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Abstract

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the gen-
eralized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family
involves several of the most famous classical distributions as well as the new generalized Weibull-G family which al-
ready accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete
and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum
likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the
new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.
Keywords: Additive Weibull, Mean deviation, Moments, Estimation

1. Introduction

In recent years, the generated families of probability distributions have been broadly utilized for modeling real-data in
many applied areas. These generated families are defined by adding one or more parameters to the baseline model. The
generated families generalized and extended most of the formal distributions. Some of the generators are the beta-G by
Eugene et al. (2002), gamma-G by Zografos and Balakrishanan (2009), Kumaraswamy-G by Cordeiro and de Castro
(2011), generalized beta-G by Alexander et al. (2012), transformed-transformer (T-X) by Alzaatreh et al. (2013),Weibull-
G by Bourguignon (2014), type I half-logistic-G by Cordeiro et al. (2016), additive Weibull-G by Hassan and Hemeda
(2016) among others.

A more general family called the generalized Weibull-G family (GW-G) of distributions was introduced by Cordeiro et al.
(2015). They considered a baseline cumulative distribution function (cdf) G(x;¢), the probability density function (pdf)
g(x;¢) with parameter vector ¢ and the Weibull distribution as a generator. They defined the cdf and pdf of the GW-G
family as follows

—In[G(x:£)] -
F(x;a,b,&) = f abt? e gt = 1 — g~{=MlGxON} x>0, a,b>0. (D
0
bg(x; - 1 (i
f5,5.2) = aG§<x§) (-G o) MO x> 0, 45> 0. @)
X3

where, G(x; &) = 1 — G(x;&)

This article aims to introduce a new family of distribution called the GAW-G, which includes GW-G family as a special
case, besides it contains several of the existing probability distributions. The current article can be arranged as follows.
The GAW generated family of distributions is formulated in Section 2. Four special models of GAW-G family are
displayed in Section 3. Some structural properties of the GAW-G family are provided in Section 4. In Section 5, maximum
likelihood estimators of the model parameters are derived. In Section 6, Simulation study results of four special models
have been reported. In Section 7, an illustrative application based on a real data is investigated. A conclusion is provided
in Section 8.

2. The Generalized Additive Weibull-G Family

In this section, we define a generalized additive Weibull generated family of continuous distributions by using the additive
Weibull random variable as a generator. The reliability and hazard rate functions are defined and discussed analytically.
Furthermore, the asymptotic of pdf, cdf and hazard function is explained. According to Lemonte et al. (2014), the cdf and
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pdf of AW distribution with shape parameters b, d and scale parameters a, ¢ are given, respectively, by

F(x;a,b,c,d)=1-e" x>0, a,b,c,d > 0. 3)

f(x;a,b,c,d) = (cdx™" + abx* e " x>0, a,b,c,d > 0. @)

To obtain the cdf of GAWCG, replacing the Weibull generator defined in (1) by the additive Weibull generator defined in
(4) as the following

—In[G(x:£)] .
F(x; D) f (cdt™" + abt®* e "~ dt
0

1 —exp {—c[— ln[é(x;f)]]d —a[-1n[G(x; §)]]b} x>0, a,b,c,d> 0. 5

where ® = (a,b,c,d,¢) and G(x; &) = 1 — G(x;€). The corresponding GAW-G pdf takes the following form

fe®) = EES fed- G o1 + abl-niGe 1|
exp {=c[=In[G(x; O - al-In[G(x; 1} s x 2 0, a,b,c,d > 0. (6)

A random variable having GAW-G density function (6) will be denoted by X ~ GAW — G(x; ®). Note that, for a=0 or
¢=0 the pdf (6) reduces to the GAW-G family defined by Cordeiro et al.(2015). Also, we obtain the same result for b = d,
with scale parameter a + c.

Furthermore, the reliability and the hazard rate functions of GAW-G family are given, respectively, by

R(x; @) = e~l= In[G:HTN~al- In[G(x:H1)” (7

The hazard rate function of GAW-G family is

s ®) = £ feaiGos o1 + abl- G 1| .

(x;8)

Here is a description regarding analytical behaviour of GAW-G family. The critical points of this family are the roots of
the equation

d ,
—h(x;®) = h (x;P) =0,
dx

where

g(x;6) [cd(d - 1)g(x;¢) }d—2 N ab(b — 1)g(x;¢)
G(x;€) G(x;6) G(x;€)

+ [{ 8(x:¢) }2 + g 5)} [cd {— In G(x; 5)}‘1_1 +ab {— In G(x; f)}b_l]

I (x; ®) -G

(-G 5)}’”“2]

Gx6)f G
o g [ PN SN Lo
ieh (@) = [m} [cd(d_n{_lnc(x;g)} +ab(b - 1){~1nG(x; )] ]
+ [%g] [cd{— G o) +ab{-InGex gf)}b_l]

There is more than one root to this equation. When b = 1, it becomes to some extent a simpler model and then x = xg is a
root of the equation

cdd - D[E5] (-G o) + 52 |ca{-m G o +a] =0

G(x:6)
Whenb=d =1,
YD) — gd) _
h(x;®) =—(c+a) et = 0.
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Therefore, x = x is a root of the equation
g (x6) =0,
and , )
. _ g (68 | g (xd)g(xib)
h (x;®) =(c+ a){ oo T T 0o }
The critical point xy which refers to a local maximum if K (x; @) > 0(< 0), Yx < xo and a local minimum if 4" (x; ®) > 0(<
0), ¥x > x. It gives an inflexion point if either 2" (x; ®) > 0, Vx # xo or i (x; ®) < 0, Vx # xo, where i (x; ®) = dz’;};@.
3. Some Special Models for GAW-G Family

In this section, some new special distributions, namely, GAW-uniform, GAW-Burr XII, and GAW-log logistic are intro-
duced.

3.1 GAW-uniform Distribution

Consider the baseline distribution is uniform on the interval (0, §), 8 > 0 with the pdf and cdf, respectively
1 x
g(x;0) = 7 ;0 < x<8<o0, G(x,0) = 5

The cdf of GAW-uniform (GAWU) distribution is obtained by substituting the pdf and cdf of uniform in (5) as follows

() oS} 0<rco<

a5

d b
—a[—ln(eex)] } 0<x<bl<o0,a,b,c,d>0.

F(x;a,b,c,d,0) = l—exp{—c

The corresponding pdf is given by

1 60—
f(x;a,b,c,d,0) = @ {cd —ln(

fxp{—c[—ln(egx)

The survival and hazard rate functions are given respectively as follows

s = enfe| () o w5
S R

h(x;a,b,c,d,0) = (91 ){Cd
-X

3.2 GAW-Gumbel Distribution

Consider the Gumbel distribution with location parameterd € R and scale parameter v > 0 where the pdf and cdf for
(1 € R) are

g A,v) = %Exp {(g) : exp(x ; /l)}
and

Inserting these equations into (5) and (6), the pdf and cdf of the GAW-Gumbel distribution will be obtained as follows

1= exp e[ (exp (-exp (SN[ - -infean (-enn (22}

f(xsa,b,c,d, A,v) lexp (x ; /l) {Cd [_ In (exp (—exp (x S /l)))r_l

4 v

b nfexr (_exp(x;vﬁ)))r_l}exp el m(exp (e (5 )

-2 b
—a [— In (exp (—exp(x ” )))] } ;x,a,b,c,d, A,y > 0.

F(x;a,b,c,d,A,v)
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The survival and hazard rate functions are given respectively as follows

- infexp (-exp (2] - o[-0 exp (-enn ()]
h(x;a,b,c,d,A,v) = %exp(x - ﬁ) {cd [_ n (exp (_exp (x - /l)))]d—l

+ab|~In(exp (~exp (= A)))]“}

R(x;a,b,c,d,A,v) = exp {—c

3.3 GAW log-logistic Distribution
Assuming that the baseline distribution is log-logistic (see (Bennett (1983)) with the following pdf and cdf,

(3T

g(x; A, @) = ad 9 x!

and
Gleda)=1- [1 + (3)0]_1 .

As previously mentioned, the cdf and pdf of the generalized additive Weibull log -logistic(GAWLL) distribution are
obtained by substituting the previous pdf and cdf in (5) and (6) as follows

F(x;a,b,c,d, L, a) = l_exP{—C[ln(l+(§)a)d_aln(]_,_(g)a)]h} 5 0das 0
f(x;a,b,c,d, A, ) = %{cd[ln(1+(§)w)r_l b 1n(1 +(§)a)]b—l}

exo{-elimi+ (2] =afm{i+ ()} x>0

The survival and hazard rate functions take, respectively, the following forms

w2}
hia.bred,do) = (fw fealin(1+ (3] v fr+ (3]}

3.4 GAW-Burr XII Distribution
Considering the baseline distribution is Burr XII (see Burr (1942)) with the following pdf and cdf

R(x;a,b,c,d, A, @) = exp {—c [ln(l +(§) )

g, 0) = afx® (1 +x) Y 1 x>0,0,0> 0,

Gxia,0)=1-1+x7 ;x>0,a,06> 0.

The cdf of GAW-Burr XII (GAWBXII) distribution is obtained by substituting the pdf and cdf of Burr-XII in (5) and (6)
as follows

F(x;a,b,c,d,a,0) = 1-—exp {—c6‘d [In(1 + x“)]d —at’ [In(1 + x“)]b} :x> 0.
The corresponding pdf is
fosa,be,da,6) = ade {ede™" [In(1 + x| + ab6"™ [In(1 + x)]""'}
1+ x2)

.exp {—c@d [In(1 + x“)]d —af’ [In(1 + x")]b} :x>0,a,b,c,d,a,0 >0
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The survival and hazard rate functions are obtained, respectively, as follows

R(x;a,b,c,d,a,0) = exp {—cé’d [In(1 + x”)]d —ab’ [In(1 + x")]b} ,

h(x;a,b,c,d,a,0) = afx” {ede™" [In(1 + x)]*" + ab6"™" [In(1 + x1)]"'}
HEBED (1 + x2) '

Plots of pdf and hazard rate function for some parameter values for the selected distributions are represented through
Figure 1.

From Figure 1, it appears that the shape of the distribution depend heavily on parameter values. In fact, the shape could be
left skewed, symmetric and right skewed, which will depend on the values of the parameter. Thus this distribution could
be suitable to model many kind of data.

4. Some Mathematical Properties
In this section, some general results of the GAW-G family are derived.
4.1 Mixture Presentation

Expansion formulas for the cdf and pdf of the GAW-G family are derived. The power series for the following exponential
function can be written as

D 2D

~
~

- - -1) _ _ i
exp{—c[-In[G(x; )11 - al- [G(x; 11"} r X [el= G o117 + al- G os o1

1 i B i
= > S [ miGes 1+ 4= G o
i=0
)
Based on (9), the cdf in (5) will be
1 i
Fe®) = 1- {1 - > G 1+ - iG] }
i=0 !
ey = ST G o 1 + - on|| (10)
0 £ l )
Since
a. oA p-al] _ N i! i(b—d)
|1+ 4-miGeon|| - Z e [ - miGes (an
Substituting (11) into (10) then, the expansion for the cdf of GAW-G family can be written as
Foeoy = S ECCI iG] (12)
=AUl
Based on the following expansion
(1 —x)]° = x°+ chm(c +m)™ e e Rand x € (0, 1), (13)
m=0

where p,,(w) are Stirling coefficients and w=(c+m). The first three coefficients are po(w) = 1, p1(w) = (W+w?)/48, pa(w) =
(=8 — 10w + 15w? + 15w?)/5760. These coefficients are related to the Stirling polynomials by

PrnoiW) = S,(w)/[n!(w + 1)] for n > 1, where So(w) = 1,5 1(w) = (w + 1)/2, S3(w) = w(w + 1)%/24.

See in details, Ward (1934), Flajonet and Odlyzko(1990),
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Figure 1. Graph of Generalized Additive Weibull distributions and their corresponding hazard rates.
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The formula in (13) holds for m > 1. Therefore, we can write

[~ In(1 = G; N =[G &))" 4 [d(i - ) + bj)

: Z Pmld(i = J) +bj+m] [G(x;és)]d(i—j)+hj+m+1

m=0
Substituting (14) into (12) the distribution function of GAW-G family will be
o (—=1ialci=i

F®) = ) ————{[G: """ +[dii - j)+bj]

s
= =Dt

LD puldli = j)+bj+ml[G(x; f)]d(i"’)+bj+’”}
m=0
where p,,(d(i — j) + bj + m) are the coefficients of the Stirling polynomials.

Expanding [G(x; &)]“7 77 and [G(x; €)]"C*P7*™ in power series, F(x; @) can be expressed as

k k+m+1
F(x; @) = Z w;i; [G(x; O] + Z Wiim [G(x; €)] ml
i,j=0 i, j,m=0
where o
—1)a/c? —Dalcidi-)+bi md.f‘ bi . . )
wij = S, wijy = S MDD AP e — (i~ j) + b

The corresponding pdf can be expressed as
fs®) = i [Gs o g+ D et m+ Dw i [GOs O g(x;€)
i,j=0 i, jm=0

Another expression of the cdf of GAW-G family can be written as
Fu®) = 3 neH(xé),

where H(x; &) denotes the cdf of the mixture exponential [G(x; f)]k and [G(x; f)]“m+1 distributions.

The corresponding pdf can be expressed as

fos®) = nch(x:6),

where h(x; £) is the pdf of the exp- H(x; &) distribution
4.2 Quantile Function

The quantile function, say Q(u) = F~'(u), of the GAW-G family is derived by inverting (5) as follows

U = 1 - e cl-inll-xgl=al-In[1-x]"
After some simplifications, the previous equation is reduced to

In(1 — u) + c[-In[1 = x6]]% + a[-In[1 — x¢]1® = 0,

(14)

15)

(16)

a7)

(18)

19)

(20)

where, x¢ = Q(u), and u has the uniform distribution on interval (0, 1). Hence the nonlinear equation (20) is solved

numerically to obtain the generated number of the random variable X.
4.3 Moments

The rth moment of random variable X can be obtained from pdf (17) as follows

,u; f X f(x,®)dx
0

i,j=0 0 i,j.m=0
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“; = Z Wiin,j,r+ Z Wijmli,j,m,r; r=1, 2, ... 21
i,j=0 i,jm=0
where, [; j, = fom kx"h; j(x;&)dx and I, = fom(k +m + D)X hy j (x5 E)dx.
In particular, the mean and variance of GAW-G family are obtained as follows:

o0 (o)
E(X) = Z Wiin,j,l + Z Wijmli,j,m,l
1,j=0 1,j,m=0
The variance is

[ee] [ee] 0 0 2
Var(X) = Zwijli,j,2+ Z Wiimli jm2 — Zwijli,j,l + Z Wijmli, jm1
i,j=0 i,j,m=0 i,j=0 i,jm=0

Additionally, measures of skewness and kurtosis of family can be obtained, based on (21), according to the following
relations

Y =

’ ’ ’ 3
M3 = 3oy + 24,

(y = 115)"

’ P ;on 14
i R e
2= Y
(13— 1)

Furthermore, the moment generating function of GAW-G family is as follows

i

My = Y T

r=0 "’

where, 4 is the 7" moment about origin, then the moment generating function of GAW-G family is obtained by using
(21) as follows

Mx(r) = Zﬁ Zwijli,j,r+ Z Wijmdi, jm,r

=0 i,j=0

i, jm=0
4.4 Distribution of Order Statistics
Let X1, X5, X3, ...... , X, be a simple random sample from GAW-G family with cdf (5) and pdf (6) and X;.,,, X215 X315 ... , X
denote the corresponding order statistics. The pdf of X, is obtained through the following
(@) = ———————— [F(x; O] [1 - F(x; O] f(x; D).
Jrin(x; @) B(r,n—r+l)[ () [1 = F(x; @) f(x; @)
1 = n—r
(@) = —/ —————— -1)° F(x; @) f(x; D).
Frnloe: @) B(r’n_rﬂ);( )( ) )[ (@) flx @)
Using the cdf (5) and pdf (6), the pdf of rth order statistic from GAW-G family takes the following form
. _ 1 = s(n—r = d = . b r+s—1
e P ;(—D ( ) ) |1 - exp {-cl-In[G(x; O - al-In[G(x; )11}
BB G O + abl- Gk 11"
G(x;6)
exp {~c[-In[G(x: O - a[- In[G(x: )11} (22)
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Since

[1 - exp [l (G )11 - al- G o)™

- wfr +5—1
;)(—U ( N )
exp {-wel-In[G(x; O - wal- In[G(x; )11}

Substituting in (22), therefore

o awfm=r\r+s—1
fralx; @) = B(rn_rH)Z D ( )( . )

=0 s=
S et G 1 + abl- G )
exp {=c(w+ D= I[G(x: HI* - atw + DI=I[G(x: 11"} (23)

Using the exponential expansion form for the following term:

exp|w+ D {=c[-In[G(x; OTI = atw + D= [G(x; HIT'}]

_ o (=1)Y(w + Dialc™ [ In[Gx; &)+

= il - !
Substituting in (23)
Therefore,
. _ 8(x; &) S0, (i+1)d+ j(b—d)—1 ST id+ j(b—d)+b—1
Sl ®) = et {edl-mIG(x; 611 + ab[~ In[G(x; £)]] } (24)
where,
o (=D =\ r+ s — S
r = l L]l ‘]‘
T B(rn—r+l)gz(;”woz‘ 1@ — DI\ s w (W+ yae

In particular, the pdf of the smallest order statistic X;., is obtained from (24), by substituting r=1

g( ;€)

Sia(x; @) G( -£)

{ed[=In[Gx; VIO 4 ab[—In[Gx; IO

where,
n—1 )
( 1)l+s+w n—1
+ Dia/c.
nszo,,zw:o" el (w Yalc

Also, the pdf of the largest order statistic X, is obtained from (24), by substituting r=n

, 8020
"G(x; &)

Jun(x; @) {cd[—In[G(x; HIFNIED 4 ab[— In[G(x; &)1/~

where,

( 1)t+s+w n+s—1 P
Z T '(l_])'( " )(w+1)a’c J,

i,jw=0

4.5 Incomplete Moments, Mean Deviations and Lorenz and Benferroni Curves

The r-th incomplete moment, say,mﬁ(t), of the GAW-G distribution is given by

ml() = f X" f(x, D)dx.
0
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We can write from equation (17),

m(1) = fo x’lz kwi[GOx, O g(x,6)

i.j=0

+ Z (k+m+ 1).w;jn[G(x, f)]k”"g(x, &) |dx. (25)

i,j,m=0

Example 4.5.1 Consider the GAW-uniform distribution discussed in subsection 3.1.

; © k tr+k R k+m+1 tr+k+m+1
m.(t) = E + E Wi
: kU T L ik m 1 gl
i,j=0 i,j,m=0

The scatterings present in a population is, to some extent, to be measured by the totality of the deviations from a measure
of central tendency like the mean or the median. The mean deviations about the mean 6; = E(] X — /1’1 [) and median
0, = E(] X — M |) of X may be used as measures of spread (or dispersion) in a population besides range and standard
deviation. They are given by ¢; = Z/J'IF (/1'1) - Zm{ (”/1) and 6, = ﬂ/1 - Zm{ (M),respectively. Here, ,L[1 = E(X) is to be
obtained from (21) withr = 1, F (;/1) is to calculated from (5), m{ (/1/1) is the first incomplete function obtained from (25)
with 7 = 1 and M is the median of X obtained by solving (20) for u = 0.5.

The Lorenz and Benferroni curves are defined by L(p) = m{ (x,,)/,u'1 and B(p) = m{ (x,,)/(py’l), respectively, where
x, = F~'(p) can be computed numerically by (20) with u = p. These curves have significant roles in demography,
economics, insurance, medicine and reliability. For details in this aspect, the readers are referred to Pundir et al.(2005)
and references cited therein.

4.6 Moments of the Residual Life

The hazard rate, mean residual life, left truncated mean function are some functions related to the residual lifetime of a
unit. These functions uniquely determine the cumulative distribution function, F(x). See, for instance, Gupta(1975) and
Zoroa et al.(1990).

Definition 4.6.1 Let X, be a random variable denoting the lifetime of a unit is at age t. Then X, = X —t | X > t denotes
the remaining lifetime beyond that age t.

The cdf F(x) is uniquely determined by the r-th moment of the residual life of X (for » = 1, 2, ...)[Navarro et al.(1998)],
and it is given by

m(1) = E[X;]

70 f (x=0"dF(x)

= F(t)f (x =" f(x, D)dx

In particular, if » = 1, then m(¢) represents an interesting function called the mean residual life (MRL) function that
indicates the expected life length for a unit which is alive at age r. The MRL function has wide spectrum of applica-
tions in reliability/survival analysis, social studies, biomedical sciences, economics, population study, insurance industry,
maintenance and product quality control and product technology.

Example 4.6.1 Consider again the GAW-uniform distribution discussed in subsection 3.1.

7o = enlefmli- 2 -afmf1-2)

Using (17), we have

0 r +k u+k
u G —t
— 8 f(x,®)dx = y s AR
fz(’“ Y f(x. ®)dx Z w,]Z(r)< Y
i,j= 0 u=0
k+m+1 r u ~ 9u+k+m+l _ tu+k+m+1
+ Z T pktmtl Wij’"Z( )(_t)r ' k
i om0 (% \r u+k+m+1
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For the MRL function,

0 SIS Grrl _ z(gk_tk)
I(x—t)f(x,(b)dx = Ze_k'w”l P

i,j=0

Gh+m+1 k+m+2 k+m+1

00 k+m+ 1 9k+m+2 —tk+m+2 t(0k+m+1 _tk+m+1)
+ Z Wijm

i,j,m=0

4.7 Moments of the Reversed Residual Life

In some life testing aspects, instead of relating uncertainty to the future, it may relate to the past. When the state of a
system is observed only at a preassigned inspection time ¢ and if it is found to be at ”‘down’” state, then failure lies on the
past i.e. the instant in (0, #) at which it has failed. Therefore, study of a notion that is complementary to the residual life,
in the sense that it deals with the past time instead of future seems worthwhile [see Di Crescenzo and Longobardi (2002)].

Definition 4.7.1 Let X be a random variable denoting the lifetime of a unit is down at age t. Then X, =t - X | X <t
denotes the idle time or inactivity time or reversed residual life of the unit at age t.

In case of forensic science, one may be interested in estimating X; to have an idea about the exact time of death of
a living creature. In Insurance study, it represents the unpaid period of a policy holder due to death. For details, see
Block et al.(1998), Chandra and Roy(2001), Maiti and Nanda(2009), and Nanda et al.(2003). The r-th moment of X; (for
r=1, 2, ...)is given by

(1) = E[X)]

F(t) f (t—x)'dF(x)

= 0 f (t — x) f(x, D)dx

In particular, if » = 1, then m;(¢) represents a function called the mean idle time or inactivity time (MIT) or reversed
residual life (MRRL) function that indicates the expected inactive life length for a unit which is first observed down at age
t. The properties of MIT function have been explored by Ahmad et al. (2005) and Kayid and Ahmad (2004).

Example 4.7.1 Consider again the GAW-uniform distribution discussed in subsection 3.1.

Fo = 1=eal-cfmfi-g)f ~af-n(1- )

Using (17), we have

r

i , klr+k ; r
fo(t—x) flx, ®)dx = Z Wij Z(— )=

i,j=0
(k +m + 1) thrm+l - ()
Wi (1
w ghrm+1 Wi Z( S kaml
i,j,m=0 u=0
For the MIT (or MRRL) function,
! © tk+1
t— ,D)dx = —_— W
KGRI l;)(kﬂ)ekw]

tk+m+2
+ e —

5. Estimation of Model Parameters

In this section, the maximum likelihood estimators of the model parameters ® = (a, b, c,d,&)of GAW-G family from
complete samples are derived. LetX), X», ...., X,be a simple random sample from GAW-G family with observed values
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X1, X2, ...., X,. The log likelihood function of (6) is obtained as follows

InL(®) = Zln{‘?(x;ff)){cd[—ln[G'(x,-;g)]]"—l+ab[—1n[G‘(xi;§)]]b—1}}

i=1

—c Y =[G HN —a ) [~ n[Glx; O
i=1 i=1

n

+ > Infed[-n[Gx; O + abl- (Gl )11

i=1

InL(®) = Zln[—é(();?)

i=1

—e Y =[G ON' —a ) [~ In[Glxi )11
i=1 i=1

L@ = > Ing(x;&) = ) InGlx:&) + ) Infedl=In[Glxs 11" + abl~In[Glxis 11"
i=1 i=1 i=1

n n

—c Y [~ W[G HNY - a ) [~ In[Gxi; O,

i=1 i=1

For simplicity, let

Z = cd[-In[G(x;ON" + ab[- In[G(x;; O11",
and In L(®) to be 1, then
Io= ) g - ) G+ ) InZi—c Y [~ G ON' —a ) [~ (Gl )11
i=1 i=1 i=1 i=1 i=1

Differentiating with respect to each parameter and setting the result equals to zero, the maximum likelihood estimators
will be obtained. The partial derivatives of / with respect to each parameter are given by

n

ol Z, < .
= = Z e Z[- In[G(x;; )11,
i=1

i=1 !

oo N7z, - e AT T Tl (S e
= = iZLZ—a;[—ln[Gman In[— In[G(x;; £)]],

i ™z, § S O
o Zz_;[_m[(}(x,,f)]],

’

Bl n Zjd n _ . _ .
o = ;Z_—c;[—1n[G(x,-,f)]]"1n[—ln[G(x,»,g)]],
o€ - i=1 g(xi; &) +i=1 G(xi3€) [1 = nlGl Nl - inlG ol ]+; zZi
where
Z =% G ot
da
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The maximum likelihood estimates (MLEs) of the model parametersare determined by solving the non-linear equations

% =0, g—é =0, % =0, % =0, g—é = 0. These equations cannot be solved analytically but some software’s can be used to

solve them numerically.
6. Simulation Study

In this section, we have conducted simulation study for above mentioned four Generalized Additive Weibull model. We
have generated samples of sizes n = 20, 40, 100 from each model and parameters have been estimated by the maximum
likelihood method. 1000 such repetitions are made to calculate the bias and mean square error (mse) of these estimates
using the formula for estimates of any parameter 1 by Bias, (7)) = ﬁ Zil:o?o(f] —1n) and MSE,(#) = ﬁ Z}S?O(ﬁ - ),
respectively. All the computations are made using R-Software.

From the Tables 1-4, it is observed that

1. As sample size n increases, bias decreases. That shows accuracy of the MLE of the parameters,

2. As sample size n increases, MSE decreases. That shows consistency (or preciseness) of the MLE of the parameters.

Table 1. Bias and Mean Square Error (MSE) of the MLE of parameters of GAW-uniform distribution

6 =0.1 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 0.136  0.022 4243 24856 3978 24.186 -0958 1.869 1.075 21.867
40 0.102 0.018 3.135 10.961 3.108 15.335  -0950 1.824 0.931 14.270
50 0.092 0.012 2771 9.332 2.956 12917 -0940 0912 0.923 9.429
100 0.064 0.008 8.327 5.881 2.095 12486 -0.796 0.892  0.685 8.695
300 0.059 0.007 1.442 2.389 2.018 11.620 -0.781 0.819 0.264 7.486
6=0.05 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 0.054 0.004 2876 11.713  2.562 10.283  -0.936 0.962 0.017 0.434
40 0.036  0.002 2791 10.961 2.320 8.320 -0.910 0951 0.578 15442
100 0.020 0.001 2.629 8.327 1.928 7.191 -0.902 0914 0.709 23.392
6=0.05 a=1.1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 0.052 0.003 2946 13.527 2.843 22711 -9.872 0926 0.266 3.146
40 0.032  0.002 2549 11399 2.111 11.605 -9.849 0982 0.542 9.032
100 0.018 0.001 2.385 9.682 2.117 9.671 -8.453 0981 0.381 4.320
6=0.05 a=1 b=1.5 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 0.038 0.002 3.146 15.095 0.004 15.531 0.931 0.922  0.280 2.109
40 0.052 0.004 3.135 14244 0.135 16.829  0.948 1.174  0.765 2.085
100 0.073 0.006 3.339 13547 -0.214 16.052 0.963 1.362  0.231 2.304
6=0.05 a=1 b=1 c=1.5 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 0.007 0.000 3.035 11.234  0.620 11.174 1.349 1.801 0.881 24.482
40 0.019 0.001 2961 11418 0473 9.994 1.065 1.958 0978 21.743
100  0.036 0.002 2.632 11.410 4.200 12.960 1.824 1.085 0.319 15.109
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Table 2. Bias and Mean Square Error (MSE) of the MLE of parameters of GAW-Gumbel distribution

1=0.05 v =0.1 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 -0.212  0.384  0.110 2.262 -2.292 4.927 -0.860 2412 -0.898 6.360 -0.959 1.347
40 -0.040 0.002 -0.100 0.010 -0.727 0.638 -0.859 0.740 -0.830 0.807 -0.959 0.921
50 -0.040  0.002 -0.100 0.010 -0.726 0.528 -0.858 0.738 -0.160 0.806 0.543 0.919
100 -0.035 0.001 -0.100 0.010 -0.799 0.527 -0.447 0.735 0.132 0.688 0.234 0.830
300 0.000 0.000 0.017 0.009 -0.103 0.152 0.009 0.024 -0.007 0.199 -0.108 0.418
A1=0.1 v =0.05 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 -0.090 0.568  0.737 2.171 -2.344  13.201 2.237 4.096 3.966 12.080  6.049 15.599
40 -0.087  0.008 -0.050 0.003 -0.727 0.529 -0.860 0.740 -0.898 0.807 -0.959 0.920
50 -0.027  0.008 -0.050 0.003 -0.727 0.528 -0.860 0.740 -0.898 0.807 -0.958 0.917
100 -0.024 0.008 -0.050 0.003 -0.727 0.528 -0.860 0.740 -0.897 0.805 -0.958 0.919
300 -0.017 0.008 -0.050 0.003 -0.727 0.528 -0.859 0.738 -0.896 0.804 -0.957 0.916
A1=0.1 v =0.1 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 -0.050  0.003  -0.100 0.010 -0.840 0.707 -0.877 0.770 -0.943 0.889 -0.889 0.791
40 -0.050 0.003 -0.100 0.010 -0.840 0.707 -0.876 0.768 -0.942 0.888 -0.888 0.790
50 -0.050  0.003  -0.100 0.010 -0.832 0.692 -0.810 0.656 -0.941 0.886 -0.849 0.720
100 -0.050 0.003 -0.100 0.010 -0.831 0.691 -0.810 0.655 -0.878 0.771 -0.848 0.720
300 -0.050 0.003 -0.100 0.010 -0.831 0.691 -0.809 0.655 -0.876 0.768 -0.848 0.719
1=0.1 v =0.1 a=1.1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 -0.300 0.520 0.360 0.929 1.633 10.774  2.589 18.431 -2.434 17.200 -0.849 9.438
40 -0.237  0.344  0.103 0.635 -1.150 7.310 -0.810 15960 -1.570 15.695 -0.849 4.890
50 -0.050  0.003 -0.100 0.010 -0.932 0.868 -0.810 0.656 -0.942 0.887 -0.848 0.720
100  -0.050 0.003 -0.100 0.010 -0.932 0.868 -0.810 0.656 -0.942 0.887 0.650 0.720
300 -0.050 0.003 -0.100 0.010 -0.931 0.868 0.201 0.655 -0.942 0.887 -0.148 0.720
A1=0.1 v =0.1 a=1 b=1.5 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 -0.224  0.393  -0.100 0.451 -0.831 17.367 -1.310 1.995 -1.771 9.325 -0.849  14.455
40 -0.050 0.003 -0.100 0.010 -0.831 0.691 -1.310 1.715 -0.942 0.888 -0.848 0.720
50 -0.050 0.003 -0.100 0.010 -0.831 0.691 -1.310 1.715 -0.942 0.888 -0.848 0.720
100 -0.050 0.003 -0.100 0.010 -0.446 0.691 -1.310 0.715 -0.942 0.888 -0.088 0.720
300 -0.050 0.003 0.093 0.010 -0.097 0.691 0.046 1.715 -0.942 0.887 -0.048 0.720
A1=0.1 v =0.1 a=1 b=1 c=1.5 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 -0.274  0.298  0.257 16.507  4.805 25.439  2.739 2.420 -1.443  10.866  -0.849 8.988
40 -0.050 0.003 -0.100 0.010 -0.832 0.692 -0.810 0.656 -1.443 2.082 -0.849 0.720
50 -0.050  0.003  -0.100 0.010 -0.832 0.691 -0.810 0.656 -1.441 2.081 -0.848 0.720
100 -0.050 0.003 -0.100 0.010 -0.831 0.691 -0.809 0.655 -1.358 2.079 -0.849 0.719
300 -0.050 0.003 -0.100 0.010 -0.831 0.690 -0.809 0.655 -0.442 2.078 0.083 0.719
A1=0.1 vy =0.1 a=1 b=1 c=1 d=1.5
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 -0.105 0432 3.232 12985  -1.492 5.589 5770  24.086 2.816 7.658 -1.390 2.509
40 -0.050  0.003  -0.100 0.010 -0.841 0.708 -0.879 0.773 -0.942 0.888 -1.386 1.938
50 -0.050  0.003 -0.100 0.010 -0.840 0.706 -0.877 0.769 -0.880 0.774 1.287 1.932
100  -0.050 0.003 -0.100 0.010 -0.838 0.703 -0.875 0.767 -0.879 0.772 1.012 1.923
300 -0.050 0.003 -0.100 0.010 -0.831 0.691 -0.810 0.655 -0.877 0.770 -0.483 1.818
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Table 3. Bias and Mean Square Error (MSE) of the MLE of parameters of GAW log-logistic distribution

1=0.05 a=0.1 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.022 5476 0.127 0.036 0313 0428 -0.447 0577 -1.897 3.617 -1.999 4.023
40 2.010 5434 0.127 0.036 0313 0428 -0.447 0577 -1.897 3.617 -1.999 4.022
50 1.994 5310 0.124 0.036 0304 0416 -0416 0.554 -1.896 3.615 -1.990 3.989
100 1942 5110 0.124 0.036 0.303 0410 -0415 0534 -1.891 3.597 -1.989 3.984
300 1.896 4.873 0.121 0.035 0295 0392 -0.379 0498 -1.889 3.588 -1.909 3.981
A1=0.1 a =0.05 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 1.892 4922 0.188 0.055 0.348 0.442 -0409 0533 -1.900 3.626 -2.007 4.054
40 1.888 4.875 0.186 0.055 0.342 0426 -0.398 0.523 -1.899 3.624 -2.004 4.042
50 1.864 4769 0.181 0.053 0.341 0421 -0.396 0512 -1.896 3.612 -2.003 4.040
100 1.860 4.763 0.181 0.053 0.337 0418 -0.385 0507 -1.890 3.591 -2.001 4.029
300 1.851 4.671 0.176  0.051 0.336 0396 -0.361 0490 -1.888 3.585 -1.999 4.021
1=0.1 a =0.1 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 1.926 5.081 0.138 0.039 0370 0464 -0432 0556 -1.893 3.604 -2.010 4.063
40 1.876  4.839 0.131 0.037 0360 0437 -0402 0521 -1.892 3.599 -2.009 4.037
50 1.842 4.663 0.124 0.037 0350 0434 -0.376 0495 -1.890 3.592 -2.008 4.026
100 1.820 4597 0.118 0.035 0.343 0428 -0.372 0491 -1.884 3.570 -1.994 4.004
300 1.815 4.558 0.116 0.033 0.328 0421 -0.352 0487 -1.878 3.550 -1.992 3.993
100 1.820 4.597 0.131 0.037 0.343 0421 -0.352 0491 -1.884 3.570 -2.008 4.026
1=0.1 a =0.1 a=1.1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 1.892 4905 0.137 0.039 0264 0.374 -0406 0529 -1.896 3.613 -2.008 4.059
40 1.889 4890 0.135 0.038 0.249 0.370 -0.403 0527 -1.895 3.610 -2.008 4.056
50 1.861 4746 0.133 0.038 0.240 0.369 -0.383 0.504 -1.895 3.610 -2.002 4.035
100 1.841 4.672 0.132 0.038 0240 0.367 -0.381 0499 -1.893 3.603 -2.001 4.030
300 1.834  4.639 0.120 0.035 0.195 0359 -0.377 0493 -1.892 3598 -1.987 3974
1=0.1 a =0.1 a=1 b=1.5 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 1976 5310 0.137 0.038 0352 0430 -0957 1295 -1.899 3.625 -2.006 4.051
40 1.941 5.127 0.133 0.038 0.329 0428 -0.927 1235 -1.897 3.617 -2.001 4.030
50 1.907 4966 0.129 0.037 0.314 0427 -0909 1.195 -1.892 3.597 -1.996 4.012
100 1.862 4761 0.119 0.035 0.306 0417 -0.887 1.145 -1.890 3.592 -1987 3.977
300 1.802 4498 0.117 0.034 0302 0413 -0.865 1.090 -1.889 3.587 -1.985 3.968
A1=0.1 a=0.1 a=1 b=1 c=1.5 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 1.938 5.129 0.135 0.038 0346 0432 -0411 0544 -2397 5763 -2.003 4.037
40 1.927 5039 0.132 0.037 0345 0428 -0410 0535 -2395 5755 -2.002 4.035
50 1.882 4864 0.132 0.037 0336 0427 -0403 0524 -2394 5750 -2.000 4.028
100 1.876 4.837 0.131 0.037 0.321 0426 -0401 0521 -2.394 5748 -2.000 4.027
300 1.875 4.822  0.125 0.036 0.314 0400 -0.394 0517 -2392 5743 -1.994 4.001
A1=0.1 a =0.1 a=1 b=1 c=1 d=1.5
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 1.858 4756 0.139 0.039 0.384 0445 -0.392 0509 -1.903 3.638 -2.514 6.343
40 1.819 4569 0.139 0.039 0374 0439 -0.368 0482 -1.894 3.605 -2.512 6.335
50 1.814 4506 0.135 0.038 0363 0439 -0.367 0475 -1.891 3597 -2.512 6.333
100 1.801 4.493 0.133 0.038 0358 0410 -0361 0472 -1.891 3.597 -2.505 6.301
300 1.798 4490 0.128 0.037 0295 0402 -0.347 0469 -1.886 3.579 -2492 6.236
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Table 4. Bias and Mean Square Error (MSE) of the MLE of parameters of GAW-Burr XII distribution

a =0.05 6=0.1 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.163 5467 0.808 0.795 -1.786 3.343 -1.782 3294 0.088 0.141 -0.949 0.926
40 2.127 5250 0.801 0.786 -1.763 3258 -1.771 3273 0.076 0.140 -0.946 0.920
50 2.032 4836 0.789 0.758 -1.758 3.242 -1.761 3.237  0.071 0.139  -0946 00918
100 1987 4382 0.783 0.728 -1.572 3.157 -1.728 3.201 0.068 0.108 -0912 0917
300 1.020 2.624 0428 0.689 -1.287 2451 -1.048 2941 0.021 0.089 -0.821 0.894
a =0.1 6=0.05 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.085 5.104 0.872 0.893 -1.726 3.397 -1.789  3.301 0.085 0.154 -0.953 0.929
40 2.065 4992 0.861 0.884 -1.814 3327 -1.785 3.291 0.085 0.148 -0.950 0.923
50 2.063 4980 0.847 0.862 -1.798 3292 -1.779 3262 0.072 0.148 -0.948 0919
100 1962 4213 0.729 0.814 -1.240 3.048 -1.621 2.870 0.067 0.043 -0911 0.824
300 1.254 3785 0.639 0.725 -1.768 2.089 -1.029 1962 0.006 0.002 -0.716 0.124
a=0.1 6=0.1 a=1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.114 5248 0.824 0.828 -1.817 3459 -1.801 3.339 0.109 0.147 -0960 0.943
40 2.037 4891 0.822 0.819 -1.807 3416 -1.774 3252 0.100 0.145 -0.957 0.942
50 2.033 4860 0.792 0.780 -1.775 3326 -1.761 3.208 0.095 0.144 -0939 0.937
100 1924 3421 0.761 0.764 -1.722 2982 -1.624 3.024 0.090 0.143 -0921 0.903
300 1.263 3.105 0.611 0578 -1.423 1.826 -1.072 2879 0.077 0.085 -0.815 0.819
a=0.1 6=0.1 a=1.1 b=1 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.121 5259 0799 0.774 -1.866 3.642 -1.773 3240 0.078 0.145 -0950 0.922
40 2.105 5.164 0.796 0.769 -1.863 3.633 -1.767 3.221 0.074  0.141 -0.948 0.920
50 2.087 5.081 0.790 0.764 -1.851 3.584 -1.754 3.185 0.069 0.140 -0.940 0.906
100 1925 4582 0.780 0.725 -1.825 3496 -1.582 2945 0.065 0.134 -0910 0.895
300 1529 3562 0.681 0.613 -1.802 3.025 -1.047 2227 0.024 0.096 -0.842 0.682
a=0.1 6=0.1 a=1 b=1.5 c=1 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.106 5.197 0.815 0.802 -1.685 3.365 -2.281 5304 0.096 0.150 -0947 00918
40 2.079 5.077 0.798 0.801 -1.811 3.297 -2272 5263 0.095 0.148 -0947 00917
50 2.019 4962 0785 0.779 -1.058 3.258 -2.266 5235 0.083 0.140 -0945 00915
100 1994 4812 0.725 0.772 -1.772 2942 -1.998 4.991 0.077 0.139 -0935 00914
300 1.657 3485 0.631 0.724 -1.760 2.008 -1.492 3.064 0.076 0.139 -0.821 0.854
a=0.1 6=0.1 a=1 b=1 c=1.5 d=1
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.102 5.185 0.824 0.828 -1.808 3.430 -1.804 3.349 -0409 0314 -0962 0945
40 2.025 4804 0.820 0.817 -1.789 3365 -1.804 3.348 -0.402 0310 -0.957 0.936
50 2.021 4792 0.815 0.811 -1.789 3364 -1.778 3.258 -0.393 0.286 -0.955 0.932
100 1929 4584 0.792 0.762 -1.682 2964 -1.773 3254 -0390 0.281 -0912 0.908
300 1.283 2956 0.562 0496 -1.186 2.028 -1.447 2973 -0354 0211 -0.812 0.870
a=0.1 6=0.1 a=1 b=1 c=1 d=1.5
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
20 2.109 5223 0.812 0.810 -1.779 3328 -1.779 3263 0.093 0.153 -1.451 2.127
40 2.100 5.164 0.808 0.791 -1.773 3.302 -1.777 3.258 0.073 0.149 -1450 2.122
50 2.061 4951 0.800 0.775 -1.758 3256 -1.756 3.183  0.065 0.139 -1.444 2.106
100 1987 4890 0.794 0.769 -1.689 3.106 -1.682 2952  0.051 0.138  -1.378 2.078
300 1.028 3.049 0.789 0.724 -1.284 2459 -1.235 2.186 0.018 0.028 -1.178 1.982

7. Application of GAW-G Family to Real Data

In this section, we fit the GAW-Uniform model to a real data set obtained from from Andrews and Herzberg (1985) and
the original source is Barlow et al. (1984) and have been shown in Table 5. Histogram shows that the data set is positively
skewed. Al-Aqtash et al.(2014) fitted this data to the Gumbel-Weibull Distribution. We have fitted this data set with the
GAW-Uniform distribution. The estimated values of the parameters were §= 7.890,a = 3.389,13 =0.767,¢ = 3.769, and
d = 1.361, log-likelihood =—94.249 and AIC = 198.498. Histogram and fitted GAW-Uniform curve to data have been
shown in Figure 2.
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Table 5. Kevlar 49/epoxy strands failure times data (pressure at 90 percentage)

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.11
0.12 0.13 0.18 0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56
0.60 0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90 0.92 0.95
0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43 1.45
1.50 1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 1.80 1.81 2.02 2.05 2.14 2.17 2.33
3.03 3.03 3.34 4.20 4.69 7.89

Table 6. Summarized results of fitting different distributions for Kevlar 49/epoxy strands failure times data

Distribution Estimate of the parameter Log-likelihood AIC
Exponential 1=0.976 -103.479 208.958
Gumbel-Weibull [3’ =1.806,6 = 3.271,1 = 0.207, & = 0.920 —-100.23 208.500
GAW-Uniform 8 =7.890,a = 3.389,5 = 0.767,¢ = 3.769,d = 1.361 -94.249 198.498
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Figure 2. Plots of the Histogram, estimated pdf and cdf for failure times data (pressure at 90 percentage)

8. Concluding Remarks

We have introduced and studied a new generalized family of distributions, called the generalized additive Weibull-G
(GAW-QG) distribution. The GAW- G family generalizes the Weibull-G family [see, Cordeiro et al.(2015)] and includes
several new distributions. Properties of the GAW-G family include: an expansion for the density function and expressions
for the quantile function, moment generating function, ordinary moments, incomplete moments, mean deviations, Lorenz
and Benferroni curves, reliability properties including mean residual life and mean inactivity time, and order statistics.
Four new distributions, namely, GAW-Uniform, GAW-Gumble, GAW-Log logistic and GAW-Burr XII are defined and
discussed in some details. The maximum likelihood method is employed to estimate the model parameters. Simulation
study has been conducted to study the accuracy and consistency of the MLE of the parameters. A real data set is used to
demonstrate the flexibility of distribution belonging to the introduced family. These special models give better fits than
other models. We hope the findings of the paper will be quite useful for the practitioners in various fields of probability,
statistics and applied sciences.
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