − ρ0), and X1 ∼ Geometric(1 − ρ1).

Proof. With our stationary distribution explicitly found, we compute the stationary queue-length probability generating
function (P.G.F.) defined by:

GN(z) =

∞∑
k=0

P(N = k)zk (14)

=⇒ GN(z) =
∞∑

k=0
P(N = k)zk =

∞∑
k=0

P
(
(N = k ∩ S = 0) ∪ (N = k ∩ S = 1)

)
zk

=
∞∑

k=0

(
P(N = k ∩ S = 0) + P(N = k ∩ S = 1)

)
zk

=
∞∑

k=0

(
πk0 + πk1

)
zk

= K
∞∑

k=0

(
ρk+1

0 −ρk+1
1

ρ0−ρ1
−

λ(ρk
0 −ρk

1 )
β1(ρ0−ρ1)

+
λ(ρk

0 −ρk
1 )

β1(ρ0−ρ1)

)
zk

= K
∞∑

k=0

(
ρk+1

0 −ρk+1
1

ρ0−ρ1

)
zk

= K
ρ0−ρ1

∞∑
k=0

(ρk+1
0 − ρk+1

1 )zk

= K
ρ0−ρ1

(
ρ0

∞∑
k=0

(ρ0z)
k − ρ1

∞∑
k=0

(ρ1z)
k

)
= K

ρ0−ρ1

(
ρ0

1−ρ0z
− ρ1

1−ρ1z

)
= K

ρ0−ρ1

(
ρ0(1−ρ1z)−ρ1(1−ρ0z)

(1−ρ0z)(1−ρ1z)

)
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= K
ρ0−ρ1

(
ρ0−ρ1

(1−ρ0z)(1−ρ1z)

)
= K

(1−ρ0z)(1−ρ1z)

= 1−ρ0
1−ρ0z

1−ρ1
1−ρ1z

= GX0(z)GX1(z)
=⇒ N = X0 + X1, where X0 and X1 are independent,

X0 ∼ Geometric(1 − ρ0), and
X1 ∼ Geometric(1 − ρ1). �

8.2 Little’s Distributional Law

Since we have the P.G.F. of N, we may now employ Little’s Distributional Law, named after John Little for his work in
1961 (Little, 1961), proved in general by Keilson, J. & Servi, L.D. in 1988 (Keilson & Servi, 1988).

Theorem 8.2. Little’s Distributional Law
Let N be the stationary number of customers in a steady-state queue where the arrivals come according to a Poisson
stream with rate λ. Let W be the stationary waiting time. Let W∗(s) denote the L.S.T. (Laplace Stieltjes Transform) of W.
Then:

GN(z) = W∗((1 − z)λ) (15)

Proof. While we will refer the reader to Keilson, J. & Servi, L.D. (Keilson & Servi, 1988) for details, we give an ele-
mentary direct proof in line with our notation. Given the definition of the P.G.F. of N, we rewrite P(N = k) via total
probability and obtain:

GN(z) =
∞∑

k=0
P(N = k)zk =

∞∑
k=0

zk
∞∫
−∞ P(N = k |W = t)dFW =

∞∑
k=0

zk
∞∫
−∞ e−λt (λt)k

k! dFW

=
∞∫
−∞ e−λt

∞∑
k=0

(λtz)k

k! dFW =
∞∫
−∞ e−λteλtzdFW =

∞∫
−∞ e−λt(1−z)dFW = W∗((1 − z)λ) �

8.3 Decomposition of W

Theorem 8.3. If K > 0, then the stationary waiting time W for customers in the steady-state queue of length N can
be decomposed into the sum of two independent exponential random variables parameterized by λ(1−ρ0)

ρ0
and λ(1−ρ1)

ρ1
.

Namely: W = Y0 + Y1, where: Y0 ∼ Exponential
(
λ(1−ρ0)

ρ0

)
, and Y1 ∼ Exponential

(
λ(1−ρ1)

ρ1

)
.

Proof. Using Theorem 8.2, we can find the L.S.T. of W explicitly:
W∗(s) = GN

(
1 − s

λ

)
= K

(1−ρ0(1− s
λ
))(1−ρ1(1− s

λ
))

= Kλ2

(λ−ρ0(λ−s))(λ−ρ1(λ−s))

= Kλ2

(λ(1−ρ0)+ρ0s)(λ(1−ρ1)+ρ1s)

=
Kλ2
ρ0ρ1

(
λ(1−ρ0)

ρ0
+s)(

λ(1−ρ1)
ρ1

+s)

=
λ(1−ρ0)

ρ0

λ(1−ρ1)
ρ1

(
λ(1−ρ0)

ρ0
+s)(

λ(1−ρ1)
ρ1

+s)

=
λ(1−ρ0)

ρ0

(
λ(1−ρ0)

ρ0
+s)

λ(1−ρ1)
ρ1

(
λ(1−ρ1)

ρ1
+s)

=⇒ W = Y0 + Y1, where Y0 and Y1 are independent,
Y0 ∼ Exponential

(
λ(1−ρ0)

ρ0

)
, and Y1 ∼ Exponential

(
λ(1−ρ1)

ρ1

)
. �
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9. Results

Table 1. Analytical Results

Steady-State # of Customers: N Steady-State Waiting Time: W

GN(z) = 1−ρ0
1−ρ0z

1−ρ1
1−ρ1z

W∗(s) =
λ(1−ρ0)

ρ0

(
λ(1−ρ0)

ρ0
+s)

λ(1−ρ1)
ρ1

(
λ(1−ρ1)

ρ1
+s)

E(.) ρ0
1−ρ0

+ ρ1
1−ρ1

ρ0
λ(1−ρ0)

+ ρ1
λ(1−ρ1)

Var(.) ρ0
(1−ρ0)2 +

ρ1
(1−ρ1)2

ρ2
0

λ2(1−ρ0)2 +
ρ2

1
λ2(1−ρ1)2

10. Special cases

We can now recover the stationary behavior of the following known queue types as particular cases from our model as
follows:

• β1 → ∞ with 0 6 β2 < ∞ results in the classical M/M/1 queue.
• 0 < β1 < ∞ with β2 = 0 and µ = β1 results in an M/E2/1 queue, where E2 refers to an ’Erlang’ service time

distribution with shape 2 and rate µ.
• 0 < β1 < ∞ with β2 = 0 and µ > β1 results in an M/HE/1 queue, where HE refers to a hypoexponential service

time distribution ∼ f(t) = µβ1(e
−β1t−e−µt)
µ−β1

(pg. 308 in Ross, 2006).

10.1 M/M/1

Proposition 10.1.
If 0 6 β2 < ∞ and β1 → ∞, our model recovers the stationary behavior of the classical M/M/1.

Proof.
We begin by computing the eigenvalues of R under these conditions.

lim
β1→∞ ρ0 = lim

β1→∞
λ
(
λ+µ+β1+β2+

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

= λ
µ
= ρ < 1 =⇒ Positive Recurrent

lim
β1→∞ ρ1 = lim

β1→∞
λ
(
λ+µ+β1+β2−

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

= 0

We now consider our P.G.F. with the appropriate substitutions.
GN(z) = 1−ρ0

1−ρ0z
1−ρ1

1−ρ1z
= 1−ρ

1−ρz

Since the P.G.F. of N matches that of the classical M/M/1 queue given on page 32 of Adan, I., & Resing, J. (Adan &
Resing, 2001), we conclude that the stationary queue lengths are equivalent in distribution. �

10.2 M/E2/1

Proposition 10.2.
If 0 < β1 < ∞, β2 = 0 and µ = β1, our model recovers the stationary behavior of an M/E2/1 queue, where E2 refers
to an ’Erlang’ service time distribution with shape 2 and rate µ.

Proof.
We begin, again, by computing the eigenvalues of R under these conditions and obtain:

ρ0 =
λ
(
λ+µ+β1+β2+

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

=
λ
(
λ+2µ+

√
(λ+2µ)2−4µ2

)
2µ2 =

λ
(
λ+2µ+

√
λ(λ+4µ)

)
2µ2

We also note that
λ
(
λ+2µ+

√
λ(λ+4µ)

)
2µ2 < 1 ⇐⇒ 2λ

µ
< 1

Therefore, let ρ = 2λ
µ

and we have ρ0 < 1 ⇐⇒ ρ < 1 =⇒ Positive Recurrent
We must now consider our L.S.T. W∗(s):
W∗(s) = GN

(
1 − s

λ

)
= K

(1−ρ0(1− s
λ
))(1−ρ1(1− s

λ
))

= Kλ2

(λ−ρ0(λ−s))(λ−ρ1(λ−s))

= Kλ2

(λ(1−ρ0)+ρ0s)(λ(1−ρ1)+ρ1s)

133



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 1; 2018

= Kλ2

λ2(1−ρ0)(1−ρ1)+λρ1(1−ρ0)s+λρ0(1−ρ1)s+ρ0ρ1s2

= Kλ2

λ2(1−ρ0)(1−ρ1)+λρ1s−λρ0ρ1s+λρ0s−λρ0ρ1s+ρ0ρ1s2

= Kλ2

λ2(1−ρ0)(1−ρ1)+λs(ρ0+ρ1)+ρ0ρ1(s2−2λs)
We now need some substitutions: namely:
K = (1 − ρ0)(1 − ρ1) =

β1(µ−λ)−λ(β2+µ)
β1µ

= µ(µ−λ)−λ(µ)
µ2 = µ2−2λµ

µ2

ρ0ρ1 = λ2

µβ1
= λ2

µ2

ρ0 +ρ1 =
λ
(
λ+µ+β1+β2+

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

+
λ
(
λ+µ+β1+β2−

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

= 2λ(λ+µ+β1+β2)
2µβ1

= λ2+2λµ
µ2

Proceeding where we left off, we have:

W∗(s) = GN

(
1 − s

λ

)
=

λ2µ2−2λ3µ
µ2

λ2 µ2−2λµ

µ2 +λsλ2+2λµ

µ2 + λ2

µ2 (s
2−2λs)

= µ2−2λµ
µ2−2λµ+s(λ+2µ)+(s2−2λs) = µ2−2λµ

µ2−2λµ+λs+2µs+s2−2λs

= µ2s(1−ρ)
µ2s−2λµs+2µs2+s3−λs2

= µ2s(1−ρ)
−λs2−2λµs−λµ2+λµ2+2µs2+s3+µ2s

= µ2s(1−ρ)
−λ(s+µ)2+s3+2µs2+µ2s+λµ2

= µ2s(1−ρ)
−λ(s+µ)2+s(s+µ)2+λµ2

=
s(1−ρ)

(
µ

s+µ

)2

s−λ+λ

(
µ

s+µ

)2 which matches what is given on page 85 of Ibe, Oliver (Ibe, 2011).

Therefore, we conclude that the stationary queue length is equivalent in distribution to an M/E2/1. �

10.3 M/HE/1

Proposition 10.3.
If 0 < β1 < ∞, β2 = 0 and µ > β1 we have the stationary behavior of an M/HE/1 queue, where HE refers to a
hypoexponential service time ∼ f(t) = µβ1(e

−β1t−e−µt)
µ−β1

(see pg. 308 in Ross, 2006).

Proof.
We once more compute the eigenvalues of R under these given conditions and obtain:

ρ0 =
λ
(
λ+µ+β1+β2+

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

=
λ
(
λ+µ+β1+

√
(λ+µ+β1)2−4µβ1

)
2µβ1

We again note that
λ
(
λ+µ+β1+

√
(λ+µ+β1)2−4µβ1

)
2µβ1

< 1 ⇐⇒ λ(µ+β1)
µβ1

< 1

Therefore, for notational convenience, we will let ρ = λ(µ+β1)
µβ1

and we have ρ0 < 1 ⇐⇒ ρ < 1 =⇒ Positive Recurrent
We must now consider our L.S.T. W∗(s):
W∗(s) = GN

(
1 − s

λ

)
= K

(1−ρ0(1− s
λ
))(1−ρ1(1− s

λ
))

= Kλ2

(λ−ρ0(λ−s))(λ−ρ1(λ−s))

= Kλ2

(λ(1−ρ0)+ρ0s)(λ(1−ρ1)+ρ1s)

= Kλ2

λ2(1−ρ0)(1−ρ1)+λρ1(1−ρ0)s+λρ0(1−ρ1)s+ρ0ρ1s2

= Kλ2

λ2(1−ρ0)(1−ρ1)+λρ1s−λρ0ρ1s+λρ0s−λρ0ρ1s+ρ0ρ1s2

= Kλ2

λ2(1−ρ0)(1−ρ1)+λs(ρ0+ρ1)+ρ0ρ1(s2−2λs)
We now need some substitutions: namely:
K = (1 − ρ0)(1 − ρ1) =

β1(µ−λ)−λ(β2+µ)
β1µ

= β1(µ−λ)−λµ

β1µ
= 1 − λ(µ+β1)

µβ1
= 1 − ρ

ρ0ρ1 = λ2

µβ1

ρ0 + ρ1 =
λ
(
λ+µ+β1+β2+

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

+
λ
(
λ+µ+β1+β2−

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

= 2λ(λ+µ+β1+β2)
2µβ1

= λ2+λ(µ+β1)
µβ1

= λ2

µβ1
+ ρ

Proceeding where we left off, we have:
W∗(s) = GN

(
1 − s

λ

)
= λ2(1−ρ)

λ2(1−ρ)+λs( λ2
µβ1

+ρ)+ λ2
µβ1

(s2−2λs)

= λ2(1−ρ)

λ2(1−ρ)+λs(ρ− λ2
µβ1

)+ λ2
µβ1

s2
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= (1−ρ)µβ1
(µβ1−λ(µ+β1)+s(µ+β1−λ)+s2)

= s(1−ρ)µβ1
s((s+µ)(s+β1)−λ(µ+β1)−sλ)

= s(1−ρ)µβ1
s(s+µ)(s+β1)−sλ(µ+β1)−s2λ

= s(1−ρ)µβ1
s(s+µ)(s+β1)−λ(s+µ)(s+β1)+λµβ1

=
s(1−ρ)

(
µ

s+µ

)(
β1

s+β1

)
s−λ+λ

(
µ

s+µ

)(
β1

s+β1

)
Since our ”waiting time” includes the customer’s service time, this matches what is given on by J.W. Cohen (Cohen, 2012)
on page 255. Therefore, we conclude that the stationary queue length is equivalent in distribution to an M/HE/1. �

10.4 Instantaneous Success / Failure

We can also study somewhat familiar type of queue as follows:

Proposition 10.4.
If β1 → ∞ with β1 = γβ2, we have a queue with instantaneous ’success’ or ’failure’ after the service time has elapsed,
where the probability of a successful service is ps = γ

1+γ
and likewise for failure, we have pf = 1

1+γ
. This queue has a

stationary queue length which is equivalent to an M/M/1 queue with service time ∼Exponential(µps).

Proof.
Computing the eigenvalues of R under these conditions yields:

lim
β1=γβ2→∞ ρ0 = lim

β1=γβ2→∞
λ
(
λ+µ+β1+β2+

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

= λ(1+γ)
µγ

= λ
µps

= ρ

lim
β1=γβ2→∞ ρ1 = lim

β1=γβ2→∞
λ
(
λ+µ+β1+β2−

√
(λ+µ+β1+β2)2−4µβ1

)
2µβ1

= 0

ρ < 1 ⇐⇒ Positive Recurrent

We can now compute our P.G.F. with the appropriate substitutions.
GN(z) = 1−ρ0

1−ρ0z
1−ρ1

1−ρ1z
= 1−ρ

1−ρz

This shows that the P.G.F. of N matches that of the classical M/M/1 queue with arrival rate µps, as given on page 32
of Adan, I., & Resing, J. (Adan & Resing, 2001), we thus conclude that the stationary queue lengths are equivalent in
distribution. �
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