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Abstract 

This paper introduces a new extension of the Inverse Pareto distribution along with in the framework of Marshal-Olkin 

(1997) family of distributions. This model is capable of modeling various shapes of aging and failure criteria. The 

statistical properties of the new model are discussed and the maximum likelihood and maximum product spacing’s 

methods are used to estimate the parameters involved. Explicit expressions are derived for the moments and the order 

statistics are examined for the new proposed model. Finally, the usefulness of the new model for modeling reliability data 

is illustrated using two real data sets with simulation study. 

Keywords: Inverse Pareto distribution, reliability analysis, maximum likelihood estimation, maximum product spacing’s 

estimates. 

1. Introduction 

The procedure of adding one or two parameters to a family of distributions to obtain more flexible models is a well-known 

technique in the literature. Marshall and Olkin (1997) pioneered a simple method of adding a positive shape parameter 

into a family of distributions and several authors used their method to extend well-known distributions in the last few 

years. If ( )G x , ( )g x and ( )r x denote respectively the survival function (sf), probability density function (pdf) and 

hazard rate function (hrf) of a parent distribution, then the survival function ( )F x of the Marshall - Olkin (MO) family is 

defined by: 
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Clearly, for  𝛿 = 1, we obtain the baseline distribution, i.e., ( ) ( )F x G x .  

The shape parameter  , is called “tilt parameter”, since the hrf  ;h x  of the transformed distribution is shifted below 

 1  or above (0 1)   from the baseline hrf, say ( )r x (Marshall & Olkin, 1997).  

The pdf corresponding to (1) is given by 
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and its hrf reduces to 
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 (3) 

We write  ~ ,X IP   to denote a random variable X having the two-parameter inverse Pareto (IP) distribution with 

cumulative distribution function (cdf)  
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and corresponding pdf 
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In this article, the IP distribution is embedded in a larger family by adding an extra shape parameter, by applying the MO 

technique and is called the Marshall-Olkin extended inverse Pareto (MOEIP) distribution. 

The rest of this paper is outlined as follows. In section (2), we define the new distribution, derive a linear representation 

for its pdf, and provide some sub-models and plots of the distribution. In section (3) we introduced some statistical 

properties of the MOEIP distribution. In section (4) the order statistics and their moments are investigated. In section (5), 

we discuss the maximum likelihood estimation of the model parameters. Section (6) is devoted to give some applications 

of the MOEIP model. 

2. The MOEIP Distribution 

In this section, we define the survival, the pdf and the hazard rate functions of the new distribution. The cdf of the MOEIP 

distribution with three positive parameters  , ,   is obtained by inserting (4) into (1) a 
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The MOEIP density function is given by: 
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and the corresponding hrf by, 
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where  , ,x   is the hrf of the IP distribution (4). 

Theorem 1. 

The pdf of the MOEIP distribution given by (7) can be represented as a countable mixture of inverse Pareto distributions 

as:  

   1
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and 

 
 

1

1
.

k

k k

x
g x

x















 (11) 

Proof 

Appling the binomial expansion of  
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, to equation (7) we can write 
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where, k is given by (10). Or, equivalently 
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where,  kg x  is given by (11). It is clear that (11) is the pdf of the  ,IP k   distribution.  

Also, It follows form (10) that for 1,0 1kv    and

0

1k

k

v




 . 

One can see from (9) that the new model is a mixture of IP distributions. This completes the proof.   

It follows from (9) that the different properties of the MOEIP distribution can be generally discussed through the 

corresponding properties of the IP distribution. 

2.1. Plots for the EMOIP Distribution 

Figures (1) and (2) below displays the plots of the MOEIP density for some selected values of the parameters ,   and 

 . These plots illustrate the versatility, initially decreasing and modality of this distribution, devise shapes with the 

changes in the parameters some show a mode, and others do not. Some show bathtub and others show monotonicity. 

The plots in figures (3) and (4) below reveal that the hrf of the MOEIP distribution can have unimodal and decreasing 

shapes. 

  

Figure 1. Plots of the MOEIP pdf for selected parameters values 
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Figure 2. Plots of the MOEIP pdf for selected parameters values 

 

 

Figure 3. Plots of the MOEIP hrf for selected parameters values 

 

 

Figure 4. Plots of the MOEIP hrf for selected parameters values 

 

The plots in figures (5) and (6) below show the behaviour of the cdf and sf of the MOEIP distribution for some selected 

values of the parameters. The figures show that cdf curve is initially increasing function.  

 

 

Figure 5. Plots of the MOEIP cdf and sf for selected parameters values 
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3. Statistical Properties of the MOEIP Distribution. 

3.1 The Moments of EMOIP Distribution 

Due to its mathematical tractability the moments of different types of the MOEIP distribution can be obtained using direct 

calculations. The first incomplete moment has important applications related to the Bonferroni and Lorenz curves, the 

mean residual life and the mean waiting time. Furthermore, the amount of scatter in a population is measured to some 

extent by the totality of deviations from the mean and median. These three functions uniquely determine the cdf of the 

MOEIP distribution; depend on the first incomplete moment. 

The r-th ordinary and incomplete moments, of the MOEIP distribution (7) are given by 

 ' ,1 , 1,2,...r

r B r r r        (12) 

and 
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respectively, where    
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   is the incomplete beta function 

Equation (12) has the following equivalent form obtained by calculating 
'

r  using (9). 
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Now using the relation between the central and non-central moments, it is easy to obtain the n-th central moment 
nM  

of the MOEIP distribution given by (7), as 
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Equation (15) can be used to obtain the measures of skewers and kurtosis measures of the MOEIP distribution. The r-th 

negative moment of the MOEIP distribution (7) can be simply obtained as 
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the n-th moment of the residual life of the MOEIP distribution (7) can be expressed as 
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Further, it can be expressed as 
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where ( )F x  is given by (6). 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 6, No. 6; 2017 

76 

 1m t  is the mean residual life function. It represents the expected additional life length for a unit which is alive at 

age t.  

The cdf is uniquely determined by the mean reversed residual life of the MOEIP distribution, it is given by 
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In a similar manner, it can be expressed as 
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The mean inactivity time (MIT) of MOEIP distribution is obtained by setting n=1 in the previous equation. 

3.2 Quantiles of the MOEIP Distribution  

The p-th quantile ( )px  of the MOEIP distribution is obtained by so having equation. 

  ,pF x p   (21) 

where ( ) 1 ( )F x F x  . Hence solving (21) we get  
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the p-th quantile for (0,1)p .  

For 0.5p   the median of the MOEIP distribution is given by  
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Remark 1. For 1   we have the qf of the IP distribution as  

1
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4. Distribution of Order Statistics of the MOEIP Distribution 

Let 1, , nX X  be a random sample of size n from the MOEIP ( , , )    model with sf and pdf given by (6) and (7), 

respectively 

Theorem 2. 

The pdf of the i-th order statistic, say : ,1 ,i nX i n   is given by: 
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where  1k lg x 
 is the IP density function with parameters  1k l    and β. 

Proof 

It is known that the pdf of the i-th order statistics is given:  
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Using equation (7), we have  
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Using the generalized binomial series, we can write: 
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Now, using power series expansion, we have 
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Substituting the last two expressions in equation (25), we have 

      : ,
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5. Estimation of the Parameters of the MOEIP Distribution. 

In this section, we shall derive estimates of the parameter using two different methods. 
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5.1 Maximum Likelihood Estimates 

Consider the estimation of the unknown parameters of the MOEIP distribution (7), from complete samples by maximum 

likelihood. Let 1, , ?nx x be a random sample of this distribution with unknown parameter vector  , ,
T

    . The 

log-likelihood function, say   obtained from equation (7), is given by: 
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We require iterative techniques such as the Newton-Raphson algorithm to solve the above equations numerically. 

5.2 Maximum Product Spacing Estimates 
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where, the difference iD is defined as 
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where, F (x,α,β,δ) is the cdf, 
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The MPS estimators ˆˆ ,PS PS   and ˆ
PS  of ,  and   are obtained by maximizing the geometric mean (GM) of 

the differences. Substituting pdf of MOEIP and taking logarithm of the above expression, we will have 
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6. Applications of the MOEIP Distribution 

In this section, we use simulated data and real data (censored and uncensored) sets to compare the fits of the MOEIP 

distribution model and illustrate its usefulness. 

6.1 Simulation Study 

To assess the behavior of the maximum likelihood estimators of the parameters ,    and   under the finite samples, 

we construct a Monte Carlo simulation. All results were obtained from 4000 Monte Carlo replications and the simulations 

were carried out using the statistical software package R.  

In each replication a random sample of size n is drawn from the MOEIP distribution (7), the L-BFGS-B method (is a 

standard method for solving large instances of when the function is a smooth function, typically twice differentiable 

stands for bounds Broyden, Fletcher, Goldfarb and Shanno, the originators of the method The L-BFGS-B algorithm is 

implemented in a R software package) has been used to maximize the log-likelihood function. The true parameter values 

used in the data generating processes are 2.8, 1.3    and 0.1  . Table 1 below, presents the mean maximum 

likelihood estimates of the parameters, the bias and the root mean squared errors (RMSE) for different samples of sizes 

n=50, n=80 and n=100. 

Table 1. Mean estimates, bias and root mean squared errors of ,  and   

N Parameter Mean estimate Bias RMSE 

n=50 
  8.82774 -6.02774 15.04812 

  2.162646 -0.862646 3.32376 
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  0.2102702 -0.1102702 0.27109 

n=80 

  5.689175 -2.889175 8.93957 

  1.972225 -0.672225 2.54402 

  0.1702503 -0.0702503 0.19429 

n=100 

  5.104291 -2.304291 7.49537 

  1.912897 -0.612897 2.39404 

  0.1642673 -0.064267 0.17969 

We notice from Table 1. the bias and root mean squared error of the maximum likelihood estimators of ,  and 
decay toward zero as the sample size increases.  

6.2 Remission Times of a Bladder Cancer Patients – Uncensored 

The following data represents an uncensored data set corresponding to remission times (in months) of a random sample of 

128 bladder cancer patients reported in Lee and Wang (2003).The data are: 

0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 

13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,  

3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 

36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 7.66,  

11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 

11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 

2.07, 3.36, 6.93, 8.65, 12.63, 22.69 and 5.49 . 

Table 2 below presents basic descriptive statistics for the remission time data set. 

Table 2. Descriptive statistic of the remission times of a bladder cancer patients 

Min. 1st Me M 3rd Max     

0.080  3.348 6.395 9.366 11.840 79.050 

The TTT plot for remission times of a bladder cancer patient's data is displayed in Figure 6 which provides evidence that 

a bathtub hazard rate is adequate. 

 

Figure 6. The TTT plot of the remission times of a bladder cancer patients 

We compare the fitting of the MOEIP distribution with 8 non-nested models, this models are: the Weibull-Power series 

(W-Ps) distribution (Tahir et al., 2014), the new modified Weibull (NMW) distribution (Almalki & Yuan, 2013), the 

additive Weibull (AW) distribution (Xie & Lai, 1996), the Transmuted Weibull (T-W) distribution (Aryal & Tsokos, 2011), 

the Kumaraswamy Pareto (Kw-P) distribution (Bourguignon et al., 2013), the exponentiated generalized Frechet (E-GF) 

distribution (Cordeiro et al., 2013), the Exponential-Weibull (E-W) distribution (Cordeiro et al., 2014) and the 

Complementary Burr III Poisson (C-BIII-P) distribution (Hassan et al., 2015).  

6.3 Model Selection 

In each case, the parameters are estimated by the maximum likelihood method and also model selection is carried out 
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using log-likelihood function evaluated at the MLEs ( ˆ ), Akaike information criterion (AIC), consistent Akaike 

information criterion (CAIC), Hannan-Quinn information criterion (HQIC), Bayesian information criterion (BIC), 

Anderson-Darling (
*A ), Cram'er–von Mises (

*W ) and Kolmogorov Smirnov (K-S) statistics to compare the fitted 

models. The statistics 
*A  and 

*W are well-defined by Chen and Balakrishnan (1995). The calculation carried out using 

the R code (AdequacyModel). In general, the smaller the values of these statistics, the better the fit to the data.  

These statistics are, respectively, given by: 

ˆ2 2 ,?AIC k    

2

*

1

0.5 2 1 1 1
1 , Max , ,

12

n

i i i

i

i i i
W z K S z z

n n n n n

       
             
       

  

where ˆ denotes the maximized log-likelihood function, k is the number of estimated parameters, n is the sample size, 

  i i
z cdf y  and the 

 i
y ’s are the ordered observations. 

The estimates of the parameters and the standard error values of these estimates are listed in Table 3 while Table 4, gives 

the rest of the statistics as ˆ , AIC, 
*W and K-S values. 

Table 3. MLEs (standard errors in parentheses) to the remission times of a bladder cancer patients 

Model Estimates 

MOEIP  1.7694 

(0.1556) 

  107.7835 

(45.9225) 

  0.0056 

(0.0027) 

  

W-Ps  9.7237 

(5.2316) 

b= 0.08284 

(2.3151) 

  12.5913 

(8.9562) 

 84.7241 

(0.2011) 

 

N-MW  0.0763 

 (0.01674) 

  0.0176 

(0.0132) 

  1.0476 

(0.0882) 

  1.0479 

(0.2544) 

  1e-10 

(0.00023) 

AW  1e-10 

(1.1144e-10)  

  0.0939 

(0.0191) 

  0.75699 

(NaN) 

  1.0478 

(0.0675) 

 

TW   1.0478 

(0.0676) 

 9.5607 

(0.8529) 

  1e-10 

(0.0620) 

  

Kw-P  27.2081  

(8.1380) 

b= 15.5401 

(7.5091)  

 0.31896  

(0.0532)  

  0.0055 

(0.0016) 

 

EGF  81.1087  

(33.5614)  

  0.6250  

(0.3010)  

  0.2816 

(0.0343) 

  2323.1237 

(NaN) 

 

E-W   1e-10 

 (NaN)  

   0.1068 

(0.0094) 

 0.2055 

(NaN) 

  

C-BIII-P  1.2853 

(0.0783) 

  1.5895 

(0.4502) 

  4.5730 

(1.1499) 

  

Table 3 shows that MOEIP distribution fitted the data better than the other competitive models. 

 

Table 4. The measures ˆ , AIC, 
*W and K-S to the remission times of a bladder cancer patients 

Model ˆ  AIC 
*W  K-S 

MOEIP 412.7917 831.5835 0.06424052 0.039836,  

p-value = 0.9872 

W-Ps 413.9184 835.8368 0.133707 0.070259,  

p-value = 0.5525 
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N-MW 414.0869 838.1738 0.1313599 0.069991,  

p-value = 0.5575 

AW 414.0869 836.1738 0.1313628 0.069993,  

p-value = 0.5574 

TW 414.0869 834.1738 0.1313741 0.070017,  

p-value = 0.557 

Kw-P 416.8697 841.7394 0.1496548 0.063182,  

p-value = 0.6864 

EGF 411.9553 831.9106 0.06390148 0.053263,  

p-value = 0.8608 

E-W 414.3419 834.6838 0.1192921 0.084637,  

p-value = 0.3183 

C-BIII-P 416.4641 838.9282 0.1356225 0.49197,  

p-value < 2.2e-16 

 

 

(a) 

 

(b) 

Figure 7. (a) estimated densities of the MOEIP, W-PS, N-MW, A-W and T-W distributions for the data.  

(b) estimated cdf function from the fitted MOEIP, W-PS, N-MW, A-W and T-W distributions and the empirical cdf for the 

data. 

In order to assess if the model is appropriate, we plot in Figure 7. (a) and (b) the histogram of the data and the MOEIP, 

W-PS, N-MW, A-W and T-W distributions and the empirical and their estimated cdf functions, respectively. These plots 

indicate that the MOEIP distribution provides a better fit to these data than all its sub-models. 

In addition, Figure 8 (a), (b), (c), (d) and (e) present the probability-probability (PP) plot for the MOEIP, W-PS, N-MW, 

A-W and T-W distributions which specified used to determine how well a specific distribution fits to the observed data. 

This plot will be approximately linear if the specified theoretical distribution is the correct model. 
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(a)  

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 8. (a), (b), (c), (d) and (e) are the PP plot for the MOEIP, W-PS, N-MW, A-W and T-W distributions respectively 

7. Conclusion Remarks 

A new three-parameter generalization of the inverse Pareto model, called the Marshal-Olkin extended inverse Pareto, 

(MOEIP) distribution is defined and some of its mathematical properties studied. They include central and non-central 

moments, quantiles, reliability, the n-th moment of the residual life and the n-th moment of reversed residual life. We use 

two methods of estimations as the maximum likelihood and the maximum producting spacing methods to derive the 

equations used to maximize the likelihood function. Using the maximum likelihood method of estimation, the usefulness 

of the new model for modeling reliability data is illustrated using real data set with simulation study. 
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