
International Journal of Statistics and Probability; Vol. 7, No. 1; January 2018 

ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

72 

Parametric and Semiparametric Estimations of Bivariate Truncated Type I 

Generalized Logistic Models driven from Copulas 

Lamya A Baharith1 

King Abdulaziz University, Department of Statistics, Faculty of Science, Jeddah, Saudi Arabia  

Correspondence: Lamya A. Baharith,, Department of Statistics, Faculty of Science, King Abdulaziz University, P.O.Box 

42805, Jeddah 21551, Saudi Arabia. E-mail: lbaharith@kau.edu.sa  

 

Received: September 11, 2017   Accepted: October 8, 2017   Online Published: November 16, 2017 

doi:10.5539/ijsp.v7n1p72          URL: https://doi.org/10.5539/ijsp.v7n1p72 

 

Abstract 

Truncated type I generalized logistic distribution has been used in a variety of applications. In this article, a new 

bivariate truncated type I generalized logistic (BTTGL) distributional models driven from three different copula 

functions are introduced. A study of some properties is illustrated. Parametric and semiparametric methods are used to 

estimate the parameters of the BTTGL models. Maximum likelihood and inference function for margin estimates of the 

BTTGL parameters are compared with semiparametric estimates using real data set. Further, a comparison between 

BTTGL, bivariate generalized exponential and bivariate exponentiated Weibull models is conducted using Akaike 

information criterion and the maximized log-likelihood. Extensive Monte Carlo simulation study is carried out for 

different values of the parameters and different sample sizes to compare the performance of parametric and 

semiparametric estimators based on relative mean square error.  

Keywords: copula, inference function for margin, maximum likelihood method, maximum pseudo-likelihood method, 

method-of-moments, truncated type I generalized logistic distribution 

1. Introduction 

Truncated logistic distribution has been used effectively in different lifetime applications. It was first introduced by 

Kjelsberg (1962) and then Balakrishnan (1985) studied the half-logistic distribution and its use as lifetime model. 

AL-Angary (1997) introduced the truncated type I generalized logistic (TTGL) distribution. In addition, several 

researchers such as Al-Hussaini et al. (2006), Atea (2001), Al-Hussaini and Ateya (2003, 2005), Ateya and Ahmed (2013), 

and Rao (2015) have studied the properties and inferences of TTGL distribution and suggested many applications in 

different fields. 

The TTGL distribution with two parameters has the following cumulative distribution function (Cdf) 

 .               (1) 

The probability density function (Pdf) is  

,               (2) 

where α is the shape parameter and σ is the scale parameter (Rao, 2015).  

There are many lifetime applications where we need to consider bivariate lifetime distributions. Lately, copula has 

become a popular method to construct bivariate and multivariate distributions from given marginals due to its flexibility 

and practical use in a variety of fields, for example, biostatistics, financial, and actuarial fields (Nelsen, 2007; Trivedi & 

Zimmer, 2005). The main advantage of copula is it allows the marginal to be modeled and analyzed separately from the 

dependence structure. Also, the mathematical simplicity of copula is another advantage. Several authors considered 

different copula functions to construct bivariate and multivariate distributions. These include multivariate Gompertz-Type 

distribution (Adham & Walker, 2001), bivariate half- logistic-type distribution (Adham et al. 2009), bivariate 

Birnbaum-Saunders distribution derived from Gaussian copula (Kundu, Balakrishnan, & Jamalizadeh, 2010), bivariate 
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Sinh-normal distribution (Kundu, 2014), Absolute continuous bivariate generalized exponential distribution derived from 

the clayton copula (Kundu & Gupta, 2011), multivariate generalized exponential distribution (Al-Hussaini & Ateya, 2006; 

Ateya & Al-Alazwari, 2013), and bivariate Burr Type X (Elaal, Mahmoud, EL-Gohary, & Baharith, 2016). 

The main aim of this article is to establish bivariate truncated type I generalized logistic distributional (BTTGL) models 

driven from three different copula functions. These are the Gaussian, Frank, and Clayton which are widely used in the 

literature to fit bivariate lifetime data since they represent different dependence structures between variables (Nelsen, 

2007). The marginals of these distributional models are univariate truncated type I generalized logistic. The flexibility of 

the BTTGL distribution arises from the presence of the five parameters and the different shapes of its joint Pdf that can be 

used quite effectively to analyze bivariate lifetime data.  

The rest of this article is organized as follows. Section 2 introduces BTTGL distributional models driven from different 

copula functions. Parametric and semiparametric methods are used to estimate the parameters of the proposed distribution 

in Section 3. In Section 4, a goodness of fit test is presented to check the appropriateness of different copula functions. A 

real data set is analyzed to illustrate the performance of the proposed bivariate distributional models in Section 5. In 

Section 6, a simulation study is carried out to investigate and compare the performance of the different estimators. Finally, 

concluding remarks are presented in Section 7. 

2. Bivariate Truncated Type I Generalized Logistic Distributions Driven from Copulas 

The copula approach is derived from Sklar’s theorem (Sklar, 1959), who stated that any multivariate distribution can be 

disintegrated to a copula and its continuous marginal. For the bivariate case, copulas are used to link two marginal 

distributions with joint distribution such that for every bivariate distribution function  with continuous 

marginal , there exist a unique copula function  as follows 

,                                 (3) 

where C is a distribution function with uniform(0,1) margins. Therefore, the density function of the bivariate 

distribution can be written as 

                         (4) 

where   are the density functions corresponding to  and   is 

the copula density, see (Nelsen, 1999).   

There are several copula functions that can be used to construct BTTGL distribution with TTGL marginals given by (1). In 

this article, we will use the Gaussian, Frank, and Clayton functions to construct BTTGL distributional models. 

The Gaussian copula with copula parameter ɵ, which measures the degree of association and dependence is denoted by  

for this copula to indicate the relation with normal distribution, takes the following form 

, 

where  are the marginals Cdf of TTGL distribution given by (1) for the random variables and 

 , respectively,  denotes the distribution function of a bivariate standard normal random variable, and 

represents the inverse of standard normal (Mardia, 1970).  

The joint Pdf of the BTTGL distribution with TTGL marginals driven from Gaussian copula become 

 , 

where is the Pdf of TTGL distribution given by  

 

Here, ,  represent the shape and scale parameters, respectively,  is the copula parameter, and 

 . 

The Frank and Clayton copula functions are members of the Archimedean family which have been used widely in many 

disciplines. The Frank copula have symmetric dependence patterns where we have a strong association between  and 

  for large ɵ in absolute value. The Frank copula takes the following form   
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. 

Note that when ɵ=0, implies independence between the two variables. The joint Pdf of  and   driven from Frank 

copula is given by 

  

where  are the Cdf of TTGL distribution given by (1). 

The Clayton copula have asymmetric dependence patterns with higher dependence between  and  at left tails. 

The corresponding joint Pdf of  and  are respectively, given by 

, 

. 

The main advantage of the Frank and Clayton copulas is that their copula and density functions have simple closed form 

expressions. For details, see (Clayton, 1978; Frank, 1979; Hutchinson & Lai, 1990; Nelsen, 2007).  

2.1 Dependency Measures 

According to Schweizer and Wolff (“On nonparametric measures of dependence for random variables,” n.d.), copula 

capture all the dependence between the variables  and  . This can be measured using Spearman’s rho and Kendall’s 

tau, which are respectively given by 

                                  (5) 

                          (6) 

Table 1 reports Kendall’s tau and spearman’s rho range for Gaussian, Frank, and Clayton copulas. 

Table 1. Kendall’s tau and spearman’s rho range 

Copula Kendall’s tau Range Spearman’s rho range 

Gaussian [-1,1] [-1,1] 

Frank [-1,1] [-1,1] 

Clayton [0,1]  

3. Parameter Estimation 

In this section, parametric and semiparametric estimation are used to estimate the unknown parameters of the proposed 

distribution.  

3.1 Parametric Methods of Estimation 

There are two methods for fitting copula model. The first one is to estimate the parameters of the marginal distributions 

and the copula at once. The second method is the two–stage method where we estimate the parameters of the marginal 

distributions first by maximizing the marginal log-likelihood and the second stage estimate the copula parameter by using 

the resulting parameter estimates from the first stage and maximizing the log-likelihood for the copula.  

Maximum likelihood estimation 

Maximum likelihood (ML) estimation is usually used to estimate all the parameters simultaneously. Let  , 

i=1,…,n, be a bivariate random sample from  with density function given in (4), then the 

log-likelihood function of the joint distribution  can be expressed as 
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 , 

where , j=1,2. 

The first derivatives of  are given by 

     

The solution of the above system of nonlinear equations gives the ML estimates of the unknown parameters for the 

proposed BTTGL distribution using nonlinear optimization algorithms such as a quasi-Newton algorithm. 

Confidence intervals (CI) can be obtained by using the large sample approximation in which the ML estimates 

(  are approximately multivariate normal with mean (  and covariance matrix , where 

 is the inverse of the information matrix, thus 

  

Then the asymptotic CI for the parameters using above approach are  

 

 

 

Two-stage estimation  

The two–stage approach named as the method of inference functions for margins (IFM), where the first stage of this 

method will estimate the parameters of the marginal distributions by maximizing the marginal log-likelihood (Harry Joe, 

1997; H Joe & Xu, 1996). The marginal log-likelihood for  and are given by 
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The solution of the above system of nonlinear equations gives the ML estimates of the marginal parameters 

 

Then, the second stage will estimate the copula parameter by maximizing the log-likelihood of the copula parameter after 

substituting the estimated marginal parameters in the first stage, that is 

, 

Where  and  denote the ML estimates of the marginal parameters obtained from the first stage. This 

method has the advantage of reducing computational time and mathematical complexity (H Joe & Xu, 1996).  

3.2 Semiparametric Methods of Estimation 

Three semiparametric methods are conducted to estimate the copula parameter.  These are the maximum 

Pseudo-Likelihood method, and the two Method-of-moments: inversion Kendall's and inversion of Spearman's rho. 

Maximum Pseudo-Likelihood method  

Genest et al. (1995) proposed the maximum pseudo-likelihood (MPL) method which estimate the copula parameter 

independently of the marginal fitting. The method uses the empirical distribution of the marginal where the data 

 is transformed to pseudo-observations having uniform margins. That is, the maximum pseudo-likelihood 

estimator of is obtained by maximizing the following log-likelihood 

, 

 are the pseudo-observations from C calculated from data as follows 

,              (7) 

are respectively, the ranks of . 

Method-of-Moments  

This method estimate the copula parameter using the relation between the copula with Kendall's tau and Spearman's rho 

(Genest, 1987; Genest & Rivest, 1993). That is, this method estimate the copula parameter by matching the sample 

correlation Spearman’s rho or Kendall’s tau to the dependence measure given in (5) and (6) which is independent of the 

marginal distributions. Therefore, consistent estimators of θ that are called inversion of Kendall's (itau) and inversion of 

Spearman's rho (irho) are, respectively given by  

, 

, 

where are respectively, the ranks of (Kojadinovic & Yan, 2010).  

4. Goodness of Fit Tests for Copula 

The idea of this test is to compare the empirical copula with the parametric estimator derived under the null hypothesis 

(Dobrić & Schmid, 2007; Fermanian, 2005). That is, test if the copula C is well-represented by a specific copula  

 

Two approaches are commonly used in the literature to test the goodness of fit of a copula; the parametric bootstrap 

(Genest & Rémillard, 2008) or the fast multiplier approach (Genest, Rémillard, & Beaudoin, 2009; Kojadinovic, Yan, & 

Holmes, 2011). The goodness of fit tests based on the empirical process is 
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, 

Where  is the empirical copula of the data of  and  and is given by 

 
Where  are given by (7),  is a consistent estimator and  is an estimator of  obtained using the pseudo 

observations. According to Genest et al.(2009), the test statistics is the Cramer-von Miss and is defined as 

                    (8) 

See for details (Genest & Rémillard, 2008; Genest et al., 2009; Kojadinovic et al., 2011). 

5. Illustrative Data Analysis 

This section illustrates the applications and the performance of the proposed BTTGL distributional models by analyzing 

Football data set which describes the UEFA Champion’s League for 2004-2005 and 2005-2006, see (Meintanis, 2007). 

The data represents the games in which the home team has at least one goal scored and one goal by any team. That is, 

= time of the first goal scored by any team in minutes, 

=time of the first goal scored by the home team. 

Meintanis (2007) analyzed this data for the Marshall–Olkin bivariate exponential distribution while Kundu and Dey 

(2009) and Kundu and Gupta (2009) studied this data using the Marshall– Olkin bivariate Weibull and bivariate 

generalized exponential distributions, respectively. In this article, this data is also considered to analyze the BTTGL 

distribution. Some descriptive statistics of and  are reported in Table 2. In addition, the scatter plot of and  

shows a positive correlation. 
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Table 2. Descriptive statistics of and . 

Marginal Min Max Mean Median  Quartile 

 
1st 3rd 

 2 82 40.89 41.00 25 54 

 2 85 32.86 28.00 41 48 

There is no adequate goodness of fit test for general bivariate distribution as stated in (Kundu & Gupta, 2011). Therefore, 

the TTGL distribution was fitted first to the marginals separately, and the ML estimates of each marginal parameters are 

obtained to be ( 16.98, 6.78) and ( 19.66, 2.47), respectively. These estimates used as initial values for 

the model parameters of BTTGL distribution. Then Kolmogorov-Smirnov (K-S) goodness of fit test statistics is 

calculated to verify that the fits based on TTGL distribution are suitable for the data. The K-S test with associated p-value 

in bracket for  are 0.0979 (0.8703) and for  are 0.0952 (0.8904). Also, figure 1 shows the plots of the fitted and the 

empirical Cdf for both marginals based on ML estimates. These results indicate that TTGL distribution provides an 

appropriate fit for the data set and can be used to fit the marginals. 

 

Figure 1. The plot for the fitted and empirical CDF of the TTGL distribution using ML estimates 

 

Goodness of fit tests for copula functions 

To check if the Gaussian, Frank, and Clayton copula functions are suitable for the data, the goodness of fit test statistics in 

Section 4 using equation (8) is calculated. The results in Table 3 show a non-significant p-values using parametric 

bootstrap which indicates that these copula functions provide suitable fit for the data.  

Table 3. Cramer-von Miss goodness of fit test statistics with associated p-values. 

Copula Function 

 

statistic p-value 

Gaussian 0.0335 0.1703 

Frank 0.0389 0.1414 

Clayton 0.0561 0.0564 
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Table 4 display parameter estimates with associated 95% confidence intervals (CI) for the proposed BTTGL 

distributional models driven from different copula functions using parametric and semiparametric methods.  

Table 4. ML, IFM, BML and moments estimates with associated 95% CI in bracket for BTTGL distributional models 

driven from selected copula functions. 

Method 
Copula Function 

     

ML 

Gaussian 

17.2558 

(12.77,21.74) 

6.52849 

(2.96,10.10) 

19.8838 

(12.72,27.05) 

2.4269 

(0, 5.05) 

0.4811 

(0.22, 0.74) 

Frank 

17.3091 

(12.88,21.74) 

6.4787 

(2.93,10.03) 

19.6912 

(12.87,26.51) 

2.6026 

(0.02,5.19) 

2.8241 

(0.64,5.01) 

Clayton 

17.5727 

(12.98,22.17) 

6.1637 

(2.74, 9.59) 

19.3822 

(12.74,26.02) 

2.7008 

(0.12,5.28) 

0.6380 

(0.01,1.27) 

IFM 

Gaussian  

16.98 

(12.70,21.26) 

 

6.78 

(3.18,10.38) 

19.66 

(12.63,26.7) 

2.47 

(0,5.11) 

0.4734 

(0.24,0.71) 

Frank 

2.7647 

(0.70,4.83) 

Clayton 

0.5838 

(0.07, 1.10) 

MPL 

Gaussian 

 0.464 

(0.26,0.66) 

Frank 

2.948 

(0.96, 4.94) 

Clayton 

0.7198 

(0.11, 1.33) 

irho 

Gaussian 

 0.423 

(0.34, 5) 

Frank 

2.668 

(0,1.63) 

Clayton 

0.778 

(0, 1.63) 

itau 

Gaussian 

 0.469 

(2.51, 3.58) 

Frank 

3.044 

(0, 1.88) 

Clayton 

0.903 

(0.12, 0.73) 
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Models Comparison 

For comparison purposes, the univariate generalized exponential (GE) (Kundu & Gupta, 2009) and the exponentiated 

Weibull (EW) distributions are fitted to the marginals using this data set. Table 5 reports the K-S tests, associated 

p-value, and the maximized log-likelihood values (LL) for these distributions. It is clear that the p-values are not 

significant based on the TTGL, GE, and EW as marginals in which we can use these distributions to fit the data. 

Therefore, the BTTGL, the bivariate generalized exponential (BGE) and the bivariate exponentiated Weibull (BEW) 

distributions can be used for this data. 

Table 5. Kolmogorov-Smirnov goodness of fit test statistics with associated p-values and maxmized log-likelihood for the 

two marginal of TTGL, GE, and EW distributions. 

 

Model   

K-S p-value LL K-S p-value LL 

TTGL 0.0979 0.8703 -163.36 0.0952 0.8904 -163.60 

GE 0.119 0.667 -165.82 0.121 0.656 -163.94 

EW 0.1395 0.4679 -172.05 0.1426 0.4391 -167.21 

Table 6. Maximum likelihood estimates for the copula parameter with the associated CI in bracket, AIC, and LL of the 

BTTGL, BGE, and BEW distributions. 

Copula Function Model ρ LL AIC 

Gaussian 

BTTGL 
0.4811 

(0.22,  0.74) 
-322.61 655.23 

BGE 
0.4898 

(0.24, 0.74) 
-325.06 660.12 

BEW 
0.5364 

(0.29, 0.78) 
-333.95 677.89 

Frank 

BTTGL 
2.8241 

(0.64,  5.01) 
-323.37 656.75 

BGE 
3.037 

(0.70, 5.38) 
-326.16 662.31 

BEW 
3.7508 

(0.96,  6.54) 
-335.36 680.73 

Clayton 

BTTGL 
0.6380 

(0.01,  1.27) 
-323.41 656.82 

BGE 
0.4692 

(-0.05 0.99) 
-326.06 662.12 

BEW 
0.3671 

(-0.05,  0.79) 
-334.97 679.94 

6. Simulation Studies 

Here we will conduct a Monte Carlo simulation to illustrate the performance of the proposed BTTGL distribution driven 

from Gaussian copula function and compare between different methods of estimations. The Gaussian copula has the 

advantage that it is underline the multivariate normal distribution and incorporates dependency as  the multivariate 

normal distribution does use only pairwise correlations among variables, which gives more flexibilities to the constructed 
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bivariate distribution. That is, the flexibility and analytical tractability of Gaussian copula suggest that it is a good choice 

to represent dependency. 

To study the effect of the marginal parameters on the dependency measures, different sample sizes and different values of 

the parameters are used. In each case, parametric and semiparametric estimates of the parameters are obtained by 

computing the average estimates and their relative mean square errors (RMSE) over 1000 replications. Tables 7 and 8 

present the results of the simulation.  

Table 7 The average estimates and the corresponding RMSE (in brackets) of parametric and semiparametric estimates of 

BTTGL driven from Gaussian copula function for σ_1=1.2, σ_2=1.1, α_1=α_2=2.8 with different values of the copula 

parameter ρ. 

Table 8  The average estimates and the corresponding RMSE (in brackets) of parametric and semiparametric estimates of 

n method 
      

15 

ML 
0.5 

0.7 

1.1387(0.1159) 

1.1379(0.1146) 

4.0674(5.1794) 

4.0879(3.1918) 

1.0451(0.1139) 

1.0499(0.1096) 

4.0721(2.8966) 

3.9821(2.4412) 

0.4765(0.1808) 

0.6774(0.0777) 

IFM 
0.5 

0.7 

1.1397(0.1168) 

1.1373(0.1187) 

4.0611(5.3825) 

4.0976(3.2066) 

1.0478(0.1148) 

1.0412(0.1121) 

4.0508(2.9050) 

4.0030(2.4778) 

0.4734(0.1919) 

0.6730(0.0865) 

MPL 
0.5 

0.7 

 

 

0.4737(0.1986) 

0.6588(0.1195) 

Irho 
0.5 

0.7 
 

0.4619(0.2514) 

0.6498(0.1430) 

itau 
0.5 

0.7 
 

0.4757(0.2025) 

0.6683(0.1077) 

50 

ML 
0.5 

0.7 

1.1905(0.0336) 

1.1984(0.0290) 

3.0853(0.6057) 

2.9900(0.5241) 

1.0982(0.0283) 

1.0989(0.0269) 

3.0446(0.5890) 

3.0076(0.5339) 

0.4932(0.0531) 

0.7016(0.0102) 

IFM 
0.5 

0.7 

1.1906(0.0342) 

1.1980(0.0298) 

3.0864(0.6177) 

2.9948(0.5401) 

1.0978(0.0291) 

1.0996(0.0278) 

3.0485(0.5961) 

3.0100(0.5624) 

0.4920(0.0578) 

0.7002(0.0073) 

MPL 
0.5 

0.7 
 

0.4877(0.0760) 

0.6930(0.0219) 

irho 
0.5 

0.7 
 

0.4851(0.0904) 

0.6926(0.0243) 

itau 
0.5 

0.7 
 

0.4904(0.0689) 

0.6996(0.0097) 

80 

ML 
0.5 

0.7 

1.1928(0.0219) 

1.2016(0.0194) 

2.9626(0.3501) 

2.9166(0.3523) 

1.0980(0.0180) 

1.0966(0.0195) 

2.9084(0.3407) 

2.9624(0.3546) 

0.4985(0.0206) 

0.6974(0.0101) 

IFM 
0.5 

0.7 

1.1927(0.0221) 

1.1989(0.0196) 

2.9638(0.3536) 

2.9399(0.3669) 

1.0985(0.0179) 

1.0950(0.0210) 

2.9060(0.3486) 

2.9745(0.3631) 

0.4979(0.023) 

0.6960(0.0131) 

MPL 
0.5 

0.7 
 

0.4944(0.0317) 

0.6897(0.0262) 

irho 
0.5 

0.7 
 

0.4941(0.0417) 

0.6905(0.0255) 

itau 
0.5 

0.7 
 

0.4973(0.0289) 

0.6952(0.0156) 
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BTTGL driven from Gaussian copula function for  with different values of the 

copula parameter . 

n method 
      

15 

ML 
0.5 

0.7 

0.6760(0.0828) 

0.6657(0.1101) 

3.5727(1.5449) 

3.8643(2.6098) 

0.7351(0.0440) 

0.7211(0.0783) 

4.6685(1.3828) 

5.1231(2.2994) 

0.4833(0.1325) 

0.6849(0.0619) 

IFM 
0.5 

0.7 

0.6758(0.0835) 

0.6666(0.1108) 

3.5761(1.5532) 

3.8732(2.6932) 

0.7340(0.0461) 

0.7210(0.0783) 

4.6802(1.3722) 

5.1298(2.3755) 

0.4807(0.1422) 

0.6810(0.0694) 

MPL 
0.5 

0.7 

  

 

0.4709(0.1901) 

0.6654(0.1055) 

Irho 
0.5 

0.7 

 0.4611(0.2345) 

0.6570(0.1283) 

itau 
0.5 

0.7 

 0.4714(0.1988) 

0.6759(0.0912) 

50 

ML 
0.5 

0.7 

0.7019(0.0219) 

0.7051(0.0279) 

2.9762(0.5677) 

2.9250(0.5689) 

0.7403(0.0157) 

0.7415(0.0164) 

4.2152(0.4902) 

4.1469(0.4139) 

0.4977(0.0334) 

0.7019(0.0111) 

IFM 
0.5 

0.7 

0.7002(0.0171) 

0.7038(0.0251) 

2.9909(0.5592) 

2.9419(0.5797) 

0.7394(0.0160) 

0.7414(0.0162) 

4.2233(0.4895) 

4.1459(0.4199) 

0.496 (0.0394) 

0.7005(0.0083) 

MPL 
0.5 

0.7 

 0.4926(0.05401) 

0.6923(0.0234) 

irho 
0.5 

0.7 

 0.4878(0.0767) 

0.6942(0.0211) 

itau 
0.5 

0.7 

 0.4938(0.0526) 

0.7005(0.0099) 

80 

ML 
0.5 

0.7 

0.7020(0.0157) 

0.7029(0.0176) 

2.9497(0.3645) 

2.9139(0.3759) 

0.7404(0.0097) 

0.7391(0.0101) 

4.1553(0.2896) 

4.1324(0.2768) 

0.4999(0.0143) 

0.6955(0.0140) 

IFM 
0.5 

0.7 

0.7019(0.0154) 

0.7025(0.0171) 

2.9540(0.3729) 

2.9202(0.3873) 

0.7403(0.0097) 

0.7393(0.0099) 

4.1583(0.2958) 

4.1302(0.2850) 

0.4991(0.0174) 

0.6947(0.0157) 

MPL 
0.5 

0.7 

 0.4954(0.0327) 

0.6883(0.0290) 

irho 
0.5 

0.7 

 0.4939(0.0407) 

0.6905(0.0256) 

itau 
0.5 

0.7 

 0.4978(0.0252) 

0.6946(0.0172) 

 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 7, No. 1; 2018 

83 

From Tables 7 and 8, we concluded the following: 

1. In all methods of estimation, as the dependency parameter (copula parameter) value increases, its RMSE 

become smaller.  

2. The ML method mostly performs better than IFM method based on RMSE for different sample sizes and 

different values of the parameters. 

3. As the sample size increases, the RMSE decrease for all the parameters using parametric and semiparametric 

methods, as expected.   

4. For semiparametric methods, the itau method provides better estimates for the dependency parameter (copula 

parameter) and smaller RMSE compared to MPL and irho methods.  

5. Based on the RMSE of the copula parameter, the parametric methods perform better than the semiparametric 

methods. This is consistent with the results found by Genest et al. (1995).   

6. The marginal parameters generally have small effect on estimating the copula parameter as seen in Tables 7 

and 8 with different values of the parameters. 

7. Concluding Remarks 

In this article, bivariate truncated generalized logistic distributional models are introduced. The proposed bivariate 

distributional models derived from commonly used copula functions with truncated generalized logistic distribution as 

marginals.  Different methods of estimation are used to estimate the unknown parameters. The proposed bivariate 

distributional models derived from Gaussian, Frank, and Clayton copula functions fitted to a real life data set and the 

results of the analysis showed that the BTTGL distribution provides more suitable fit than bivariate generalized 

exponential and the bivariate exponentiated Weibull distributions. Also, the results indicated that the BTTGL distribution 

driven from Gaussian copula provides a better fit for the data set compared to BTTGL distributional models that are 

driven from Frank and Clayton copulas. Therefore, particular attention was directed to BTTGL distribution driven from 

Gaussian copula, and a Monte Carlo simulation was performed to compare the performance of the ML, IFM, BML and 

moment estimators which shows that the parametric methods perform better than semiparametric methods based on 

RMSE. 
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