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Abstract

This paper investigates the design of accelerated life test (ALT) sampling plans under progressive Type Il interval
censoring with random removals. For ALT sampling plans with two over-stress levels, the optimal stress levels and the
allocation proportions to them are obtained by minimizing the asymptotic generalized variance of the maximum
likelihood estimation of model parameters. The required sample size and the acceptability constant which satisfy given
levels of producer’s risk and consumer’s risk are found. ALT sampling plans with three over-stress levels are also
considered under some specific settings. The properties of the derived ALT sampling plans under different parameter
values are investigated by a numerical study. Some interesting patterns, which can provide useful insight to practitioners
in related areas, are found. The true acceptance probabilities are computed using a Monte Carlo simulation and the results
show that the accuracy of the derived ALT sampling plans is satisfactory. A numerical example is also provided for
illustrative purpose.
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1. Introduction

The design of reliability sampling plans under Type Il censoring schemes has been studied by many researchers (Fertig &
Mann, 1980; Hosono, Ohta, & Kase, 1981; Kocherlakota & Balakrishnan, 1986; Schneider, 1989; Balasooriya, 1995; Wu,
Hung, & Tsai, 2003). In practice, it is not uncommon that some units are removed during the test, which leads to
progressive censoring schemes. Balasooriya and Saw (1998), Balasooriya and Balakrishnan (2000), and Balasooriya, Saw,
and Gadag (2000) discussed reliability sampling plans for the two-parameter exponential, lognormal and Weibull
distributions under progressive Type Il censoring schemes, respectively.

The number of removals at each failure was assumed to be pre-fixed in those works. However, in practice it might be
infeasible to pre-determine the removal pattern and the decision of removing any units is based on the status of the
experiment at that specific time, such as excessive heat or pressure, reduction of budget and facility, etc. Therefore, the
number of removals should be a random outcome (Yuen & Tse, 1996). Tse and Yang (2003) discussed the design of
reliability sampling plans for the Weibull distribution under progressive Type Il censoring with random removals, where
the number of units removed at each failure was assumed to follow a binomial distribution. In recent years the feature of
random removal has been adopted by many researchers in designing various kinds of progressive censoring schemes,
such as Ashour and Afify (2007), Wu, Chen, and Chang (2007), and S. Dey and T. Dey (2014).

Units are supposed to run at use condition in traditional reliability sampling plans. When it is desired to test the acceptance
of highly reliable products, it is impractical to use such reliability sampling plans due to time constraint. Wallace (1985)
stressed the need for introducing ALT into reliability sampling plans. Bai, Kim, and Chun (1993) studied the design of
failure censored ALT sampling plans for lognormal and Weibull distributions. Hsieh (1994) investigated reliability
sampling plans with ALT under Type Il censoring for exponential distribution. The optimal design of ALT sampling plans
with a non-constant shape parameter under both Type | and Type Il censoring schemes was given by Seo, Jung, and Kim
(2009).

Note that continuous inspections were assumed in the above works. Nevertheless, sometimes it is inconvenient to conduct
a test with continuous inspections due to the high cost and/or possible danger in monitoring the test continuously. Under
these circumstances, the interval inspection schemes, in which only the number of failures between two successive
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inspections is recorded, would be more favorable. Studies on life test and/or accelerated life test which employ interval
censoring schemes are numerous. To number some of them, Tse, Ding, and Yang (2008) investigated the optimal design of
accelerated life test under interval censoring with random removals for Weibull distribution; Chen and Lio (2010)
compared the maximum likelihood estimation, moment estimation and probability plot estimation of parameters in the
generalized exponential distribution under progressive Type | interval censoring; Ding, Yang, and Tse (2010) discussed
the design of optimal ALT sampling plans under progressive Type | interval censoring with random removals. Most
recently, Ding and Tse (2013) investigated the design of optimal ALT plans under progressive Type Il interval censoring
with binomial removals for the Weibull distribution. However, as far as our knowledge goes, there is no relevant study
that investigates the design of ALT sampling plans under similar experimental settings with a Type Il censoring scheme.

The optimal reliability sampling plans which combine ALT, interval inspection and progressive Type Il censoring with
random removals are developed in this paper. This study can be noted as an extension to the work of Ding and Tse (2013)
along three directions: (i) the research topic is extended from the design of optimal ALT plans to the design of optimal
ALT reliability sampling plans, in which both the consumer’s risk and the producer’s risk are satisfied. In this sense this
paper resolves a more practical problem; (ii) instead of minimizing the asymptotic variance of an estimated quantile of
units’ lifetime distribution, this paper minimizes the asymptotic generalized variance of the maximum likelihood
estimation of model parameters. It enables us to compare the outcomes derived using two different criteria in optimization;
(iii) the true acceptance probabilities of the derived optimal ALT sampling plans are simulated, which provides us a way
to evaluate the accuracy of the proposed method.

The rest of this paper is organized as follows: Section 2 describes the basic model of the proposed scheme. The design of
optimal ALT sampling plans under progressive Type Il interval censoring with random removals is discussed in Section 3.
A numerical study is conducted in Section 4 to examine the properties of the derived sampling plans. In Section 5 the
accuracy of the proposed ALT sampling plans is evaluated by a Monte Carlo simulation. Section 6 provides a numerical
example. Conclusions are drawn in Section 7.

2. Model Description

Consider an ALT with the following settings:

1. Atotal of n identical and independent units are available at the beginning of the test.

2. There are m over-stress levels, i.e., S, S,, ..., S,,. Denote S, as the stress level at use condition.

3. Suppose that n. units are randomly allocated to the i stress level (i=1,2,...,m). Then the allocation proportion to
the i stress level is givenby o, =n, /n.

4. A progressive Type Il censoring scheme is employed, and the test on the i stress level will be terminated after C
(i=12,...,m) or more units fail.

5. Interval inspections are conducted at time points t,, t,, ..., t,, andthe number of failures x; between inspection

interval (t;; ,, t;) is recorded. It should be pointed out that both the experiment time t,, . and the number of

inspections k(i) are random variables.

6. Suppose that r;(i=12,..,m;j=12,..,k(i)—1) non-failed units are randomly removed at inspection time t;. To

ensure that there are at least ¢; failed units at the end of the test on stress level s;,

, ; Isrestricted to be any integer value

between 0 and n, —c —Z::r” . Further assume that r; follows a binomial distribution with probability p, then we

k(i k(i)—
=n =3 V% =371 as the number

i i i
have r, ~ B(ni -C _Z|:1 (. p) . For notational convenience, denote r, i o

ij k(@)

of units left.

The process of this testing scheme is depicted in Figure 1.
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Figure 1. The testing scheme of an ALT under progressive Type Il interval censoring with random removals (on the i"
stress level)

Suppose that the lifetime of aunit T follows a Weibull distribution with probability density function (pdf)

t(t)=(5716)(t/0) " exp| ~(t/0)’ |, t>0. 1)
Further assume that the scale parameter & and stress level s are related as
O=exp(B,+ps), @)

where S, and /3, are unknown constants and the shape parameter ¢ does not depend on s . Define Y =In(T), then
Y has an extreme value distribution with cumulative distribution function (cdf)

G(y)=1-exp[—exp((y-p)/o)], —o<y<+m, )
where u=In@=p4+ps, o=1/5.
Given observations (X2 0, 1=1,2,...,m; j=12,...,k(i)), the logarithm of the likelihood function can be derived as:

INL(By, B0 P31y, K (D))

K(i)-1 K(i)-1
n. n—XxX,—r n — . X — : I.
=3 "3+t e+ in | ZFI ! lel !
i=1 X. X.
il i2 Xi,k(i)

+Z|;(:il)|:xij In[G(yij)_G(yi,j—l)J—i_rﬁ In[l_G<Yij )ﬂ“n((”i -c)V kl(jlrij !(ni -G _k(jiZ:lrijJ!]
+ 3  np+ (K -1)(n, )~ X1 (ki) - ), Jin(2- )}

where y, =In(t;) .

(4)

The maximum likelihood estimates of 3 B o and P (denoted by ﬁo Bl & and p respectively) can be

solved from equations dInL/oB, =oInL/oB =dInL/do=0InL/op=0 Besides, the Fisher information matrix of
(B,,B,0,p) isgiven by

o*InL  d*InL  &*InL

of;  Opop,  dpoc
o°InL &°InL  &*InL 0
B2b, OB Opdo :(Il(ﬂo,ﬂm) 0 j |

| B,o,p)=-E (5)
(forfrrcr.) o*InL  &*InL &*InL 0 0 I,(p)
opoc OBoc 0o’
2
0 0 o ot
op

where 1,(,,,,0) is the upper left 3>3 sub-matrix of 1(4,,4,0,p) and 1,(p) :—E(a2 In L/apz). The asymptotic
covariance matrix of (,,5,,6) isthengivenby 1,*(5,, 3., o). The detailed formulation for the entries of Eq. (5) can
be found in the Appendix of Ding and Tse (2013).

Given sample size n, use condition s, and high stress level s, removal probability p, predetermined number of
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failures ¢; and inspections times (t;,i=12,..,m;j=12,..,k(i)) on each stress, the stress levels (s;,i=12,..,m-1)

and the allocation proportions (¢;,i=12,...,m-1) to these stress levels are selected in such a way that the generalized
asymptotic variance of 3,, f,,and &, which is given by |I1’1(,80,ﬁ1,a)|, is minimized.

3. Design of ALT Sampling Plans

Suppose that a sample of size n is randomly drawn from the lot and the test is conducted at the accelerated settings
described in Section 2. Assume that the lifetime of a unit T follows a Weibull distribution F(68,9) , where the
relationship between the scale parameter @ and the stress s is given by Eq. (2) and the shape parameter & does not
depend on s. Suppose that a unit with lifetime less than 7 is considered to be nonconforming. Define Y =In(T), then
Y follows an extreme value distribution G(u,o) and the lower specification limit for the log lifetime is given by

¢ =In().

Define x =1, —do, where g is the location parameter of G(.) at use condition and d is the acceptability constant.
Since the stresses can be standardized such that s, =0, s, =1land O<s, <1(i=12,...m-1), it follows from Eq. (3)
that 14, = £, + £,S, = 5, By the invariance principle of the maximum likelihood method, the MLE of x is then given

by Q:ﬁo—dﬁzﬁo—d&. To judge whether a lot should be accepted or not, x is compared with the lower

specification limit ¢. If &> ¢, the lot is accepted; otherwise, it is rejected.

Define the nonconforming fraction of the lot by p, , which is calculated as
Py =P(Y <g)=1-exp{-exp((c— 1)/ o)}. 6)
The sample size n and the acceptability constant d are determined such that lots with nonconforming fraction

p; < p, are accepted with a probability of at least 1-0 and lotswith p, > p, are rejected with a probability of at least

1-p4,where 0 and g are the given levels of producer’s and consumer’s risks, respectively.

It follows from £ = 3, —dé that Var(&)=Var(8,)—2d xCov(f,,6)+d*Var(3).

Since U =[£—(B,—-do)]/[Var(k)

]]J2 is parameter-free and asymptotically standard normal, the operating

characteristic (OC) curve is given by

O(p,) =P( > ) =1-@([ oIn(~In@- p,)) + do |/ ar(d)) (7)
where ®(.) is the cdf of the standard normal distribution.

The sample size n and the acceptability constant d are determined such that the OC curve goes through two points
(p,,1-0) and (pg,B) . Thisimplies

1—8=1—(D([aln(—ln(1— pa))+da]/‘Nar(z%) :
B :1—@([o—|n(—|n(1— p,))+da]/ ar(,e)). (8)

It follows that
d =[u1_ﬂ In(~In(1-p,))-u, In(—ln(l— p,,}))}/(ua ~U, ),
Var(z%)=|:o-2(ln(—ln(l— pﬁ))+d)1/u§, (9)
where u, =®*(z) . The acceptability constant d is calculated directly from the first part of Eq. (9), while the required

sample size n can be obtained by a search method from the second part (the detailed algorithm is provided in Section
4.1).

4. Numerical Study
4.1. ALT Sampling Plans with Two Over-stress Levels

The properties of the derived ALT sampling plans under different parameter values are evaluated by a numerical study in
this section. The following settings are made:

1. Two over-stress levels s, s, are employed,ie., m=2.
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2. The inspections on each stress level are equally spaced, i.e., t, =0, t; =t +I, (i=12,..,m; j=12..K(i)),
where | is the inspection length on the i stress level. Define MT, =exp(4, + 4 )[(1+1/5) as the mean of units’
lifetime distribution on the same stress and 7, =1, / MT, as the proportion of the inspection length to the corresponding
mean. z,, which is proportional to the inspection length |, is used in this numerical study since it is more convenient to
use a relative value than an absolute one. The case of 7, =7, =7 is considered.

3. Define the censoring fraction onthe i stresslevelas f; =c, /n,(i=12). Thecasesofboth f,=f, and f, <f,
are considered since units are much easier to fail on the high stress level than on the low one.

Without loss of generality, set s, =0, s, =1. In practice, it is often difficult for an experimenter to give prior estimates
of parameters /5, and f,. On the contrary, based on the experimenters’ experiences and/or the information collected
from preliminary or similar studies, the estimation of the probability that a unit falls into a certain interval is much easier.
Define P, =P (aunit’s lifetime T falls into (0, 1) at use condition) and B, = P (a unit’s lifetime T falls into (0, 1) on
high stress level), then we have

By =—cin(=In(1-R)),
B, =c(In(-In(1-R,))-In(-In(1-R,))) - (10)

In order to obtain an optimal ALT sampling plan under progressive Type Il interval censoring with random removals, the

valuesof n, d, s and o, have to be determined. The acceptability constant d dependson (p,,1-0) and (p,, /)

only, and it can be calculated from Eq. (9) directly. The determination of the other three parameters requires the
combination of a grid search method and the Monte Carlo simulation. For the sake of simplicity, let A denote

az(ln(—ln(l— pa))+d)2 /u?.Then, n, s, and «, are calculated using the following algorithm:

1. Set an initial value n® for n. Consider the smallest sample size and set n® = 2. Find the optimal (s;,a,) which
minimizes |Il’1(ﬂo,ﬁl,a)| using a grid search method over unit square (0,1)x(0,1) . Calculate the corresponding value
of Var(k) at (s;,a,).

2. Set n® =2n find (s;, ) based onsample size n® and compute Var(k) accordingly.

3. Repeat step 2 until for n® | Var(£) >A and for n®® | Var(c) <A. Define n® =n® and n® =n®

4. Set n®? =(n®+n)/2. Find (s;,e;) and calculate Var(g). If Var(<)>A, set n” =n®?; otherwise, set
() (i+2)
n® =nl+2

5. Repeat step 4 until Var(£) =A approximately holds or n® —n® <2

For given parameter values, specifically (p,,1-0) =(0.00041, 0.95); (p,, /) =(0.01840, 0.10); R, =0.01; R =0.1;
6=05,1,2; (f,,f,)=(0.5,0.5),(0.8,0.8), (0.5 0.7), (0.5, 0.9); p=0,0.05, 0.1,0.3and 7 =0.02, 0.05, 0.1, 0.3, the
optimal ALT sampling plans (n,d,s;, ;) are determined using the algorithm described above. A consistent pattern

emerged based on the results of these combinations. The required sample size n decreases as the censoring fractions f_,
f., increase. In order to provide a better insight on the effect of p (the probability of random removal) and 7 (which is
proportional to the inspection length), some cases are selected for illustration and the corresponding results are depicted in

Figure 2.
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I Thepattem of # on t under different values of p
§=05, £,=0.5. f,=09 §=1, £,=08, f,=08 §=2, £,=05, £,=07

R ]

II. The pattern of # on p under different valuesof ¢
§=05, £,=05, F,=09 §=1, £,=08. F,=08 §=2, £,=05, £,=07

Figure 2. Two over-stress levels ALT sampling plans under progressive
Type Il interval censoring with random removals
The following patterns are observed:

a. For the cases of §=0.5, n increases as z increases for all values of p. For the cases of 6 =1, when p=0,
0.05and 0.1, n increasesas 7 increases; when p=0.3, n first decreases and then increases as 7 increases. For the
cases of 6 =2, when p=0and 0.05, n increases as 7 increases; when p=0.1and 0.3, n first decreases and then
increases as ¢ increases. This pattern can be interpreted in this way: Larger r means wider inspection intervals, from
which the collected information on units’ lifetime is less accurate and thus more units are required to judge whether to
accept the lot or not. However, when p >0 ,alarger = also implies that units are less likely to be removed at the early
stage of the test. Consequently, more information on the lifetime distribution is collected and the required sample size n
is decreased. Taking these two kinds of effect into consideration, shorter inspection interval doesn’t always yield smaller
required sample size for ALT sampling plans under progressive Type Il interval censoring with random removals.

b. Forthecasesof §=0.5 and1, n decreasesas p increases for all values of z . For the casesof 6 =2,when ¢
=0.1 and 0.3, n decreases as p increases; when 7 =0.02 and 0.05, n first decreases and then increases as p
increases. This pattern is caused by the two-sided effects of the removal probability p. Generally speaking, a test is
likely to be prolonged as p increases. Thus more information on the lifetime distribution can be observed and the
required sample size n is decreased. Nevertheless, when the inspection intervals are too small, a non-zero removal
probability p also causes more units being removed at the early stage of the test. In this case, less data can be collected
and thus n is increased. In conclusion, except for several cases (6 =2 and z =0.02/0.05), the removal probability p
is helpful in reducing the required sample size n.

4.2. ALT Sampling Plans with Three Over-stress Levels

ALT plans with three over-stress levels are useful in practice since they can provide a way to check the assumed
straight-line relationship between distribution parameter  and stress level s by adding a middle stress. The design of
three over-stress levels ALT sampling plans under progressive Type Il interval censoring with random removals is
discussed in this section. They are developed under the following settings:

1. Three over-stress levels, s,, s, and s, are employed. In particular, set s, =0, s, =1 and s, =(S,+S;)/2.

2. The allocation proportions to three over-stress levels (¢, o,, ;) are set to be (1/3,1/3,1/3) and
(0.5, 03 0.2).

3. Three settings of censoring fractions are considered, namely, (f, f.,, f;) equals (0.5, 0.5, 0.5), (0.8, 0.8, 0.8)
and (0.5 0.7, 0.9).

4. The proportion of the inspection length to the corresponding mean, that is, 7, is set to be equal on three over-stress
levels,ie., 7,=7,=7,=71.

A numerical study is conducted to determine ALT sampling plans with three over-stress levels under equally spaced

inspection times. For given parameters, the optimal low stress level s; is found by a grid search method over interval (0,
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1). The step size is 0.01. For different parameter values, specifically, (p,,1-0)=(0.00041, 0.95); (p,, ) =(0.01840,

0.10); P,=0.01; R, =0.1; 6§=05,1,2; p=0,0.05,0.1,0.3and 7 =0.02, 0.05, 0.1, 0.3, the optimal low stress level s;

and the required sample size n are calculated. The effects of p and = on the required sample size n are depicted in
Figure 3. We note that:

I.Pattemsof » on £ underdifferent value of p

EERR AR

EEHEERSABEER
EEEHUHY Y

BB & BB

GHGHEHY G

HEHY MR SR U
»

(a) )] (®
@ =03, (@.a.& =13, 13,1/3), f1=05F,=077,=09 (b d=1. [@&.3)=03, 03,02} fi=F,=7,=08
(© =2, (@@, )=(1/3,13,1/3), f=f,=F,=05

Figure 3. Three over-stress levels ALT sampling plans under progressive
Type Il interval censoring with random removals

a. For the cases of 6 =0.5 and 1, n increases as ¢ increases. For the cases of 6 =2, when p=0 and 0.05, n
increases as z increases; when p=0.1and 0.3, n first decreases and then increases as z increases.

b. For the cases of 6 =0.5, n decreases as p increases. For the cases of 6 =1, when r =0.05, 0.1 and 0.3, n

decreasesas p increases; when 7=0.02, n firstdecreases and then increasesas p increases. For the casesof =2,
when 7 =0.1and 0.3, n decreasesas p increases; when r=0.02and0.05, n first decreases and then increasesas p

increases.

Note that these patterns are similar to those observed in the two over-stress levels case.
5. Accuracy of Large Sample Approximation

Since the proposed ALT sampling plans are derived based on asymptotic theory, there is a need to evaluate the finite
sample behavior of them. The accuracy of the derived ALT sampling plans is assessed by a simulation study. The OC
curve is set to go through two points, that is, (p,,1-0) =(0.00041, 0.95) and (p,, ) =(0.01840, 0.10). For each
combination of parameters, the nonconforming fraction of a lot under given acceptance probability (99% and 95%) on the
pre-defined OC curve is computed, and then the true acceptance probability of a lot with that corresponding
nonconforming fraction is calculated by a Monte Carlo simulation with 1000 runs. The results for ALT sampling plans
with two over-stress levels and three over-stress levels are presented in Table 1 and Table 2, respectively. Actually, several
different values of & (0 =0.5, 1, 2) are considered in this numerical study. Since they show similar patterns, only parts of
the results of & =1 are provided for simplicity.

We note from Table 1 and Table 2 that the simulated acceptance probabilities are close to their nominal values in most

cases. This indicates that the optimal ALT sampling plans derived based on asymptotic approximation have satisfactory
accuracy.

6. A Numerical Example

Suppose that there is an agreement between a consumer and a producer to determine the acceptability of a lot. In particular,
if the nonconforming fraction of a lot is smaller than 0.00041, then the lot should be accepted with a probability of at least
0.95; while if the nonconforming fraction of a lot is larger than 0.01840, then it should be rejected with a probability of at
least 0.90. Assume that an ALT reliability sampling plan with two over-stress levels is used to determine the acceptability
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of the lot. The probabilities for a unit to fail at use condition and high stress level are estimated to be 0.01 and 0.1,
respectively. A progressive Type Il interval censoring scheme is employed, and the censoring fractions on two stress
levels are 0.8. The proportions of the inspection length to the corresponding distribution mean on both stresses are set to
be 0.1. Besides, based on prior information, it is assumed that units’ lifetimes are Weibull distributed with shape parameter
6 =1 and a unit is likely to be removed at each inspection with probability 0.1. The problem is to determine the number
of units used in this ALT sampling plan and to determine the low stress level and the allocation proportions to two stresses
so that (1) both the consumer’s risk and the producer’s risk can be satisfied and (2) the maximum amount of information
on units’ lifetime distribution can be collected.

The optimal ALT sampling plan is obtained using the proposed method. The required sample size is 17, with 7 and 10
units allocated to the low and high stress levels, respectively. The low stress level should be settled at 0.02 multiplied by
the actual high stress. Besides, the acceptability constant which is required to make the decision is 5.6560.

7. Conclusion

The design of ALT sampling plans under progressive Type Il interval censoring with random removals was discussed in
this paper. For ALT sampling plans with two over-stress levels, the optimal stress levels and the corresponding allocation
proportions, which minimize the generalized asymptotic variance of the MLE of model parameters, were found. The
sample size and the acceptability constant required to judge the acceptability of the lot were calculated.

The properties of the derived ALT sampling plans were examined by a numerical study. It is shown that generally the
removal probability is helpful in reducing the required sample size. More importantly, when there exists random removal,
short inspection interval doesn’t always yield small required sample size, which is different from the case of no random
removal. These interesting patterns would provide useful insights to experimenter in designing similar ALT sampling
plans. The accuracy of the proposed sampling plans was evaluated by a Monte Carlo simulation. The results show the
simulated acceptance probabilities are close to their nominal values in most cases, which indicates that the performance of
the derived ALT sampling plans is satisfactory.

Table 1. Simulated acceptance probabilities for two over-stress levels ALT sampling plans under progressive Type Il
interval censoring with random removals (m=2;6=1; p, =0.00041;1-0=0.95; p, =0.01840 ; 5 =0.10)

f,="1,=05 f,="1,=08
Selected points on Simulated Selected points on Simulated
T n OC curve probability n OC curve probability
99% 95% 99% 95% 99% 95% 99% 95%
p=0.0

0.02 25 0.00016 0.00039 0.987 0.973 17 0.00016 0.00037 0.986 0.967
0.05 29 0.00018 0.00042 0.984 0.957 19 0.00017 0.00040 0.985 0.963
0.1 29 0.00016 0.00039 0.982 0.949 19 0.00015 0.00038 0.991 0.970
0.3 45 0.00017 0.00042 0.966 0.923 24 0.00017 0.00040 0.989 0.953
p =0.05
0.02 21 0.00018 0.00041 0.992 0.978 17 0.00017 0.00043 0.995 0.972
0.05 23 0.00016 0.00038 0.991 0.973 17 0.00015 0.00039 0.988 0.965
0.1 29 0.00017 0.00038 0.989 0.966 17 0.00015 0.00040 0.982 0.972
0.3 44 0.00017 0.00041 0.972 0.949 24 0.00017 0.00042 0.985 0.933
p=0.1
0.02 21 0.00019 0.00044 0.991 0.975 17 0.00018 0.00044 0.995 0.974
0.05 22 0.00016 0.00039 0.994 0.973 17 0.00017 0.00041 0.985 0.971
0.1 25 0.00016 0.00039 0.985 0.969 17 0.00015 0.00039 0.989 0.957
0.3 41 0.00016 0.00038 0.968 0.948 24 0.00018 0.00044 0.982 0.962
p=0.3
0.02 21 0.00016 0.00042 0.992 0.979 17 0.00016 0.00040 0.992 0.970
0.05 20 0.00016 0.00039 0.997 0.976 15 0.00014 0.00037 0.984 0.968
0.1 20 0.00014 0.00035 0.992 0.967 17 0.00017 0.00038 0.988 0.978
0.3 37 0.00015 0.00039 0.973 0.945 22 0.00017 0.00042 0.982 0.955

f,=05"f,=07 f,=051"f,=09
. n Selected points on Simulated n Selected points on Simulated
OC curve probability OC curve probability
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99%

95%

99%

95%

99%

95%

99%

95%

0.02
0.05
0.1
0.3

21
22
24
31

0.00015
0.00016
0.00016
0.00016

0.00040
0.00037
0.00039
0.00038

0.991
0.989
0.984
0.977

p=0.0
0.974
0.969
0.961
0.954

18
17
19
24

0.00017
0.00015
0.00017
0.00017

0.00042
0.00036
0.00042
0.00042

0.989
0.992
0.990
0.985

0.956
0.967
0.948
0.963

0.02
0.05
0.1
0.3

18
21
21
31

0.00017
0.00018
0.00016
0.00016

0.00039
0.00043
0.00038
0.00040

0.994
0.984
0.981
0.979

p=0.05

0.976
0.967
0.977
0.947

17
17
19
22

0.00019
0.00016
0.00018
0.00016

0.00041
0.00041
0.00042
0.00038

0.994
0.992
0.987
0.981

0.965
0.962
0.969
0.964

0.02
0.05
0.1
0.3

17
19
19
30

0.00015
0.00017
0.00014
0.00017

0.00037
0.00041
0.00038
0.00042

0.994
0.997
0.990
0.979

p=0.1
0.975
0.973
0.973
0.950

17
17
17
22

0.00015
0.00016
0.00015
0.00017

0.00042
0.00042
0.00039
0.00042

0.999
0.994
0.994
0.982

0.972
0.968
0.969
0.951

0.02
0.05
0.1
0.3

19
18
19
27

0.00017
0.00015
0.00016
0.00016

0.00041
0.00038
0.00040
0.00038

0.995
0.995
0.988
0.985

p=0.3
0.971
0.978
0.980
0.961

17
17
17
21

0.00017
0.00016
0.00016
0.00017

0.00040
0.00038
0.00040
0.00040

0.993
0.993
0.990
0.983

0.967
0.975
0.970
0.967
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Table 2. Simulated acceptance probabilities for three over-stress levels ALT sampling plans under progressive Type Il
interval censoring with random removals (m=3;0=1; p, =0.00041;1-0=0.95; p, =0.01840 ; 5 =0.10)

Casel. (o a,:a)=(1/3,1/3, 1/3)

f,="1,=1,=05 f,=1,=1,=08 f,=051f,=07"f,=09
Selected Simulated Selected Simulated Selected Simulated
T n points probabilities n points probabilities n points probabilities
99% 95% 99% 95% 99% 95%
99%  95% 99%  95% 99%  95%
p=0.0
2
0.02 8 0.00016 0.00041 0.991 0.972 19 0.00019 0.00043 0.994 0.964 20 0.00017 0.00043 0.996 0.972
2
0.05 9 0.00016 0.00041 0.987 0.947 19 0.00017 0.00042 0.988 0.973 21 0.00018 0.00044 0.984 0.959
3
0.1 0 0.00015 0.00040 0.991 0.947 18 0.00015 0.00038 0.988 0.952 21 0.00016 0.00042 0.987 0.963
4
0.3 ) 0.00016 0.00038 0.961 0.936 27 0.00018 0.00041 0.983 0.969 27 0.00017 0.00040 0.980 0.953
p =0.05
2
0.02 1 0.00019 0.00045 0.992 0.971 17 0.00017 0.00042 0.993 0.970 18 0.00017 0.00042 0.998 0.969
2
0.05 0.00016 0.00038 0.985 0.961 17 0.00017 0.00042 0.986 0.968 19 0.00018 0.00042 0.997 0.964
5
2
0.1 9 0.00016 0.00039 0.989 0.960 18 0.00016 0.00039 0.988 0.973 20 0.00017 0.00042 0.989 0.978
4
0.3 ) 0.00016 0.00042 0.976 0.938 27 0.00019 0.00042 0.980 0.967 27 0.00017 0.00043 0.983 0.953
p=0.1
1
0.02 9 0.00016 0.00037 0.994 0.975 17 0.00017 0.00041 0.993 0.966 17 0.00015 0.00038 0.981 0.969
2
0.05 ) 0.00017 0.00041 0.990 0.972 17 0.00017 0.00042 0.991 0.973 18 0.00018 0.00040 0.988 0.967
2
0.1 9 0.00018 0.00043 0.990 0.963 17 0.00016 0.00039 0.990 0.964 19 0.00016 0.00039 0.996 0.951
4
0.3 ) 0.00016 0.00040 0.989 0.946 25 0.00016 0.00041 0.983 0.952 27 0.00018 0.00042 0.977 0.956
p=0.3
2
0.02 1 0.00016 0.00040 0.997 0.978 17 0.00017 0.00041 0.995 0.974 19 0.00017 0.00039 0.990 0.968
2
0.05 1 0.00018 0.00042 0.994 0.971 17 0.00018 0.00041 0.992 0.970 18 0.00016 0.00041 0.995 0.963
2
0.1 1 0.00017 0.00038 0.985 0.967 17 0.00016 0.00040 0.993 0.954 19 0.00018 0.00042 0.991 0.977
3
0.3 3 0.00016 0.00039 0.976 0.964 24 0.00016 0.00042 0.989 0.974 23 0.00016 0.00039 0.987 0.956
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Table 2.(Cont’d) Simulated acceptance probabilities for three over-stress levels ALT sampling plans under progressive
Type Il interval censoring with random removals (m=3;6 =1; p, =0.00041;1-0=0.95; p, =0.01840 ; 5 =0.10)

Casell. (o :a,:a,)=(05, 0.3 0.2)
f,=f,=1,=05 f,=f,=1,=08 f,=051f,=07"f,=09
. Selected Simulated Selected Simulated Selected Simulated
N points probabilities N points probabilities N points probabilities
99% 95% 99% 95% 99% 95% 99% 95% 99% 95% 99% 95%
p=0.0
002 27 0.00017 0.00039 0.995 0.970 19 0.00018 0.00044 0.990 0.974 20 0.00018 0.00044 0.995 0.971
005 29 0.00017 0.00043 0.984 0.962 19 0.00016 0.00042 0.991 0.961 20 0.00017 0.00042 0.993 0.966
0.1 31 0.00017 0.00041 0.988 0.965 20 0.00018 0.00041 0.989 0.969 22 0.00019 0.00044 0.982 0.969
0.3 45 0.00016 0.00041 0.964 0.942 27 0.00018 0.00044 0.983 0.962 31 0.00017 0.00040 0.973 0.969
p =0.05
0.02 19 0.00016 0.00040 0.988 0.979 17 0.00018 0.00041 0.995 0.972 17 0.00018 0.00040 0.991 0.975
005 22 0.00016 0.00041 0.989 0.966 17 0.00015 0.00039 0.989 0.974 17 0.00016 0.00040 0.990 0.965
0.1 28 0.00017 0.00040 0.987 0.962 19 0.00018 0.00042 0.988 0.964 20 0.00016 0.00040 0.993 0.959
0.3 45 0.00017 0.00042 0.981 0.955 22 0.00015 0.00039 0.984 0.951 27 0.00015 0.00036 0.982 0.965
p=0.1
002 19 0.00017 0.00041 0.998 0.974 16 0.00017 0.00042 0.988 0.975 17 0.00018 0.00040 0.988 0.977
005 22 0.00018 0.00044 0.991 0.971 17 0.00017 0.00041 0.987 0.974 17 0.00017 0.00039 0.991 0.966
0.1 27 0.00017 0.00042 0.990 0.955 18 0.00017 0.00040 0.989 0.966 20 0.00017 0.00042 0.991 0.976
0.3 42 0.00015 0.00038 0.970 0.941 22 0.00016 0.00038 0.985 0.962 27 0.00015 0.00038 0.981 0.953
p=0.3
002 21 0.00016 0.00038 0.993 0.976 17 0.00016 0.00041 0.992 0.966 19 0.00017 0.00043 0.996 0.982
005 21 0.00015 0.00041 0.994 0.974 17 0.00017 0.00041 0.989 0.969 17 0.00016 0.00039 0.991 0.972
0.1 21 0.00015 0.00037 0.990 0.969 17 0.00015 0.00039 0.989 0.968 19 0.00017 0.00042 0.986 0.977
0.3 35 0.00016 0.00041 0.980 0.960 21 0.00016 0.00040 0.984 0.967 27 0.00017 0.00042 0.985 0.952
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