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Abstract

Two applications are described of a probability model that can express uncertainty regarding a pre-specified monotonic-
ity hypothesis for binomial proportions. The model also yields a random effects overdispersion formulation where the
population proportions definitely satisfy a monotonicity specification. One application concerns an insurance data set
recording mortalities of clients from ages 35 to 64. Two new actuarial graduation procedures are developed. The oth-
er application derives from a Veterans’ administration hospital quality monitor and concerns the failure to return rates
for psychiatric patients attending substance abuse clinics. While smoothed performance indicators are proposed, mea-
sures of their extra-binomial variation highlight problems experienced by evidence-based approaches when the data are
uncontrolled.

Keywords: binomial, Pascal distribution, random effects, Bayesian probability model, over-dispersion, actuarial gradua-
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1. Introduction

When investigating m population proportions θ1, θ2, . . . , θm it is sometimes appropriate to consider monotonicity con-
straints

θ1 ≤ θ2 ≤ . . . ≤ θm , (1)

based upon prior reasoning. The θi might for example represent the true success rates for a treatment, at consecutive time
periods, where the success rates are thought to be non-decreasing in time. They may alternatively denote the success
rates for m multi-centered trials, where the centers have been ordered according to preliminary performance indicators.
More generally, we may have an isotonic regression situation where the θi are thought to possess the same ordering as an
increasing covariate, for example, dose level.

A major theme of this paper lies in the argument that, while there may be some prior justification for the monotonicity
constraints (1), the previous information may be insufficient to assume that (1) definitely holds. In section 3, hierarchical
assumptions are introduced which, under binomial sampling assumptions, relax the investigator’s prior belief in (1),
thus permitting the observed data to refute (1). The probability model described may alternatively be interpreted as a
random effects model for beta-binomial observations. The embedded extra-binomial variation then yields potentially
quite different conclusions regarding the proposed monotonicity of the population proportions.

2. Two Data Sets

2.1 The Veterans’ Administration Hospital Quality Monitor Data

We analyze part of a data set modeled by West and Aguilar (1997), Aguilar and West (1998), West et al. (1998), and
Burgess et al. (2000), using Bayesian multiple time series. The subsample considered here provides information from
the years 1992 and 1993 for m = 159 hospitals in the Veterans’ Administration (VA) system. The 1993 data provide our
dependent variables, and the 1992 data are used to calculate a set of explanatory variables.

Let yi denote the number of individuals who failed to return for an outpatient visit within 30 days of discharge during
1993 out of the total number of annual discharges at the ith hospital, for i = 1, 2, . . . ,m. Then pi = yi/ni can be regarded
as a performance indicator or measure of (lack of) quality for the ith hospital. The sample sizes range from 5 to 1142 with
an average of n̄ = 324.7. Let xi denote the corresponding proportion for the year 1992. For our first analysis, we attach
our indices after reordering the hospitals according to increasing values x1 < x2 < · · · < xm. The rank ordering of the
performance indicators for 1992 is thus taken into account when considering the rank ordering for 1993. Assumptions of
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monotonic increasing population proportions for 1993, under binomial or beta-binomial assumptions for the yi, will be
investigated in section 6.
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The association between the raw performance indicators is described by the entries to the scatterplot in Figure 1, which
plot the pi against the xi. There is some overall increasing trend, but with considerable random scatter. The hospital-
s’ raw performance indicators for 1992 do not provide good predictions of the performances for 1993. The solid plot
describes a piecewise linear isotonic regression, as defined in sections 4.3 and 6, and justified under beta-binomial sam-
pling assumptions. The abscissa of this plot provide smoothed performance indicators for 1993 which are consistent with

30



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 5; 2017

the rank ordering for 1992. The dotted plots add or subtract estimated standard errors of the 1993 sample proportions,
which account for substantial extra-binomial variation. The magnitudes of the estimated standard errors provide guid-
ance regarding the usefulness of the fitted performance indicators, for predictive rather than descriptive purposes. Further
discussion is provided in section 6.
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The preceding explanatory variables may be replaced by the VA’s diagnostic related group (DRG) predictions that, for
each hospital in each year, are supposed to provide predictions of the corresponding pi. The DRG predictions for 1993 do
not depend upon the sample proportions for years prior to 1993. In Figure 2, the pi are plotted against the DRG predictions.
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The performances of these predictions and the previous raw performance indicators are comparable. As the labeling of
the x-axis of Figure 2 is quite compressed, when compared with Figure 1, the fitted isotonic graph, while similar in shape,
represents a much steeper regression. The estimated standard errors of the corresponding sample proportions are however
comparable.

In other analyses, not reported here, the explanatory variables were replaced by equally weighted or unequally weighted
combinations of appropriately normalized proportions for 1992 and DRG predictions for 1993. Quite surprisingly, none
of these combinations yielded substantive modifications to the shape of the isotonic regression graph, and the estimated
standard errors were at best only marginally reduced. The inclusion of multiplicative interaction terms failed to improve
the predictive performance.

2.2 Actuarial Graduation

The data in the second, third and fourth columns of Table 1 were collected and analyzed by Broffitt (1988) and reconsid-
ered by Carlin (1992), Liu (2000), and Yang and Schwarz (2005). For i = 1, 2, . . . , 30, the count yi denotes the number of
deaths out of ni male clients of age ai, for premium paying policies issued by an insurance company, with face amounts
between $10,000 and $24,900. The previous authors assume in some cases the truth of the monotonicity hypothesis

H0 : θ1 ≤ θ2 ≤ . . . ≤ θm
for the corresponding underlying mortality rates, where m = 30. We furthermore take the yi to be realizations of random
variables Yi satisfying the first stage assumptions specified in section 3, that is, the Yi are independent given the θi, and
possess binomial distributions with respective cell probabilities θi and sample sizes ni.

Table 1. Mortality Rates Analysis

i ai yi ni pi θ∗i sd(θi) ξ∗i sd(ξi)
1 35 3 1172 0.256 0.115 0.068 0.086 0.201
2 36 1 2127 0.047 0.075 0.041 0.113 0.224
3 37 3 2744 0.109 0.112 0.046 0.138 0.239
4 38 2 2766 0.072 0.110 0.046 0.162 0.251
5 39 2 2463 0.081 0.130 0.051 0.187 0.261
6 40 4 2368 0.169 0.182 0.060 0.216 0.269
7 41 4 2310 0.173 0.201 0.063 0.245 0.277
8 42 7 2307 0.303 0.269 0.075 0.276 0.287
9 43 5 2060 0.243 0.264 0.073 0.303 0.295

10 44 2 1917 0.104 0.237 0.076 0.332 0.303
11 45 8 1931 0.414 0.366 0.090 0.370 0.311
12 46 13 1747 0.744 0.493 0.127 0.404 0.318
13 47 8 1580 0.506 0.433 0.103 0.430 0.325
14 48 2 1580 0.127 0.336 0.098 0.455 0.332
15 49 7 1468 0.477 0.463 0.106 0.488 0.340
16 50 4 1516 0.264 0.424 0.104 0.521 0.347
17 51 7 1372 0.510 0.525 0.115 0.562 0.354
18 52 4 1343 0.298 0.499 0.119 0.605 0.360
19 53 4 1304 0.307 0.546 0.129 0.664 0.366
20 54 11 1233 0.892 0.769 0.152 0.756 0.371
21 55 11 1205 0.913 0.840 0.158 0.843 0.377
22 56 13 1114 1.167 0.970 0.176 0.934 0.382
23 57 12 1048 1.145 1.028 0.181 1.020 0.390
24 58 12 1155 1.039 1.073 0.183 1.110 0.398
25 59 19 1019 1.865 1.345 0.230 1.219 0.406
26 60 12 945 1.270 1.279 0.211 1.307 0.418
27 61 16 853 1.876 1.485 0.244 1.414 0.433
28 62 12 750 1.600 1.511 0.250 1.519 0.454
29 63 6 693 1.866 1.485 0.283 1.645 0.483
30 64 10 594 1.684 1.890 0.369 1.959 0.572

Note, All entries to the last five columns have been multiplied by 100 and are therefore expressed in terms of percentages
rather than proportions
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In section 3, a prior distribution will be described for the θi, when they are not constrained, that expresses uncertainty in
the monotonicity hypothesis (1) and permits the data to assist in the measurement of the posterior uncertainty in H0. The
corresponding posterior means and standard deviations of the θi are described in the sixth and seventh columns of Table
1. While substantially smoothing the raw mortality rates in the fifth column, some of the posterior means deviate quite
noticeably from the monotonicity hypothesis. The magnitudes of the posterior standard deviations of the θi nevertheless
suggest that the data are reasonably consistent with H0 under the binomial sampling model.

As the data are uncontrolled there is no particular reason, apart from simplicity, to assume the preceding product binomial
sampling model. The probabilistic assumptions of section 3 can alternatively be taken to represent a sampling model
incorporating overdispersion, where the mortality rates or population proportions possess a random effects distribution
and definitely satisfy a monotonicity specification paralleling (1). The posterior means and standard deviations of the
mortality rates under this overdispersion model are given in the eighth and ninth columns of Table 1. The posterior
means are more disperse than those under the product binomial sampling model and the posterior standard deviations
are noticeably larger. As mortality rates are generally thought to increase with age, the random effects overdispersion
interpretation is perhaps more appealing.

3. A Hierarchical Model

A four stage probability model with the following first two stages is employed:

Stage 1: Observations Y1,Y2, . . . ,Ym are independent and binomially distributed, given θ1, θ2, . . . , θm, with Yi|θi ∼ BIN(θi, ni),
for i = 1, 2, . . . ,m.

Stage 2: The θi are independent and beta distributed, given an unknown parameter γ and respective conditional means ξi
where, with the standard parameterization, θi|γ, ξi ∼ Beta{γξi, γ(1 − ξi)}, for i = 1, 2, . . . ,m.

With the further assumption that the unknown ξi satisfy the monotonicity specification

ξ1 ≤ ξ2 ≤ · · · ≤ ξm , (2)

the preceding two stages can be interpreted in either of the following two ways:

(A) Let Stage 1 represent the sampling distribution of the Yi and Stage 2 describe the first stage of a hierarchical prior
distribution for the population proportions θi (further stages for γ and the conditional means ξi will be added below). In
this case Stage 2 represents uncertainty in the belief that the monotonicity hypothesis (1) holds for the θi, thus extending an
idea introduced by O’Hagan and Leonard (1976) in a single parameter normal situation. For given ξi and γ, the parameter
θi can be said to possess a beta distribution with mean ξi and sample size γ, where this (prior) sample size measures the
degree of belief in (1). As γ → ∞ the monotonicity constraints are completely specified for the θi. A small value of
γ represents substantial uncertainty in this hypothesis. Our formulation does not however require the specification of a
definite value for γ, since the current data will typically provide considerable information regarding γ.

(B) The two stages may alternatively be combined. Unconditionally on θi, Yi possesses a beta-binomial distribution,
labeled by its parameters ξi and γ, and sample size ni. The probability mass function of Yi, given ξi and γ, is

p(Yi = yi|ξi, γ) = niCyi l
∗
i (ξi, γ) ,

for yi = 0, 1, . . . , ni, with niCyi = ni!/yi!(ni − yi)! and

l∗i (ξi, γ) =
B{γξi + yi, γ(1 − ξi) + ni − yi}

B{γξi, γ(1 − ξi)}
, (3)

where B(a0, a1) = Γ(a0 + a1)/Γ(a0)Γ(a1) is the complete beta function with arguments a0 and a1. With the ξi now
denoting our population proportions, we have a conditionally independent beta-binomial sampling model, within which
the monotonicity specification in (2) is definitely satisfied as a modeling assumption. The plausibility of this specification
may of course be further investigated.

In either case, the conditional distributions of the θi, given γ, the ξi and the observed values yi of the Yi are, for i =
1, 2, . . . ,m, independently beta with respective (posterior) sample sizes ni + γ and means

θ∗i = ρi pi + (1 − ρi)ξi , (4)

where pi = yi/ni and
ρi = ρi(γ) =

ni

ni + γ
. (5)
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In case (A), equation (4) describes the conditional posterior mean of θi. The θ∗i compromise between the ξi satisfying
the monotonicity specification (2), and the pi, which can be taken to represent a general alternative hypothesis. Any
data-based estimate of the average shrinkage proportion

ρ̄ = m−1
m∑

i=1

ρi(γ) (6)

can be interpreted as an overall measure, on a unit scale, of the evidence against the monotonicity hypothesis (1), and in
favor of a general alternative hypothesis. The weighted modifications ρ̃ =

∑
niρi/N and ρ̂ =

∑
(ni + γ)ρi/

∑
(ni + γ) =

N/(N + γ), with N =
∑

ni are more sensitive to values of the larger ni.

Under the beta-binomial interpretation (B), the Pi = Yi/ni are unbiased estimators of the ξi with respective variances
n−1

i Diξi(1− ξi), where Di = (ni+γ)/(1+γ) is the ith over-dispersion factor. These estimators do not however take account
of (2). Moreover, not all of the m + 1 parameters γ and ξ1, ξ2, . . . , ξm are identifiable from the data, as there are just m
observations. We consequently extend our conditionally independent beta-binomial model, by introducing the following
random effects assumption:

Stage 3: Given b0 = λη and b1 = λ(1 − η), the ξi possess the probability structure of the increasing order statistics based
upon a random sample of size m from a Beta(b0, b1) distribution, that is, a beta distribution with mean η and sample size
λ.

Our random effects beta-binomial sampling model for case (B) possesses just three parameters γ, λ, and η. When m
is moderate to large, it is therefore possible to draw sensible proper Bayes inferences regarding these three identifiable
parameters, and also for the ξi. Posterior estimates for γ and the ξi can thereby be imputed for the parameters of the pre-
ceding conditionally independent beta-binomial model. For computational convenience, we initially take the distribution
of the parameters γ and λ in the prior assessment to be discrete. The prior distribution for the three parameters of our
random effects model is selected as follows:

Stage 4: γ, λ, and η are independent, and η ∼ Beta(d0, d1). The distribution of γ assigns probabilities π1, π2, . . . , πk to the
points g1, g2, . . . , gk, and the distribution of λ assigns probabilities δ1, δ2, . . . , δl to the points h1, h2, . . . , hl.

The assumption of prior independence of γ and λ can be relaxed by taking these parameters to possess a general discrete
joint distribution on a k × l dimensional grid and practical choices of the prior parameters will be discussed in section 5.
In a special case it will just be necessary to choose prior estimates n0 and λ0 for γ and λ, and, with d0 = d1 = 1, to then
consider the sensitivity of the posterior inferences to the choices of n0, λ0, k, and l. Baseline values for n0 and λ0 will
be recommended. Large values for k and l will yield close approximations to inferences under an interesting thick-tailed
continuous prior distribution, which is effectively assumed.

In case (A), Stages 2, 3, and 4 provide a hierarchical prior distribution for the θi. Stage 3 permits input from the data
regarding the values of the Stage 2 parameters ξi. Stage 4 facilitates input from the data regarding the value of γ, and
the Stage 3 parameters b0 = λη and b1 = λ(1 − η). Related hierarchical models for binomial probabilities, without
the constraints in (2), provide alternatives to the binomial logit/normal prior or normal random effects developments by
Leonard (1972, 1976), Warn et al. (2002), and many others.

4. Posterior Considerations

4.1 Posterior Inferences

In case (A) of section 3 the marginal posterior distribution of θi averages a beta distribution with sample size ni + γ and
mean θ∗i satisfying (4), with respect to the unconditional posterior distribution of γ and the ξi. All posterior quantities
of interest for both cases (A) and (B) may be calculated, subject to a minor approximation, via standard Metropolis
algorithm/MCMC procedures. Please see Appendix 2 for details. Unconditional posterior densities can be computed
along with the means and standard deviations reported in the current paper.

For illustrative purposes only, note that the posterior distribution of the ξi, given γ, λ, and η, may be roughly approximated
by taking the ξi to possess independent beta distributions, with respective sample sizes D−1

i ni + λ and means

ξ∗i =
D−1

i ni pi + λη

D−1
i ni + λ

, (7)

where Di = (ni + γ)/(1 + γ), but then constraining these distributions to the region defined by (2). The expressions in
(7) constrain the pi towards a common unknown value η. The posterior means of the ξi are furthermore substantially
influenced by the constraints in (2). As well as taking (2) into account, the unconditional posterior inferences create a
partial pooling process which roughly speaking has the effect of flattening the ξi towards a pooled estimate for η.
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When d0 = d1 = 1, η is estimated by a slightly adjusted center of location of the pi. For example, the first posterior
analysis of section 6, leading to the isotonic regression graph in Figure 1, yielded a posterior mean of 0.439 for η. This
compares with the overall sample proportion p∗ = 0.425, and the average sample proportion p̄ = 0.444, and accounts, via
the shrinkages of the ξi, for a flattening of the isotonic regression graph. Pooled information from across the hospitals is
thus incorporated. When judging the plausibility of a monotonic relationship, via the residual analysis of sections 6, it
is important to realize that our regression graph meaningfully flattens steeper monotonic graphs which may better fit the
data.

4.2 Two Useful Approximations and a Parameter of Interest

In Appendix 1, an approximation to the conditional distribution of the ξi, given the θi, γ, η, and λ, under Stages 2 and 3 of
our probability model is justified unless γ, b0 = λη, or b1 = λ(1−η) is small. The approximation constrains m independent
beta distributions to the region (2). These distributions may, for i = 1, 2, . . . ,m, be described as follows:

ξi|θi, γ, η, λ ∼ Beta{λ̃ξ̃i, λ̃(1 − ξ̃i)} , (8)

where
ξ̃i = ζθi + (1 − ζ)η , (9)

and
λ̃ = γ + λ + 1 ,

with
ζ =

γ + 1
γ + λ + 1

. (10)

This development highlights ζ in (10) as an interesting bounded function of γ and λ. As ζ approaches zero, the ξ̃i in (9)
approach the common unknown value η. While the shrinkage proportions ρi in (5) relate to shrinkages of the θi towards
the ordered ξi, the proportion ζ controls the shrinkages of the ξ̃i towards a common value η. Our preceding approximate
conditional distribution for the ξi provides a key ingredient of the posterior computational procedures described in Ap-
pendix 2, and will be made more exact by acceptance sampling. The exact joint distribution of the ξi, given the θi, γ, η,
and λ, initially takes the ξi to be independent, with respective densities

π̃(ξi) ∝
ξ
ηλ−1
i (1 − ξi)η(1−λ)−1θ

γξi
i (1 − θi)γ(1−ξi)

B{γξi, γ(1 − ξi)}
, (11)

for 0 < ξi < 1 and i = 1, 2, . . . ,m, but then constrains the joint distribution of the ξi to the region (2). The acceptance
sampling methodology refers to (11) without simulating from the corresponding exact distribution. In Appendix 2, the
approximation

η|ξ, λ, y ∼ Beta{m(λ + 1)ξ̄ + d0,m(λ + 1)(1 − ξ̄) + d1} (12)

to the conditional posterior (or prior) distribution of η, given the ξi and λ, is also motivated, with ξ̄ denoting the average
ξi. The beta distribution in (12) possesses sample size m(λ + 1) + d0 + d1, and mean

η̃ =
m(λ + 1)ξ̄

m(λ + 1) + d0 + d1
, (13)

which is close to ξ̄ whenever m(λ + 1) is large compared with d0 + d1. The approximation in (12) may be contrasted with
the exact conditional density

π(η|ξ, λ, y) ∝ π(η)l̃(η, λ|ξ) , (14)

for 0 < η < 1, where π(η) is a beta density with parameters d0 and d1, and

l̃(η, λ|ξ) =
∏m

i=1 ξ
λη
i (1 − ξi)λ(1−η)

[B{λη, λ(1 − η)}]m . (15)

When justifying (12) and (15), it is important to note that the information provided about η and λ by fixed ordered values
of the ξi is the same as when regarding the ξi as an unordered random sample from a beta distribution with mean η and
sample size λ. This information is unaffected by knowledge of the data.
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4.3 Regression Situations

The methodology underlying the isotonic regression examples of section 2.1 is now discussed. Consider case (B) of
section 3, where each Yi is taken to possess a beta-binomial distribution, conditional on parameters ξi and γ. Suppose that
each Yi and corresponding population proportion ξi is associated with a pre-specified value xi of a covariate, where

x1 ≤ x2 ≤ · · · ≤ xm . (16)

Assume that the ordering in (2) of the ξi is consistent with the ordering (16) of the xi. A monotonic increasing regression
of the ξi upon the xi is therefore assumed. In situations where two or more of the xi are equal, the ordering of the
corresponding ξi should be based upon prior specification. Modifications to our procedure, which set two or more of
the ξi equal, would alternatively be available. The posterior means of the ξi under our general analysis may be plotted
against the xi and connected by straight lines. If two or more of the xi are equal, then the corresponding posterior means
may be weighted according to the corresponding sample sizes. The recommended graph provides our estimated isotonic
regression of the ξi upon the xi. This semi-parametric approach provides an alternative to parametric procedures, see for
example, Leonard and Novick (1986) and Lee and Nelder (1996), which replace stages 3 and 4 of our probability model,
and the monotonicity assumption (2) by the specification of a functional form for the regression of the ξi upon the xi. The
precise modeling of this specification might sometimes present practical difficulties.

Our semi-parametric approach is also relevant to case (A) of section 3. If the posterior deviations of the θi from the ξi,
are small, then the preceding estimated isotonic regression of the ξi upon the xi can be used to meaningfully describe a
fitted regression of the θi upon the xi. Otherwise it is more important to report posterior inferences for the unconstrained
θi. This contrasts with previous isotonic regression procedures for binomial data, for example, Barlow et al. (1972).

While our approach takes into account the ordering of the xi, the specific values of the xi are largely ignored in the posterior
analysis, though they are re-introduced when plotting the regression of the ξi upon the xi. Many isotonic regression
procedures (e.g., Barlow et al. pp. 38 - 40) similarly trade information regarding the xi for simplicity in the modeling
procedure. Numerous possible adjustments to our method could however be considered. For example, when the regression
of the ξi upon the xi is thought to follow a segment of a concave function, (2) can be replaced by a decreasing slope
specification. Information regarding the xi can also be incorporated by generalizing Stage 2 of our probability model, by
an assumption that θi|γ, ξi ∼ Beta{aiγξi, aiγ(1 − ξi)}. The ai adjust the sample size γ and may be specified subjectively as
functions of several adjacent xi.

5. Practical Prior Choices

The broad prior assumptions at Stage 4 of our probability model permit a wide spectrum of representation of prior beliefs,
depending upon the information or views possessed by the statistician analyzing the data. However, in some practical
situations, information external to the current data set may be sparse. In these circumstances, pragmatic choices should be
made. For example, the values d0 = d1 = 1 lead to a uniform distribution for η on the unit interval. We will also assume
that, for some specified n0, the parameter

ρ0 = n0/(n0 + γ)

is a priori uniformly distributed over the equally spaced grid of points i/(k + 1) for i = 1, 2, . . . , k. Then the Stage 4
distribution for γ assigns equal prior probabilities πi = 1/k to the unequally spaced points

gi = n0(k − i + 1)/i (i = 1, 2, . . . , k) .

Since E(ρ0) = 1/2, n0 provides a prior estimate for γ, which is more sensible than the prior mean of γ. As k gets large,
the distribution of ρ0 approaches a continuous uniform distribution on the unit interval. In this limiting case γ possesses
a Cauchy-tail prior density π(γ) = n0/(n0 + γ)2, for 0 < γ < ∞. No prior mean for γ exists in the limiting case owing
to the extremely thick right tail of the prior distribution. The Cauchy-tail density contrasts with the log-Cauchy prior
density assumed by Crook and Good (1982) for a multinomial smoothing parameter. In the current situation, the limiting
conditional posterior density of γ given the ξi is

π(γ|y, ξ) ∝ π(γ)
m∏

i=1

l∗i (ξi, γ) , (17)

for 0 < γ < ∞, where the contributions l∗i to the product on the right hand side are defined in (3). Each ξ∗i converges to
unity as γ → ∞, for any fixed ξi and yi. Therefore the upper right tail of (17) invariably behaves like the upper right tail
of π(γ), for large values of γ.
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Quite interestingly, if an improperly unfinitely uniform distribution with density π(γ) ∝ 1, for 0 < γ < ∞, is instead
assumed for γ, then the density in (17) will never represent a proper distribution, thus invalidating the entire analysis. The
Cauchy-tail prior density more appropriately controls the right tail of (17). This specification nevertheless represents quite
sparse prior information regarding γ.

The parameter ρ0 plays a somewhat similar role to the ρi satisfying (5) and (6), and can be interpreted as a shrinkage
proportion relating to a hypothetical binomial experiment with sample size n0. Under a beta prior distribution for θi with
sample size γ and mean ξi, the posterior mean of θi, given only the hypothetical sample proportion p0, is the weighted
average compromise θoi = ρ0 p0 + (1 − ρ0)ξi. A uniform distribution for γ rather than ρ0, on an equally spaced grid, is
much less appealing. This will become infinitely uniform as the width of the entire grid becomes large.

The choice of k should be based partly on considerations of computational simplicity. In practice, our prior assumptions
for γ will however typically be justifiable only if the posterior inferences are insensitive to the choices of k and the prior
estimate n0. Reference will be made to a baseline value n∗ for n0, equal to the value of γ for which the average shrinkage
proportion ρ̄ in (6) is equal to 1/2. In pragmatic terms, n∗ can be regarded as the value of γ for which, given the observed
sample sizes, we judge the monotonicity hypothesis and a general alternative hypothesis to possess equal weight. When
all the ni are equal, n∗ is equal to their common value. More generally n∗ describes a robust center of location for the ni.

With η, γ, and λ a priori independent, it is similarly assumed that, for some specified λ0, the parameter

ζ0 = λ0/(λ0 + λ)

is uniformly distributed over the equally spaced grid of points i/(l + 1), for i = 1, 2, . . . , l. The corresponding distribution
for λ assigns equal prior probabilities δi = i/(l + 1) to the unequally spaced points

hi = λ0(l − i + 1)/i (i = 1, 2, . . . , l) ,

yielding the Cauchy-tail prior density π(λ) = λ0/(λ0+λ)2, for 0 < λ < ∞, in the limiting case, or l gets large. A sensitivity
analysis with respective to the choices of l and the prior estimate λ0 of λ should also be performed. As an alternative
specification, the shrinkage proportion ζ in (10) could be taken to be uniformly distributed over the same grid. In this case
γ and λ would not be independent.

When γ and λ are independent it may be reasonable to replace γ in (10) by its prior estimate n0 before taking ζ to be
uniformly distributed. This is the same as taking ζ0 in (5.4) to be uniformly distributed, with the choice λ0 = n0+1 for the
prior estimate of λ. Our prior estimate for the shrinkage proportion ζ, which controls the weighted average compromise
(9), is then equal to the neutral value of 1/2. The specification λ0 = n0+1 should not therefore unduly bias our investigation
of the monotonicity hypothesis, and is consequently recommended as a baseline choice. The initial baseline selections
n0 = n∗ and λ0 = n∗ + 1, when followed by a careful sensitivity analysis, promise a reasonably fair evaluation of the
information regarding possible monotonicity contained in the current data.

Let ρ̃∗ and ζ̃∗ denote the posterior means of the bounded parameters ρ̃ = n∗/(n∗ + γ) and ζ̃ = (n∗ + 1)/(n∗ + λ + 1)
under the preceding prior assumptions, where the prior parameters n0 and λ0 may differ from the values n∗ and n∗ + 1.
The posterior means of the unbounded parameters γ and λ invariably become arbitrarily large as k and l get large. We
therefore recommend estimating γ and λ in the posterior assessment by the inverse transformations

γ∗ = n∗(1 − ρ̃∗)/ρ̃∗ ,

and
λ∗ = (n∗ + 1)(1 − ζ̃∗)/ζ̃∗ .

Unconditional posterior inferences for the θi and ξi promise to be reasonably insensitive to the choices of k and l, since
their posterior distributions, given γ and λ, depend only upon bounded functions of γ and λ.

6. Performance Indicators for Quality Monitoring

The conclusions described in section 2.1 for the data introduced there are now discussed further. The solid plot in Figure
1 describes the piecewise linear isotonic regression, defined in section 4.3, of the ξi, upon the 1992 raw proportions xi.
Smoothed performance indicators ξ̃∗1, ξ̃

∗
2, . . . , ξ̃

∗
159 for 1993, under conditionally independent beta-binomial assumptions,

are thereby available. This ordering is consistent with the rank ordering of raw proportions for 1992. The posterior
standard deviations of the ξi decrease from std(ξ1) = 0.032 (with n1 = 350 and s1 = 0.022) to std(ξ69) = 0.10 (with
n69 = 786 and s69 = 0.017). They then increase from std(ξ̃∗109) = 0.010 (with n109 = 301 and s109 = 0.027) to std(ξ̃∗159) =
0.031 (with n159 = 481 and s159 = 0.022). They are however generally much smaller than the corresponding si.
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After an initial sensitivity analysis, it was assumed that k = 99 and l = 24. The baseline values n∗ = 242.77 and
n∗+1 = 243.77 are employed for γ0 and η0, and the posterior conclusions can again be shown to be reasonably insensitive
to these assumptions. The posterior estimates for γ and λ are γ∗ = 25.99 and λ∗ = 106.46. As ρ̄ has posterior mean 0.862
and standard deviation 0.013, with τ virtually equal to zero, there is negligible evidence to substantiate (1) under binomial
sampling assumptions. As the shrinkage proportion ζ has posterior mean 0.214 and standard deviation 0.071, the ξ̃∗i are
substantially smoothed towards a common value. The location parameter η possesses posterior mean 0.439 and standard
deviation 0.010.

An intuitive overall evaluation of our monotonicity specification may be made by reference to the average squared nor-
malized residual

W =
m∑

i=1

r2
i /m .

In the current example, W = 1.006. A full residual analysis, though not reported here, can be roughly inferred from
Figure 2. This indicates that the data are largely consistent with (2). In other words, the performance indicators for 1993
are largely consistent with the rank ordering for 1992 when sensible extra-binomial variation is permitted. The most
discrepant ri, for hospitals 39, 44, 66, 77, 153, 157, and 158, were respectively 2.51, 2.38, 2.84, 2.36, 2.79, -3.56, and
2.76, corresponding to the sample sizes 220, 20, 40, 1630, 176, 702, and 78. However, when the four hospitals 39, 77,
153, 157 were dropped from the analysis a larger value of W = 1.037 was obtained. Moreover, several further discrepant
residuals appeared. It was therefore decided to include all original 159 hospitals in the analysis.

The two dotted plots in Figure 1 graph the pi − s∗i and the pi + s∗i where

s∗i = (D∗i )
1
2 {ξ̃∗i (1 − ξ̃∗i )/ni}

1
2

for i = 1, 2, . . . ,m, with D∗i = (ni + γ
∗)/(1 + γ∗), is the estimated standard error of pi under independent beta-binomial

sampling assumptions. These estimated standard errors are quite large, ranging in magnitude from 0.092 to 0.237, though
mainly in the region of 0.10. For a typical sample size of 250 our extra-binomial assumptions inflate the estimated standard
errors by a factor of 3.20. The predictions of sample proportions for future years, with comparable sample sizes, are likely
to be subject to greater random variability.

The solid graph in Figure 2 indicates that the performances for 1993 are also largely consistent with the rank ordering
of the DRG predictions. The analysis assumed the same prior parameters as for Figure 1 and yielded W = 1.005,
γ∗ = 24.38, and λ∗ = 101.17. The posterior means of ρ̄, ζ, and η were 0.868, 0.209, and 0.443, with respective posterior
standard deviations 0.013, 0.059, and 0.010. There is a remarkable similarity with the corresponding posterior quantities
underlying the analysis for Figure 1. This further emphasizes the close comparability of the predictive performances of
the quite different rank orderings, based upon the 1992 raw indicators, and the DRG predictions for 1993.

The accuracy of prediction from this noisy data set is open to some improvement by reference to the binomial logit/normal
random effects time series formulation employed by West et al. (1998). See also Aguilar et al. (1999). This general
paradigm offers considerable scope for incorporating information from years previous to 1992, and combining information
across the hospitals. For, say 1993, West et al. assume a simple linear regression for the binomial logits, upon the logits
of the DRG predictions. Separate fixed effects regression parameters are estimated for each year. Random error terms,
expressing assumed autoregressive time dependence and the representing the substantial residual variation in the data, are
added to the regression functions. Any estimated standard errors of the sample proportions should refer to appropriate
marginal distributions under random effects assumptions, since these can express the extra-binomial variability inherent in
the data. West et al. demonstrate that the total lower level random effects variability is very large, thus again highlighting
possible difficulties with prediction. They obtain very useful descriptive conclusions regarding the regression coefficients.
More generally, the usefulness of performance indicators and quality monitoring, for predictive rather than descriptive
purposes, is open to further discussion when the data are not objectively generated by random sampling schemes.
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Appendices

Appendix 1: A Simple Approximation

Let θ|ξ ∼ Beta{γξ, γ(1 − ξ)}, where ξ ∼ Beta(b0, b1), with b0 = λη and b1 = λ(1 − η). For fixed γ, λ, and η, we consider
the approximation

ξ|θ ∼ Beta{(γ + 1)θ + b0, (γ + 1)(1 − θ) + b1} (18)

to the conditional distribution of ξ given θ. In Figure 3 we compare the corresponding approximate and exact densities,
for the choices η = 0.3, γ = 10 and λ = 11, so that b0 = 3.3 and b1 = 7.7, and for six different values (0.05, 0.25,
0.40, 0.60, 0.75, and 0.95) of θ. The approximate (dotted) curves are close to the corresponding exact (solid) curves,
unless θ is very different from λ. It is also possible to show that they substantially increase in accuracy as b0, b1 or γ
increases. Some slight algebraic rearrangement of (18) justifies the approximation in (8) and a modest extension suggests
the approximation in (12).

The approximation in (18)may be motivated by noting that, given ξ, ỹ = (γ+1)θ possesses mean ñξ and variance ñξ(1−ξ)
where ñ = γ + 1. By matching first two moments, we see that when ñ is an integer, a specified value of ỹ provides similar
information regarding ξ as if ỹ represented the realization of a BIN(ξ, ñ) variate. This indicates the plausibility of the
discrete approximation, (γ + 1)θ|ξ ∼ BIN(ξ, ñ) to the continuous exact distribution. Subject to this approximation, the
conjugate analysis for the binomial distribution, then tells that ξ|ỹ ∼ Beta{b0 + ỹ, b1 + ñ − ỹ}, which is equivalent to (18)
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FIGURE 3: BETA APPROXIMATIONS
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Our derivation is not however as convincing as the numerical comparisons. The result certainly needs to be inferred and
subsequently numerically validated in situations when ñ is not an integer.

Appendix 2: Posterior Computations

We employ standard Metropolis algorithm/MCMC procedures based upon successive simulations from the following
conditional distributions, which all refer to the joint distribution of the θi, ξi, γ, λ, and η, conditional on the observed data:

(D1) Given the ξi and γ, the θi are independent and beta distributed, with respective sample sizes ni + γ and means in (4).
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(When ni = 0, θi possesses a beta distribution with sample size γ and mean ξi.)

(D2) Given the θi, γ, η, and λ, an approximate joint distribution for the ξi constrains the m independent distributions in (8)
to the region (2).

(D3) The distribution of γ, given the ξi, but unconditional upon the θi, assigns probabilities π∗1, π∗2, . . . , π∗k to the points
g1, g2, . . . , gk, where

π∗i ∝ πil∗(hi|ξ, y) , (19)

for i = 1, 2, . . . ,m, with π1, π2, . . . , πk denoting the corresponding prior probabilities, and

l∗(γ|ξ, y) =
m∏

k=1

l∗(γ|ξk, yk) , (20)

where the contributions to the product on the right hand side of (20) are defined in (3). It is essential to refer to (19)
rather than posterior probabilities for γ, given the ξi and θi, in order to avoid insurmountable instabilities in the posterior
computations.

(D4) The distribution of λ, given η and the ξi, assigns probabilities δ∗1, δ∗2, . . . , δ∗l to the points g1, g2, . . . , gl, where

δ∗i ∝ δi l̃(η, gi|ξ) ,

for i = 1, 2, . . . , l, with δ1, δ2, . . . , δl denoting the corresponding prior probabilities, and l̃(η, λ|ξ) defined in (15).

(D5) The distribution of η, given λ and the ξi, may be approximated by the beta distribution in (12).

The simulations from D2 can be made effectively exact. The constrained beta approximations can be handled by suc-
cessive sampling from truncated beta distributions. When generating values for η, just simulate from the approximate
distribution in (12). This conditional distribution can be highly concentrated, for large λ, about its mean in (13) and the
corresponding exact density in (14) can be highly peaked around a slightly different location. Acceptance sampling for η
can therefore lead to a high rejection rate. However, subject to our minor approximation, all posterior quantities of interest
can be calculated in standard fashion.

About 200,000 successive simulations on all parameters are recommended for good practical accuracy, after an initial
burn-in period of about 1,000 simulations. Good starting values in D1 are γ = n∗, our baseline prior estimate, and ξi = pi

for i = 1, 2, . . . ,m. Increasing the numbers k and l of grid points too much will not necessarily provide completely exact
representations of Bayesian inferences under a continuous prior distribution. The errors of our discrete approximation to
a continuous posterior distribution will confound with the errors of simulation.
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