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Abstract

This paper deals with interval estimation of the stress-strength reliability, when the stress and strength variables follow a
general exponential form distribution. The distribution parameters of both the stress and the strength are assumed to be
unknown. Interval estimation for reliability is discussed, using different approaches. The results obtained are applicable
to many well known distributions. For illustration of the general results obtained a simulation study is performed with
application on Weibull distribution. Numerical comparison of the interval estimators is carried out based on average
length, probability coverage, and tail errors.

Keywords: Fisher information matrix, Generalized variable method, Bootstrap method, Gibbs sampling, Metropolis-
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1. Introduction

The stress-strength reliability can be expressed as R = P (X1<X2), where the random variables X1 and X2 represent a
random stress and a random strength, respectively. The first papers with P (X1<X2) in their title were introduced by
(Birnbaum, 1956), and (Birnbaum and McCarty, 1958). Because of the importance of what we talk about there are a lot
of research, which took this topic in different ways and different distributions. One of these ways the point estimation
of R, (see, (Saracoglu et al., 2009), and (Panahi and Asadi, 2010)). In many situations knowing an interval estimator is
better than just knowing a point estimator because the interval estimator covers the unknown parameter R with a specified
probability, confidence coefficient. Many authors have studied the interval estimation of R. Among them, (Kundu and
Gupta, 2006), (Krishnamoorthy and Lin, 2010), (Asgharzadeh et al., 2011), and (Asgharzadeh et al., 2013). (Kotz et
al., 2003) have comprehensively covered the problem of point and interval estimation of R. (Singh et al., 2015), and
(Asgharzadeh et al., 2017) have also discussed the problem of point and interval estimation of R. Recently, (Mokhlis
et al., 2017) introduced point and interval estimation of R = P (X1<X2) by different methods when X1 and X2 follow a
general exponential form or a general inverse exponential form with survival functions given by either

FX (x; θ, c)= exp
[−θg1(x;c)

]
,

or

FX (x; η, c)= exp
[−ηg2(x;c)

]
,

respectively, where g1(x;c) is free from the unknown parameter θ, continuous, monotone increasing, and differentiable
function, with g1(x;c)→0 as x→0 and g1(x;c)→∞ as x→∞, while g2(x;c) is free from the unknown parameter η, con-
tinuous, monotone decreasing, and differentiable function, with g2(x;c)→∞ as x→0 and g2(x;c)→0 as x→∞, and c is a
known parameter.

In this paper, we discuss the interval estimation of R =P (X1<X2), where X1 and X2 follow a general exponential form
distribution. Different methods of estimation are discussed. We obtain an approximate confidence interval of R via the
maximum likelihood estimator of R. Using the generalized variable approach, a generalized confidence interval of R is
presented. Two bootstrap confidence intervals (percentile and t-boot) of R are also obtained. Bayesian credible interval
of R is also considered, using Markov chain Monte Carlo method (MCMC) in two scenarios. In the first scenario we
apply gamma priors, while in the second one we apply gamma and uniform priors. The different interval estimators
are illustrated using Weibull distribution, and a comparison is performed among the estimators obtained, on the basis of
average length, average coverage probability, and tail errors.
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This paper is organized as follows: In Section 2, the stress-strength reliability, R, and its maximum likelihood estimator are
introduced. The approximate confidence interval of R is considered, in Section 3. In Section 4, the generalized confidence
interval of R is presented, while in Section 5, the percentile and t-bootstrap intervals of R are obtained. In Section 6, the
Bayesian credible intervals of R are introduced. In Section 7, an illustrative example of the obtained interval estimators
of R is given by using the Weibull distribution. Then a numerical comparison of the intervals obtained is applying the
Weibull distribution, in Section 8.

2. Maximum Likelihood Estimator of R

Let X1 and X2 be non-negative independent and continuous random variables, having general exponential form distribu-
tions, with the survival functions (SF) and the probability density functions (pdf) given by

FXi (x;bi, ci)=exp
[−φi(bi, ci) g (x;ci)

]
, (1)

and
fXi (x;bi, ci)=φi (bi, ci) g

′
(x;ci) exp

[−φi(bi, ci) g (x;ci)
]
; i = 1, 2 . (2)

where φi(bi, ci) is a differentiable function of the unknown parameters bi∈ Bi, and ci∈ {i, and Bi, {i are the parametric
spaces of bi, and ci, respectively. The function g (x;ci) is continuous, monotone increasing, differentiable function such
that, g (x;ci) → 0 as x→0 and g (x;ci) → ∞ as x→∞, and g

′
(x;ci) is the first derivative of g (x;ci) w.r.t x. Notice that, if

FXi (x;bi, ci) is defined on (α, β), then g (x;ci)→ 0 as x→α+ and g (x;ci)→ ∞ as x→β−. Then the stress-strength reliability
is given by

R = P (X1<X2)=
∫ ∞

0
φ1 g

′
(z;c1) exp

− 2∑
i=1

φig (z;ci)

 dz , (3)

where φi= φi(bi, ci); i = 1, 2. In case of c1=c2= c, the stress-strength reliability can be expressed as R = φ1
φ1+φ2

as in
(Mokhils et al., 2017).

If Xi=
(
Xi1, Xi2, . . . , Xini

)
; i = 1, 2, are two independent random samples from populations with distributions given by

(1), then the likelihood function is given as

L
(

x1, x2

∣∣∣ θ) = exp

 2∑
i=1

ni lnφi(bi, ci) +
2∑

i=1

ni∑
j=1

ln g′(xi j; ci) −
2∑

i=1

φi(bi, ci)
ni∑
j=1

g(xi j; ci)

 , (4)

where xi j is the jth observation in the sample Xi;j = 1, . . ., ni, i = 1, 2, and θ = (c1, c2, b1, b2). The log-likelihood function
is

ln L
(

x1, x2

∣∣∣ θ) = 2∑
i=1

ni lnφi(bi, ci) +
2∑

i=1

ni∑
j=1

ln g′(xi j; ci) −
2∑

i=1

φi(bi, ci)
ni∑
j=1

g(xi j; ci). (5)

Partially differentiating ln L
(

x1, x2

∣∣∣ θ) with respect to θ, and equating to 0, we get

∂ln L
∂bi

=

 ni

φi
−

ni∑
j=1

g(xi j; ci)

 ∂φi

∂bi
= 0, (6)

and
∂ln L
∂ci

=
ni

φi

∂φi

∂ci
+

ni∑
j=1

∂

∂ci
ln g′(xi j; ci) −

∂φi

∂ci

ni∑
j=1

g(xi j; ci) − φi

ni∑
j=1

∂

∂ci
g(xi j; ci) = 0; i = 1, 2. (7)

From (6) and knowing that ∂φi
∂bi
, 0, the MLEs, φ̂i of φi, are given by

φ̂i =
ni∑ni

j=1 g(xi j; ĉi)
; i = 1, 2. (8)

The MLEs ĉi of ci can be obtained, by substituting φ̂i into (7) and solving numerically. Once we obtain ĉi, the MLEs,
φ̂i of φi are completely determined by substituting ĉi in (8). Using the invariance property, the MLEs, b̂i of bi can be
deduced from φ̂i

(
b̂i, ĉi

)
;i = 1, 2. The corresponding MLE, R̂ of R can be obtained by replacing the parameters in (3)

with their MLEs.

61



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 6; 2017

3. Approximate Confidence Interval of R (ACI)

As we know from the asymptotic maximum likelihood properties, the approximate (1−α)100% confidence interval for R

is
(
R̂±z(1−α/2)

√
σ̂2

R̂

)
, where z(1−α/2) is the (1−α/2)th quantile of the standard normal distribution and σ̂2

R̂
is the estimator

of variance of R̂, σ̂2
R̂
=AtB−1A

∣∣∣
θ=θ̂

, where θ̂ is the MLE of θ, B−1 is the inverse of the Fisher information matrix B of θ, At

is the transpose of matrix A, (see, (Rao, 1965)), where

B = −E
[
∂2 ln L
∂θi∂θ j

]
, A =

[
∂R
∂θi

]
; i, j = 1, 2, 3, 4,

∂2 ln L
∂c2

i

= − ni

φ2
i

(
∂φi

∂ci

)2

+

ni∑
j=1

∂2

∂c2
i

ln g′(xi j; ci) − φi

ni∑
j=1

∂2

∂c2
i

g(xi j; ci) − 2
∂φi

∂ci

ni∑
j=1

∂

∂ci
g(xi j; ci),

∂2 ln L
∂ci∂bi

=
∂2 ln L
∂bi∂ci

= −
 ni

φ2
i

∂φi

∂ci
+

ni∑
j=1

∂

∂ci
g(xi j; ci)

 ∂φi

∂bi
,

∂2 ln L
∂b2

i

= − ni

φ2
i

(
∂φi

∂bi

)2

,

∂2 ln L
∂ci∂c j

=
∂2 ln L
∂bi∂b j

=
∂2 ln L
∂bi∂c j

= 0; i , j and i, j = 1, 2.

We can see that the explicit expression of σ2
R̂

depends on the forms of φi, g
′ (

xij;ci

)
and g

(
xij;ci

)
; j = 1, . . ., ni, i = 1, 2.

4. Generalized Confidence Interval of R (GCI)

We obtain the generalized confidence interval for R by applying the generalized variable approach. The generalized pivotal
quantity (GPQ) for R, GR= R(Gφ1 ,Gφ2 , Gc1 , Gc2 ) is obtained by replacing the parameters in (3) with Gφi=φi(Gbi ,Gci ), Gbi ,
and Gci , where Gφi ,Gbi , and Gci denote the GPQs for φi, bi, and ci; i = 1, 2, respectively. The GPQ is a function of
observed statistics and random variables whose distribution is free of unknown parameters. The (1−α)100% generalized
confidence interval of R can be obtained as

(
GR(α/2), GR(1−α/2)

)
, where GR(α/2) and GR(1−α/2) are the (α/2)th and (1−α/2)th

quantiles of R, respectively.

5. Bootstrap Confidence Intervals of R (boot)

The bootstrap confidence interval of R can be estimated using either percentile bootstrap or t-bootstrap. The bootstrap
samples will be generated firstly, using the following bootstrap sampling algorithm, (see, (Efron, 1994)).

Algorithm 1.

1. Generate Xi; i = 1, 2, from (1), and compute the MLEs
(
ĉ1, ĉ2, φ̂1, φ̂2, R̂

)
of

(
c1, c2,φ1, φ2,R

)
.

2. Resample two independent random samples X∗∗i ;i = 1, 2, from Xi;i = 1, 2, respectively;
compute the MLEs

(
ĉ∗∗1 , ĉ

∗∗
2 , φ̂

∗∗
1 , φ̂

∗∗
2 , R̂

∗∗
)

of
(
c1, c2,φ1, φ2,R

)
.

3. Repeat Step 2, N times to obtain a set of bootstrap samples of R, say
{
R̂∗∗j ;j = 1, . . . ,N

}
. Order R̂∗∗j , in an increasing

order.

4. Construct two different bootstrap intervals of R:

(a) Percentile bootstrap (P-boot)
The (1−α)100% percentile bootstrap confidence interval of R is

(
R̂∗∗(α/2), R̂

∗∗
(1−α/2)

)
, where R̂∗∗(α/2) and R̂∗∗(1−α/2)

are the (α/2)th and (1−α/2)th quantiles of R, respectively.

(b) T-bootstrap (T-boot)
The (1−α)100% t-bootstrap confidence interval of R is given by

(
R̂−t̂(1−α/2)S∗∗, R̂−t̂(α/2)S∗∗

)
, where S∗∗ be the

sample standard deviation of
{
R̂∗∗j ;j = 1, . . . ,N

}
and t̂(α) be the (α)th quantile of

{
R̂∗∗j −R̂

S∗∗ ;j = 1, . . . ,N
}
.
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6. Bayesian Credible Interval of R (BCI)

We suggest two different scenarios to estimate the Bayesian credible interval of R by applying MCMC. For the first
scenario, we assume gamma priors for φ1, φ2, c1, and c2, while in the second scenario, we consider independent gamma
priors for φ1, φ2 and uniform priors for c1, c2 as the available priors information is weak.

6.1. Gamma Priors (G-BCI)

Let the prior density of φi; i = 1, 2 be gamma given by

fφi (φi) =
βαi

i

Γαi
φαi−1

i e−βiφi ; φi, αi, βi > 0, (9)

and also assume that φ1 and φ2 are independent. Moreover, assume that ci; i = 1, 2 have gamma priors with probability
density functions

fci (ci) =
λδii

Γδi
cδi−1

i e−λici ; ci, δi, λi > 0, (10)

and c1 and c2 are independent. From (4), (9), and (10), the joint posterior density function of φ1, φ2, c1, and c2 can be
obtained as

π
(
φ1, φ2, c1, c2|x1, x2

)
=

L
(

x1, x2

∣∣∣ θ) fφ1 (φ1) fφ2 (φ2) fc1 (c1) fc2 (c2)∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 L

(
x1, x2

∣∣∣ θ) fφ1 (φ1) fφ2 (φ2) fc1 (c1) fc2 (c2)dφ1dφ2dc1dc2

.

Since, the joint posterior density function cannot be obtained analytically, we apply MCMC method to estimate the
Bayesian credible interval of R. There are generally two algorithms, the Gibbs sampling and the Metropolis-Hastings
algorithm. If the conditional distribution for each parameter is a known distribution, the Gibbs sampling can be used. If
the conditional distribution doesn’t look like any known distribution, in this case the Metropolis-Hastings algorithm can
be useful. To perform the MCMC method, we first find the marginal posterior distributions of φi and ci. The marginal
posterior distribution of φi is

π1

(
φi|ci, x1, x2

)
=

(
βi +

∑ni
j=1 g(xi j; ci)

)(ni+αi)

Γ (ni + αi)
φ(ni+αi−1)

i exp

−φi

βi +

ni∑
j=1

g(xi j; ci)


 ; i = 1, 2. (11)

The marginal posterior distribution of ci is

π1

(
ci| x1, x2

)
= K−1

i exp

(δi − 1) ln ci − λici +

ni∑
j=1

ln g′(xi j; ci) − (ni + αi) ln

βi +

ni∑
j=1

g(xi j; ci)


 , (12)

where

Ki =

∫ ∞

0
exp

(δi − 1) ln ci − λici +

ni∑
j=1

ln g′(xi j; ci) − (ni + αi) ln

βi +

ni∑
j=1

g(xi j; ci)


 dci; i = 1, 2.

However, we shall use the union of the Metropolis-Hastings with Gibbs sampling, (see, (Asgharzadeh et al., 2013)). The
procedure is shown by the following algorithm.

Algorithm 2.

1. Choose the starting values c(0)
1 and c(0)

2 .

2. For j = 1 to N times.

3. Generate φ(j)
i ; i = 1, 2, from (11).

4. Generate c(j)
i ; i = 1, 2, from (12). Using the Metropolis-Hastings algorithm with the normal proposal distribution

πi∼ N(c(j−1)
i , 1); i = 1, 2.

(a) Generate ξi from the proposal distribution πi; i = 1, 2, respectively.
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(b) Define Qi=min

1,
π1(ξi|x1, x2) πi

(
c(j−1)

i

)
π1

(
c(j−1)

i

∣∣∣∣∣x1, x2

)
πi(ξi)

 ; i = 1, 2 .

(c) Generate ui from Uniform (0, 1). Take c(j)
i =

 ξi ; ui ≤ Qi,

c(j−1)
i ; otherwise

; i = 1, 2, respectively.

5. Compute the Rj from (3).

6. End j loop.

7. Repeat the steps 2-6, N times, and sort Rj;j = 1, . . . , N, ascending.

8. Construct the (1−α)100% Bayesian credible interval of R as
(
R̃g(α/2), R̃g(1−α/2)

)
, where R̃g(α/2) and R̃g(1−α/2) are the

(α/2)th and (1−α/2)th quantiles of R, respectively.

6.2 Mixed Priors (M-BCI)

Let the prior density function of φi be as (9); i= 1, 2, and assume that, ci has uniform prior distribution with probability
density function

f (ci) = 1; ci > 0, i = 1, 2.

From the likelihood function in (4) and the prior density functions of φ1, φ2, c1, and c2, the joint density function can be
obtained as

L2

(
x1, x2, φ1, φ2, c1, c2

)
=
βα1

1 β
α2
2

Γα1Γα2
exp

 2∑
i=1

(ni + αi − 1) lnφi +

2∑
i=1

ni∑
j=1

ln g′(xi j; ci) −
2∑

i=1

φi

βi +

ni∑
j=1

g(xi j; ci)


 . (13)

The joint posterior density functions of φ1, φ2, c1, and c2 based on (13) is given as

L2

(
φ1, φ2, c1, c2|x1, x2

)
=

L2

(
x1, x2, φ1, φ2, c1, c2

)
∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ ∞
0 L2

(
x1, x2, φ1, φ2, c1, c2

)
dφ1dφ2dc1dc2

.

The marginal posterior distribution of φi is given by the same as in (11), while the marginal posterior distribution of ci
becomes

π2

(
ci| x1, x2

)
= T−1

i exp

 ni∑
j=1

ln g′(xi j; ci) − (ni + αi) ln

βi +

ni∑
j=1

g(xi j; ci)


 ,

where

Ti =

∫ ∞

0
exp

 ni∑
j=1

ln g′(xi j; ci) − (ni + αi) ln

βi +

ni∑
j=1

g(xi j; ci)


 dci; i = 1, 2.

As we notice that, the marginal posterior distributions of c1 and c2 do not have a known form. Using a technique similar
to that in Algorithm 2 except for the posterior distribution of ci;i = 1, 2. The (1−α)100% Bayesian credible interval
of R can be obtained as

(
R̃m(α/2), R̃m(1−α/2)

)
, where R̃m(α/2) and R̃m(1−α/2) are the (α/2)th and (1−α/2)th quantiles of R,

respectively.

7. Illustrative Example

We see that, the Weibull distribution follows the general exponential form in (1), with φi=
1

bci
i

and g (x;ci)= xci . If
Xi; i = 1, 2, are two independent random samples from Weibull distributions with the survival function given as

FXi (x;bi, ci)=exp
[
− 1

bci
i

xci

]
; i = 1, 2. Then from (3), the stress-strength reliability is given as

R = c1

bc1
1

∫ ∞
0 zc1−1 exp

[
−∑2

i=1
1

bci
i

zci

]
dz . Using the MLEs,

(
ĉ1, ĉ2, φ̂1, φ̂2, R̂

)
, the approximate (1−α)100% confidence in-

terval for R can be obtained. Using the Newton–Raphson iterative method, the MLE ĉi, of ci from (7) is given by
1
ci
+

∑ni
j=1 ln xi j

ni
−

∑ni
j=1 xci

i j ln xi j∑ni
j=1 xci

i j
= 0, and the MLE, φ̂i, of φi from (8) can be expressed as φ̂i=

1
b̂ĉi

i

= ni∑ni
j=1 xĉi

ij

, and also the MLE, b̂i,

of bi can be deduced as b̂i=

(∑ni
j=1 xĉi

ij

ni

)1/ĉi

;i = 1, 2. The MLE, R̂ of R is given as R̂= ĉ1

b̂ĉ1
1

∫ ∞
0 zĉ1−1 exp

[
−∑2

i=1
1

b̂ĉi
i

zĉi

]
dz .
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Applying the method in Section 4, we can have GR by replacing φi, bi and ci with Gφi , Gbi and Gci , respectively, where

Gφi=

(
1

Gbi

)Gci
, Gci=

(
ci
ĉi

)
ĉ0i=

ĉ0i
ĉ∗i

, and Gbi=

(
bi

b̂i

) ĉi
ĉ0i b̂0i=

(
1
b̂∗i

) 1
Gci b̂0i;i = 1, 2, and

(
ĉ01, ĉ02, b̂01, b̂02

)
denote the observed value

of the MLEs
(
ĉ1, ĉ2, b̂1, b̂2

)
. The MLEs

(
ĉ∗1, ĉ

∗
2, b̂
∗
1, b̂
∗
2

)
of (c1, c2, b1, b2) are based on two independent samples from

standard exponential distributions (see, (Krishnamoorthy et al., 2009), and (Krishnamoorthy and Lin, 2010)). The quantity(
ĉi
ci

)
is distributed as ĉ∗i and the quantity ĉiln

(
b̂i
bi

)
is distributed as ĉ∗i ln

(
b̂∗i

)
;i = 1, 2, and the distributions of

(
ĉi
ci

)
and

ĉiln
(

b̂i
bi

)
;i = 1,2, do not depend on any unknown parameters. So they are pivotal quantities and can be obtained by

generating two independent samples from standard exponential distribution, (see, (Thoman et al., 1969)). Using R-
language, the following algorithm is used to estimate the generalized confidence interval of R,

Algorithm 3.

1. Generate two independent random samples Xi from Weibull(bi, ci); i = 1, 2, respectively, compute the MLEs(
ĉ1, ĉ2, b̂1, b̂2

)
of (c1, c2, b1, b2).

2. Generate two independent random samples X∗i from Exp(1); i = 1, 2, compute the MLEs
(
ĉ∗1, ĉ

∗
2, b̂
∗
1, b̂
∗
2

)
.

3. Compute the GPQs, Gci ,Gbi ,Gφi , and GR;i = 1, 2.

4. Repeat the steps 2-3, N times to obtain a set of samples of GR, say
{
GRj ;j = 1, . . . ,N

}
, and the ordered GRj ;j = 1, . . . , N,

will be denoted as G(1)
Rj
< · · · < G(N)

Rj
.

5. Construct the (1−α)100% generalized confidence interval of R as
(
GR(α/2), GR(1−α/2)

)
.

The bootstrap confidence intervals and the Bayesian credible intervals are obtained, using Algorithm 1 and 2, respectively.

8. Simulation Study

In this section, we present a simulation study to observe the behavior of the different interval estimators of P (X1<X2) for
different sample sizes and different parameter values for the Weibull distribution. The comparison is based on average
length, average coverage, left and right tail errors when α = 0.05. We generate 1000 samples of sample sizes (n1, n2) =
(10, 10) and (30, 30) from the Weibull distributions of X1 and X2. We select the parameter values that produce the values
of R = 0.6340, 0.7216, 0.8011, 0.9066, 0.9506, and 0.9707.

In Bayesian estimation, the hyper-parameters of priors in the two scenarios have the same means but different variances.

1. Let (α1, β1)= (2, 1) , (α2, β2)= (1, 1/2) , (δ1, λ1)= (3, 3/2), and (δ2, λ2)= (4, 2).

2. Let (α1, β1)= (2, 1), and (α2, β2)= (1, 1/2).
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Figure 2: Average coverage probability for Weibull distribution. Figure 1. Average length for Weibull distribution
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Figure 3: Left tail error for Weibull distribution. Figure 2. Average coverage probability for Weibull distribution
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Figure 4: Right tail error for Weibull distribution. 
Figure 3. Left tail error for Weibull distribution
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Figure 4. Right tail error for Weibull distribution

In Figure (1), the average length of ACI is the smallest at all the values of R. All lengths of the intervals estimator of
R decrease when n increases. Lengths of ACI, GCI, and boot decrease when R increases. In Figure (2) we observed
that, the average coverage probability of ACI and T-boot are the worst, and the GCI and BCI are roundly approximated
(1−α) 100%, the boot is affected by n and R. In Figure (3) we see the following; the ACI has the smallest left tail error.
All left tail errors of the intervals decrease when n increases. All left tail errors of the intervals except BCI decrease when
R increases. As we see in Figure (4), the right tail error of boot is the largest and all right tail errors of the intervals are
affected by n and R.
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