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Abstract

This paper provides a complete proof of the strong convergence of the Jump adapted discretization Scheme in the univari-
ate and mark independent jump diffusion process case. We put in detail and clearly a known and general result for mark
dependent jump diffusion process. A Monte-Carlo simulation is used as well to show numerical evidence.
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1. Introduction

Since three decades, extensive research have been conducted on the dynamics of asset prices, bond etc, and there is no
more doubt about the evidence of presence of jumps, see (Johannes, 2004; Akgiray & Booth, 1988; Glasserman & kou,
2003). The jump diffusion modeling was first introduced by (Merton, 1976) for option pricing. He showed that asset
dynamics present discontinuous path instead of continuous one as claimed in Black-Scholes derivation, see (Black &
Scholes, 1973), (Cox, Ingersoll, & Ross, 1985) and (Vasicek, 1977). The jump process, now became popular as it drew
more attention and being very useful as modeling frame in many area of finance such as credit risk modeling, interest rate,
and in the computation of Value at Risk (Var), see (Johannes, 2004; Akgiray & Booth, 1988; Glasserman & Kou, 2003)
and (Aı̈t-Sahalia & Yu, 2006). It is also used to describe some stylized facts presented by financial data, see (Glasserman,
2004, page 134). Regardless of the importance of the jump diffusion process, its implementation remains a challenge. The
process is always described as solution of a given stochastic differential equation(SDE), but it is only known in its explicit
form just in few cases, and their probability distribution is not always known see (Aı̈t-Sahalia, Fan, & Peng, 2009) and
(Yu, 2007). That complexity has led researchers to conduct extensive research of finding appropriate way to approximate
the stochastic process. Such approximation is essentially based on discretization approach. As discretization approach
there are two range methods of discretization of jump diffusion processes which are the weak convergence approximation
and the strong convergence approximation, see details in (Bruti-Liberati & Platen, 2007). In this work we are interested
in one type of strong convergence approximation, called Jump adapted discretization as it offers a simple computation
and allows easily an extension of discretization methods known for diffusion processes. Based on (Bruti-Liberati &
Platen2007) convergence theorem, we derived similar result for one dimension Jump adapted approximation with a non
dependent Mark jump with a compound Poisson process.

1.1 Jump Diffusion Model

The model under study is a univariate parametric jump diffusion process defined on the probability space (Ω,FT ,F , P)
as:

dXt = µ(Xt, θ)dt + σ(Xt, θ)dWt + J(Xt)dNt (1)

with, Xt the vector of dimension n = 1 that represents the state, Wt a standard Brownian motion of dimension d = 1,
µ(Xt, θ) : Rn → Rn is the drift, σ(Xt, θ) : Rn → Rn×d is called diffusion and the variance matrix of the process can be
defined as: V(x, θ) = σ(Xt, θ)σ(Xt, θ)T 1.
Nt the pure jump process whose intensity is λ(θ) , Jt is the jump size with probability density ν(., θ), whose support is
C ⊂ Rnand θ ∈ Θ, a compact subset of Rk, that parameterizes the model. To be consistent we have to differentiate the
values of the process before and after the occurrence of a potential jump. Therefore we will denote by Xt− and Jt− the
value and the size respectively of the process and the jump before the occurrence of jump. Thus 1 can be rewritten as

1σ(Xt , θ)T is the transposition of σ(Xt , θ)
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follows:
dXt = µ(Xt−, θ)dt + σ(Xt−, θ)dWt + J(Xt−)dNt (2)

where Xt− = lim
u
→
<t

Xu. Let us made the following conditions on the coefficient functions.

- Lipschitz conditions

|µ(x(t), θ) − µ(yt, θ)|2 ≤ C1|xt − yt |2, |σ(xt, θ) − σ(yt, θ)|2 ≤ C2|xt − yt |2,
|J(xt) − J(yt)|2 ≤ C3|xt − yt |2,

(3)

for all t ∈ [0,T ] and x, y ∈ Rd

- Linear growth conditions

|µ(xt, θ)|2 ≤ K1(1 + |x|2), |σ(xt, θ)|2 ≤ K2(1 + |x|2),
|J(xt, )|2 ≤ K3(1 + |x|2), (4)

for all t ∈ [0,T ] and x, ∈ Rd.

Therefore under conditions(3) and (4) the SDE(1)admits a unique strong solution see (Bruti-Liberati-Platen, 2007). Here
are some examples of univariate jump diffusion process.

1 One of the basic example of univariate jump diffusion process is as follows:

dXt = µdt + σdWt + JtdNt (5)

where, Nt is a Poisson process with arrival rate λ, Jt, i.i.d. N(µ j, σ
2
j ) the jump size, µ(Xt, θ) = µ; σ(Xt, θ) = σ and

θ = (µ, σ, λ, µ j, σ j). The conditional distribution is well known and it is as follows:

Xt | Xs = x N(x + µ(t − s) + jµ j, σ
2(t − s) + jσ2

j ).

2 The following is the Merton jump diffusion process described as follows:

dS t = µS t−dt + σS t−dWt + S t−dJt (6)

with Jt =
∑Nt

j=1(Y j − 1), where Y1,Y2 . . . are i.i.d. random variables. The solution of the SDE(6)is known and it is

S t = S 0e(µ− 1
2 )t+σW(t)Π

Nt
j=1Y j see (Merton, 1976).

1.2 Discretization Review Method

The transition density has an analytic expression for a few cases, and in general no, many approaches have proposed to
get an approximation. In fact most of the method have been proposed for diffusion process. Since the jump diffusion
process in the absence of jump remains a diffusion process is better to have an overlook of these different methods.

As first method, we have the Euler scheme approximation for which the diffusion process Xt solution of the following
(SDE):

dXt = µ(Xt, θ)dt + σ(Xt, θ)dWt (7)

is approximated by the following discrete time model:

Xih = X(i−1)h − µ(X(i−1)h, θ) + σ(X(i−1)h, θ) +
√

hεi (8)

where εi ∼ i.i.dN(0, 1). Meanwhile of how easy it is to implement the closed form expression of the transition, the
accuracy of this approximation depends on the interval observation h. When it is small, the approximation is accurate, but
when it is large the approximation can be poor.

(Merton, 1980; Lo, 1988) have found out that the approach is not consistent when h is fixed. A closely approach has been
suggested by (Gollnick, Houthakker, & Taylor, 1968) and (Bergstrom, 1966), and it is defined on integrating the SDE and
the use of the following trapezoidal rule approximation:∫ ih

(i−1)h
µ(Xt, θ)dt =

h
2

{
µ(Xih, θ) + µ(X(i−1)h, θ)

}
(9)
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The two approximations are equivalent when h is small. Unfortunately the consistency of the approach is measured in
term of h and some authors have showed the asymptotic bias in the estimate is O(h2).

Therefore many works have been done to reduce the discretization bias on the Euler’s approximation, see (Elerian, 1998)
and (Tse, Zhang, & Yu, 2004) that have improved the method of (Milstein, 1979). The first used a second order term in
a stochastic Taylor series expansion has been used to refine the approximation (8), while the later in a Bayesian context
improved the Milstein’s scheme.

(Merener, 2004) argued that the Euler scheme converges weakly with order one while the Milstein scheme with order two.
They found that between the time of ocurence of jumps, the dynamics of process are purely diffusive and it is possile to
be simulated using standard discretization methods. Under conditions on the coefficient functions of the jump-diffusion
process, they showed that the method used conserves the same weak convergence order for both jump diffusion and pure
diffusion processes and the construction of jumps does not degrade the convergence of the method.

The following section describes the discretization approach, futher the proof of convergence is presented in section and
finally the section 3 has been consecrated to some example and numerical results using Monte-Carlo approach.

2. Jump Adapted Scheme

The discretization approach used is called Jump-diffusion adapted approximation(JAD) that consists of separating the
diffusion part from the jump one. An appropriate discretization is used for the diffusion part where the effect of the
jump is added at due time. This method is based on Itô-Taylor expansion of the drift and diffusion term regardless
of the jump part, see (Bruti-Liberati & Platen2007). Since we assumed that the jump occurs at discrete point time
and between two discretization points the process has a diffusion dynamics. We consider a jump time dicretization
0 = t0 < t1 < . . . < tN = T ; constructed by a superposition of the jump times {τ1, . . .} to a deterministic equidistant grid
with maximum step size ∆ > 0. From the SDE(2) and for t ∈ [ti, ti+1) we have :∫ ti+1

ti
dXt =

∫ ti+1

ti
µ(Xt−, θ)dt +

∫ ti+1

ti
σ(Xt−, θ)dWt +

∫ ti+1

ti
Jt−dNt (10)

As Xt− denotes the value of the process just before the occurrence of a potential jump, it may be then expressed as a
solution of the following SDE:

dXs = µ(Xs, θ)dt + σ(Xs, θ)dWs,

and applying the Itô formula, this leads to:

µ(Xt, θ) = µ(Xti , θ) +
∫ t

ti
µx(Xs, θ)µ(Xs, θ)ds +

1
2

∫ t

ti
µxx(Xs, θ)σ2(Xs, θ)ds

+

∫ t

ti
µx(Xs, θ)σ(Xs, θ)dWs

and

σ(Xt, θ) = σ(Xti , θ) +
∫ t

ti
σx(Xs, θ)µ(Xs, θ)ds +

1
2

∫ t

ti
σxx(Xs, θ)σ2(Xs, θ)ds

+

∫ t

ti
σx(Xs, θ)σ(Xs, θ)dWs

Subtituting µ(Xt, θ) and σ(Xt, θ) into (10) we have:

Xti+1 = Xti

+

∫ ti+1

ti
µ(Xti , θ)dt +

∫ ti+1

ti
σ(Xti , θ)dWt +

∫ ti+1

ti

∫ t

ti
σx(Xs, θ)σ(Xs, θ)dWsdWt

+

∫ ti+1

ti

∫ t

ti

[
µx(Xs, θ)µ(Xs, θ) +

1
2

(µxx(Xs, θ)σ2(Xs, θ))
]

dsdt

+

∫ ti+1

ti

∫ t

ti

[
σx(Xs, θ)µ(Xs, θ) +

1
2

(σxx(Xs, θ)σ2(Xs, θ))
]

dsdWt

+

∫ ti+1

ti

∫ t

ti
µx(Xs, θ)σ(Xs, θ)dWsdt +

∫ ti+1

ti
Jt−dNt

= Xti+1− +

∫ ti+1

ti
Jt−dNt
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From (11) we deduce the following approximation Y∆ =
{
Yti , i = 0, . . . ,N

}
of X, where:

Yti+1 = Yti+1− +

∫ ti+1

ti
J(Yti+1−)dNt (11)

where

Yti+1− = Yti +

∫ ti+1

ti
µ(Yti , θ)dt +

∫ ti+1

ti
σ(Yti , θ)dWt +

∫ ti+1

ti

∫ t

ti
σx(Ys, θ)σ(Ys, θ)dWsdWt

= Yti + µ(Yti , θ)h + σ(Yti , θ)
√

hεi +
1
2
σx(Yti , θ)σ(Yti , θ)h(ε2

i − 1) (12)

Y∆ is a jump adapted scheme and it converges strongly at time t with order one to the solution X of the SDE(2),the proof
is given in the following section.

3. Convergence

Before we state the result of the convergence, we have to define a certain compact notation that we use to make explicit
the proof.

For m ∈ N, we define the set of all multi-indices α as follows:
Mm = {α = ( j1, j2, . . . , jl); ji ∈ {0, 1, . . . ,m}; i ∈ {1, . . . , l}, for l ∈ N} ∪ {v} where v is the multi-index of length zero.
n(α) the number of component of α that equals to 0, α− denotes the multi index obtained by deleting the last component
of α, −α is the one obtained by the deleting the first component of α.
Let L̄0 be the set of functions f (t, x) : [0,T ] × Rd −→ Rd from C1,2 and L̄k the set of f (t, x) with partial derivatives
∂
∂xi f (t, x), i ∈ {1, . . . , d}, we also introduce the following operator for a function f (t, x) ∈ L̄k

L̄(0) f (t, x) :=
∂

∂t
f (t, x) +

d∑
i=1

µi(t, x)
∂

∂xi f (t, x) +
1
2

d∑
i,r=1

m∑
j=1

σi, jσr, j ∂2

∂xi∂x j f (t, x) (13)

and

L̄(k) f (t, x) :=
d∑

i=1

σi,k ∂

∂xi f (t, x), k ∈ {1, . . . ,m} ∀t ∈ [0,T ]andx ∈ Rd (14)

The Itô coefficient function f̄α for all α ∈ Mm and for f (t, x) : [0,T ] × Rd → Rd is defined by:

f̄α(t, x) :=


f (t, x) for l(α) = 0
f (t, µ(t, x)) for l(α) = 1, j1 = 0
f (t, σ j1 (t, x)) for l(α) = 1, j1 ∈ {1, . . . ,m}
L̄( j1) f̄−α(t, x) for l(α) ≥ 2, j1 ∈ {0, . . . ,m}

(15)

We also require to define some compact notation to represent the multiple stochastic integral obtained from the Itô’s Taylor
expansion. So it is fundamental to define those integral on an appropriate set of integrable function. So let define:

H(v) =

{
g : sup

t∈[0,T ]
E(|g(t)|) < ∞

}
H(0) =

{
g : E

(∫ T

0
|g(s)|ds

)
< ∞

}
(16)

H( j) =

{
g : E

(∫ T

0
|g(s)|2ds

)
< ∞

}
,

for j ∈ {1, 2, . . .m}, and H(α) define the set of all predictable process g() for which the following multiple stochastic
integral is defined.

Iα[g()]ρ,τ :=


g(ρ) if l = 0 and α = v∫ τ

ρ
Iα−[g()]ρ,zdz if l ≥ 1 and jl = 0∫ τ

ρ
Iα−[g()]ρ,zdW jl

z if l ≥ 1 and jl ∈ {1, 2, . . .m}
(17)
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where ρ and τ are two stopping times with 0 ≤ ρ ≤ τ ≤ T, a.s.

In the more explicit case i.e in dimension one where m = 1 and d = 1, we have:
(13) =⇒ L̄(0) f (t, x) := ∂

∂t f (t, x) + µ(t, x) ∂
∂x f (t, x) + 1

2σ
2 ∂2

∂x2 f (t, x)
and
(14) =⇒ L̄(1) f (t, x) := σ ∂

∂x f (t, x), ∀t ∈ [0,T ]andx ∈ R.

Then considering the function f (t, x) = x we have:

(15) =⇒ f̄α(t, x) :=


x for l(α) = 0
µ(t, x) for l(α) = 1, j1 = 0
σ(t, x) for l(α) = 1, j1 = 1
L̄( j1) f̄−α(t, x) for l(α) ≥ 2, j1 ∈ {0, 1}

(18)

and

(17) =⇒ Iα[g()]ρ,τ :=


g(ρ) if l = 0 and α = v∫ τ

ρ
Iα−[g()]ρ,zdz if l ≥ 1 and jl = 0∫ τ

ρ
Iα−[g()]ρ,zdWz if l ≥ 1 and jl = 1

(19)

Let’s define now the set for γ = 1, the hierachical set

Aγ := {α ∈ Mm : l(α) + n(α) ≤ 2γ } ,

we also define the remainder set B(Aγ) ofAγ by

B(Aγ) = (α ∈ Mm −A,−α ∈ A)

For illustration we found that: Aγ = {v; (0); (1); (1, 1)} and B(Aγ) = {(0, 0); (0, 1); (1, 0)}.
Using (19) and (18) we can write Yti+1− and Xti+1− as follows:

Yti+1− = Yti +
∑

α∈Aγ\v
Iα[ f̄α(ti,Yti )]ti,ti+1 =

∑
α∈Aγ

Iα[ f̄α(t,Yti )]ti,ti+1 (20)

Xti+1− = Xti +
∑

α∈Aγ\v
Iα[ f̄α(ti,Yti )]ti,ti+1 +

∑
α∈B(Aγ)

Iα[ f̄α(ti, Xti )]ti,ti+1 (21)

(20) and (21) are called Wagner-Platen expansion, see

Definition The scheme Y∆ is said to converge strongly with order γ > 0 at time T to the solution X of a given (SDE) if
there exists a positive constant C such that:

ε(∆) =
√
E(| XT − YT |2) ≤ C∆γ

Assumption 1. For γ = 1, let Y∆ = {Yt, t ∈ [0,T ]} be the order γ jump adapted time discretization with step size ∆. Let
consider the following assumptions:

E(X0) ≤ ∞ and E(|X0 − Y0|2) ≤ K∆2γ. (22)

For α ∈ Aγ, t ∈ [0,T ] and x, y ∈ Rd, the Itô coefficients satisfy the following Lipschitz condition

| f̄α(t, x) − f̄α(t, y) |≤ K1 | x − y | . (23)

For all γ ∈ Aγ ∪ B(Aγ)
f̄−α ∈ C1,2and f̄α ∈ Hα, (24)

for t ∈ [0,T ] and x ∈ Rd

| f̄α(t, x) |2≤ K2(1 + |x|2). (25)
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Theorem 1. Under the Assumptions(1), the following estimate√
E

(
sup

0≤s≥T
| Xs − Ys |2 /A0

)
≤ K3∆

γ (26)

holds where the constant K3 does not depend on ∆

Before to prove the theorem above we have to get some preliminaries results. The following lemma is about the bound-
edness of the Itô multi-stochastic integral.

Lemma 1. For α ∈ Mm \ {v}, g ∈ Hα and for two stopping times τ1 and τ2 such that Fτ1 -measurable and satisfying the
conditions t0 ≤ τ1 ≤ τ2 ≤ τ1 + ∆ ≤ T, a.s Then,

Φατ2
;= E

(
sup

τ1≤s≤τ2

| Iα[g(.)]τ1,s |2
∣∣∣Fτ1

)
≤ 4l(α)−n(α)∆l(α)+n(α)−1

∫ τ2

τ1

Pτ1,z, (27)

where

Pτ1,z := E
(

sup
τ1≤t≤z

|g(t)|
∣∣∣Fτ1

)
< ∞ (28)

for z ∈ [τ1, τ2].

Proof: The proof of (27) is done by induction on the different cases of α, applying the Cauchy-Schwarz inequality we get:
-When α = (0) with l(α) = 1 and n(α) = 1 ∣∣∣∣∣∣

∫ s

τ1

g(z)dz

∣∣∣∣∣∣2 ≤ (s − τ1)
∫ s

τ1

|g(z)|2dz. (29)

That leads to:

Φατ2
= E

 sup
τ1≤s≤τ2

∣∣∣∣∣∣
∫ s

τ1

g(z)dz

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Fτ1


≤ E

(
sup

τ1≤s≤τ2

(s − τ1)
∫ s

τ1

|g(z)|2dz

∣∣∣∣∣∣Fτ1

)
= E

(
(τ2 − τ1)

∫ τ2

τ1

|g(z)|2dz

∣∣∣∣∣∣Fτ1

)
≤ ∆E

(∫ τ2

τ1

|g(z)|2dz

∣∣∣∣∣∣Fτ1

)
(30)

Φατ2
≤ ∆

∫ τ2

τ1

E( |g(z)|2
∣∣∣Fτ1 )dz since τ2 is Fτ1 − measurable

= 4l(α)−n(α)∆l(α)+n(α)−1
∫ τ2

τ1

Pτ1,z, (31)

-When α = (1) with l(α) = 1 and n(α) = 0. The process

{
Iα[g(.)]τ1,t, t ∈ [τ1,T ]

}
=

{∫ t

τ1

g(s)dWs, t ∈ [τ1,T ]
}

(32)

is a martingale. We have

Φατ2
= E

 sup
τ1≤s≤τ2

∣∣∣∣∣∣
∫ s

τ1

g(z)dWz

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Fτ1


≤ 4E

 ∣∣∣∣∣∣
∫ s

τ1

g(z)dWz

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Fτ1

 from the application of Doob’s inequality

= 4E
(∫ τ2

τ1

|g(z)|2dz

∣∣∣∣∣∣Fτ1

)
from the isometry formula
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Since τ2 is Fτ1 -measurable we have

Φατ2
≤ E

(∫ τ2

τ1

|g(z)|2dz

∣∣∣∣∣∣Fτ1

)
= 4

∫ τ2

τ1

E
(
|g(t)|2

∣∣∣Fτ1

)
dz

≤ 4
∫ τ2

τ1

E
(

sup
τ1≤t≤z

|g(t)|2
∣∣∣∣∣∣Fτ1

)
dz

= 4l(α)−n(α)∆l(α)+n(α)−1
∫ τ2

τ1

Pτ1,z, (33)

-When α = ( j1, j2) with j2 = 0 then ∀ j1 we have by applying the Cauchy-Schwarz inequality we get:

Φατ2
= E

 sup
τ1≤s≤τ2

∣∣∣∣∣∣
∫ s

τ1

Iα−[g(.)]τ1,zdz

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Fτ1


≤ E

(
sup

τ1≤s≤τ2

(s − τ1)
∫ s

τ1

|Iα−[g(.)]τ1,z|2dz

∣∣∣∣∣∣Fτ1

)
= E

(
(τ2 − τ1)

∫ τ2

τ1

|Iα−[g(.)]τ1,z|2dz

∣∣∣∣∣∣Fτ1

)
≤ ∆E

(∫ τ2

τ1

|Iα−[g(.)]τ1,z|2dz

∣∣∣∣∣∣Fτ1

)
≤ ∆E

(∫ τ2

τ1

sup
τ1≤s≤τ2

|Iα−[g(.)]τ1,s|2dz

∣∣∣∣∣∣Fτ1

)
= ∆E

(∫ τ2

τ1

dz × sup
τ1≤s≤τ2

|Iα−[g(.)]τ1,s|2
∣∣∣∣∣∣Fτ1

)
≤ ∆2E

(
sup

τ1≤s≤τ2

|Iα−[g(.)]τ1,s|2
∣∣∣∣∣∣Fτ1

)
= ∆2Φα−τ2

(34)

Considering the previous result we conclude that,

Φατ2
≤ ∆24l(α−)−n(α−)∆l(α−)+n(α−)−1

∫ τ2

τ1

Pτ1,z

= 4l(α)−n(α)∆l(α)+n(α)−1
∫ τ2

τ1

Pτ1,z (35)

Since l(α) = l(α−) + 1 and n(α) = n(α−) + 1

-When α = ( j1, j2) with j2 = 1 then ∀ j1, using the fact that the process

{Iα[g(.)]τ1,t, t ∈ [τ1,T ]} (36)

is a martingale we obtain through the application of Doob’s inequality and Itô’s isometry we get the expected result as

86



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 4; 2017

follows

Φατ2
= E

 sup
τ1≤s≤τ2

∣∣∣∣∣∣
∫ s

τ1

Iα−[g(.)]τ1,zdWz

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Fτ1


≤ 4E

 ∣∣∣∣∣∣
∫ τ2

τ1

Iα−[g(.)]τ1,zdWz

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Fτ1

 Doob’s inequality

= 4E
(∫ τ2

τ1

|Iα−[g(.)]τ1,z|2dz

∣∣∣∣∣∣Fτ1

)
Itô’s isometry

≤ 4
(∫ τ2

τ1

sup
τ1≤s≤τ2

|Iα−[g(.)]τ1,s|2dz

∣∣∣∣∣∣Fτ1

)
= 4

(∫ τ2

τ1

dz × sup
τ1≤s≤τ2

|Iα−[g(.)]τ1,s|2
∣∣∣∣∣∣Fτ1

)
= 4

(
(τ2 − τ1) sup

τ1≤s≤τ2

|Iα−[g(.)]τ1,s|2
∣∣∣∣∣∣Fτ1

)
≤ 4∆

(
sup

τ1≤s≤τ2

|Iα−[g(.)]τ1,s|2
∣∣∣∣∣∣Fτ1

)
= 4l(α−)+1−n(α−)∆l(α−)+1+n(α−)−1

∫ τ2

τ1

Pτ1,z

= 4l(α)−n(α)∆l(α)+n(α)−1
∫ τ2

τ1

Pτ1,z (37)

Since l(α) = l(α−) + 1 and n(α) = n(α−) and that completes the proof of the lemma(1).

Lemma 2. For α a given multi-index inM{v}, a time discretization {ti, i = 0 . . .N} with step size ∆ ∈ (0, 1), and g ∈ Hα

Pt0,u := E
(

sup
t0≤z≤u

|g(z)|2
∣∣∣∣∣∣Ft0

)
< ∞ (38)

and

Φαt := E

 sup
t0≤z≤t

∣∣∣∣∣∣∣
iz−1∑
i=0

Iα[g(.)]ti,ti+1 + Iα[g(.)]tiz ,z

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0

 (39)

where
it = max{i ∈ {0, 1 . . .} : ti ≤ t} (40)

Then

Φαt :=

 (t − t0)∆2(l(α)−1)
∫ t

t0
Pt0,udu when : l(α) = n(α)

4l(α)−n(α)+2∆(l(α)+n(α)−1
∫ t

t0
Pt0,udu when : l(α) , n(α)

(41)

Proof:

1. From the definition of iz, for z ∈ [ti, ti+1), the relation tiz = ti holds. Then, for a multi index α = ( j1, j2) with j2 = 0,
we have

iz−1∑
i=0

Iα[g(.)]ti,ti+1 + Iα[g(.)]tiz ,z

=

iz−1∑
i=0

∫ ti+1

ti
Iα−[g(.)]ti,sds +

∫ z

tiz

Iα−[g(.)]tiz ,sds

=

iz−1∑
i=0

∫ ti+1

ti
Iα−[g(.)]tis ,sds +

∫ z

tiz

Iα−[g(.)]tis ,sds

=

∫ z

t0
Iα−[g(.)]tis ,sds (42)
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For α = ( j1, j2) with j2 = 1, we have

iz−1∑
i=0

Iα[g(.)]ti,ti+1 + Iα[g(.)]tiz ,z

=

iz−1∑
i=0

∫ ti+1

ti
Iα−[g(.)]ti,sdWs +

∫ z

tiz

Iα−[g(.)]tiz ,sdWs

=

iz−1∑
i=0

∫ ti+1

ti
Iα−[g(.)]tis ,sdWs +

∫ z

tiz

Iα−[g(.)]tis ,sdWs

=

∫ z

t0
Iα−[g(.)]tis ,sdWs (43)

2. Let consider the case l(α) = n(α)

Φαt = E

 sup
t0≤z≤t

∣∣∣∣∣∣
∫ z

t0
Iα−[g(.)]tis ,sds

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Ft0


≤ E

(
sup

t0≤z≤t
(z − t0)

∫ z

t0
|Iα−[g(.)]tis ,s|

2ds

∣∣∣∣∣∣Ft0

)
Cauchy-Schwarz inequality

≤ (t − t0)E
(∫ t

t0
|Iα−[g(.)]tis ,s|

2ds

∣∣∣∣∣∣Ft0

)
= (t − t0)

∫ t

t0
E

(
|Iα−[g(.)]tis ,s|

2
∣∣∣Ft0

)
ds

≤ (t − t0)
∫ t

t0
E

 sup
tis≤z≤s

|Iα−[g(.)]tis ,z|
2

∣∣∣∣∣∣Ft0

 ds

= (t − t0)
∫ t

t0
E

E( sup
tis≤z≤s

|Iα−[g(.)]tis ,z|
2|Ftis )︸                            ︷︷                            ︸

=Φα−s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ft0

 ds (44)

Since t0 ≤ tis and then Ft0 ⊆ Ftis for s ∈ [t0, t].

From Lemma(1) we subtitute the value of Φα−s into (44) and yields

Φαt ≤ (t − t0)4l(α−)−n(α−)

×
∫ t

t0
E

(
∆l(α−)+n(α−)−1

∫ s

tis

Ptis ,zdz

∣∣∣∣∣∣Ft0

)
ds

≤ (t − t0)4l(α−)−n(α−)
∫ t

t0
E

(
∆l(α−)+n(α−)−1(s − tis )Ptis ,s

∣∣∣Ft0

)
ds

≤ (t − t0)4l(α−)−n(α−)∆l(α−)+n(α−)
∫ t

t0
E

(
Ptis ,s

∣∣∣Ft0

)
ds (45)

since (s − tis ) ≤ ∆. Given that Ft0 ⊆ Ftis for s ∈ [t0, t]

E
(

Ptis ,s

∣∣∣Ft0

)
= E

E( sup
tis≤u≤s

|g(u)|2|Ftis )

∣∣∣∣∣∣Ft0


= E

 sup
tis≤u≤s

|g(u)|2
∣∣∣∣∣∣Ft0


≤ E

(
sup

t0≤u≤s
|g(u)|2

∣∣∣∣∣∣Ft0

)
= Pt0,s (46)
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It then follows

Φαt ≤ (t − t0)4l(α−)−n(α−)∆l(α−)+n(α−)
∫ t

t0
Pt0,sds

= (t − t0)∆2(l(α)−1) (47)

That completes then the proof of the case l(α) = n(α).

3. Let consider the case for the multi-index α = ( j1, j2) such that l(α) , n(α) and j2 = 1. For that we know that the
multiple stochastic integral

{∫ z
t0

Iα−[g(.)]tis ,sdWs

}
is a martingale. We then have

Φαt = E
(

sup
t0≤z≤t

|
∫ z

t0
Iα−[g(.)]tis ,sdWs|2

∣∣∣∣∣∣Ft0

)
≤ 4E

(
|
∫ z

t0
Iα−[g(.)]tis ,sdWs|2

∣∣∣∣∣∣Ft0

)
Doob’s inequality

= 4E
(∫ z

t0
|Iα−[g(.)]tis ,s|

2ds

∣∣∣∣∣∣Ft0

)
Itô’s isometry

≤
∫ z

t0
E

(
|Iα−[g(.)]tis ,s|

2
∣∣∣Ft0

)
ds

(48)

Φαt ≤
∫ z

t0
E

(
E(|Iα−[g(.)]tis ,s|

2|Ftis )
∣∣∣Ft0

)
ds

≤ 4E

E( sup
tis≤z≤s

|Iα−[g(.)]tis ,z|
2|Ftis )︸                            ︷︷                            ︸

=Φα−s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ft0

 ds

≤ 44l(α−)−n(α−)

×
∫ t

t0
E

(
∆l(α−)+n(α−)−1

∫ s

tis

Ptis ,zdz

∣∣∣∣∣∣Ft0

)
ds

≤ 4l(α−)−n(α−)+1∆l(α−)+n(α−)
∫ t

t0
E

(
Ptis ,s

∣∣∣Ft0

)
ds (49)

And as the previous proof it leads to

Φαt ≤ 4l(α−)−n(α−)+1∆l(α−)+n(α−)
∫ t

t0
Pt0,sds

= 4l(α)−n(α)∆l(α)+n(α)−1
∫ t

t0
Pt0,sds (50)

since l(α−) = l(α) − 1 and n(α−) = n(α).

4 To complete the proof we finally consider the case of α = ( j1, j2) such that l(α) , n(α) and j2 = 0. Applying
Cauchy Schwarz inequality on Φαt , we get

Φαt = E

 sup
t0≤z≤t

∣∣∣∣∣∣∣
iz−1∑
i=0

Iα[g(.)]ti,ti+1 + Iα[g(.)]tiz ,z

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0


≤ 2E

 sup
t0≤z≤t

∣∣∣∣∣∣∣
iz−1∑
i=0

Iα[g(.)]ti,ti+1

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0


+2E

(
sup

t0≤z≤t

∣∣∣Iα[g(.)]tiz ,z

∣∣∣2∣∣∣∣∣∣Ft0

)
(51)
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i=0 Iα[g(.)]ti,ti+1 + Iα[g(.)]tiz ,z is a discrete time martingale, see (Kloeden & Platen, 1992) Then considering the first

term of (51) we have,

E

 sup
t0≤z≤t

∣∣∣∣∣∣∣
iz−1∑
i=0

Iα[g(.)]ti,ti+1

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0


≤ 4E


∣∣∣∣∣∣∣
it−1∑
i=0

Iα[g(.)]ti,ti+1

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0

 Doob’s Inequality

= 4E


∣∣∣∣∣∣∣
it−2∑
i=0

Iα[g(.)]ti,ti+1 + Iα[g(.)]tit−1,tit

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0


≤ 4E


| it−2∑

i=0

Iα[g(.)]ti,ti+1 |2 + 2|
it−2∑
i=0

Iα[g(.)]ti,ti+1 |E( |Iα[g(.)]tit−1,tit |
∣∣∣Ftit−1)

+ E( |Iα[g(.)]tit−1,tit |
2
∣∣∣Ftit−1

∣∣∣Ft0

)
≤ 4E


| it−2∑

i=0

Iα[g(.)]ti,ti+1 |2

+ E( |Iα[g(.)]tit−1,tit |
2
∣∣∣Ftit−1)

∣∣∣Ft0

)
(52)

since from the discrete martingale property of the stochastic integral Iα[g(.)]tit−1,tit we have E( Iα[g(.)]tit−1,tit

∣∣∣Ftit−1 = 0.
By applying the Lemma(1) on E( |Iα[g(.)]tit−1,tit |2

∣∣∣Ftit−1) we get

E

 sup
t0≤z≤t

∣∣∣∣∣∣∣
iz−1∑
i=0

Iα[g(.)]ti,ti+1

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0


≤ 4E


| it−2∑

i=0

Iα[g(.)]ti,ti+1 |2

+ 4l(α)−n(α)∆l(α)+n(α)−1
∫ tit

tit−1

Ptit−1,udu
∣∣∣∣∣∣Ft0
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Expanding
∑it−2

i=0 Iα[g(.)]ti,ti+1 as
∑it−1

i=0 Iα[g(.)]ti,ti+1 we obtain

E

 sup
t0≤z≤t

∣∣∣∣∣∣∣
iz−1∑
i=0

Iα[g(.)]ti,ti+1

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0


≤ 4E


| it−3∑

i=0

Iα[g(.)]ti,ti+1 |2

+4l(α)−n(α)∆l(α)+n(α)−1
∫ tit−1

tit−2

Ptit−2,udu

+ 4l(α)−n(α)∆l(α)+n(α)−1
∫ tit

tit−1

Ptit−1,udu
∣∣∣∣∣∣Ft0


≤ 4E


| it−3∑

i=0

Iα[g(.)]ti,ti+1 |2

+4l(α)−n(α)∆l(α)+n(α)−1
∫ tit−1

tit−2

Ptit−2,udu

+ 4l(α)−n(α)∆l(α)+n(α)−1
∫ tit

tit−1

Ptit−2,udu
∣∣∣∣∣∣Ft0

 since Ptit−1,u ≤ Ptit−2,u

≤ 4E


| it−3∑

i=0

Iα[g(.)]ti,ti+1 |2

+ 4l(α)−n(α)∆l(α)+n(α)−1
∫ tit

tit−2

Ptit−2,udu
∣∣∣∣∣∣Ft0

 (53)

and repetitively it leads to

E

 sup
t0≤z≤t

∣∣∣∣∣∣∣
iz−1∑
i=0

Iα[g(.)]ti,ti+1

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣Ft0

 ≤ 4l(α)−n(α)+1∆l(α)+n(α)−1E
(∫ t

t0
Pt0,udu

∣∣∣∣∣∣Ft0

)

= 4l(α)−n(α)+1∆l(α)+n(α)−1
∫ t

t0
Pt0,udu

Considering now the secoond term of equation (51) using Cauchy Schwarz inequality we have

E
(

sup
t0≤z≤t

∣∣∣Iα[g(.)]tiz ,z

∣∣∣2∣∣∣∣∣∣Ft0

)
= E

 sup
t0≤z≤t

∣∣∣∣∣∣
∫ z

tiz

Iα[g(.)]tiz ,udu

∣∣∣∣∣∣2
∣∣∣∣∣∣∣Ft0


≤ E

 sup
t0≤z≤t

(z − tiz )
∫ z

tiz

|Iα[g(.)]tiz ,u|
2du

∣∣∣∣∣∣Ft0


Similarly as in the proof of Lemma(1) we obtain

E
(

sup
t0≤z≤t

∣∣∣Iα[g(.)]tiz ,z

∣∣∣2∣∣∣∣∣∣Ft0

)
≤ 4l(α)−n(α)∆l(α)+n(α)−1

∫ t

t0
Pt0,udu.

Therefore, from the equations (54) and (54) we finally get

Φαt ≤ 2
(
4l(α)−n(α)+1∆l(α)+n(α)−1

∫ t

t0
Pt0,udu + 4l(α)−n(α)∆l(α)+n(α)−1

∫ t

t0
Pt0,udu

)
≤ 4l(α)−n(α)+2∆l(α)+n(α)−1

∫ t

t0
Pt0,udu, (54)

and that completes the proof of Lemma(2).

The following Lemma is an intermediary result required to handle the moment of the solution of the SDE(2).
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Lemma 3. Assuming conditions (3) and (4) satisfied and let

E(|Xt0 |2) < ∞. (55)

Then the solution Xt of (2) satisfies

E
(

sup
t0≤s≤T

|Xs|2
∣∣∣∣∣∣Ft0

)
≤ C(1 + E(|Xt0 |2)) (56)

for every t ∈ [t0,T ], with C a positive constant that depends only on (T − t0) and the linear growth bound.

Proof of Theorem(1)

Considering the Wagner-Platen expansion for the diffusion process as described in equations(20) and (21) the solution of
the SDE(2) at time t ∈ [0, T ] can be written as follows:

Xt = X0 +
∑

α∈Aγ\v

 it−1∑
i=o

Iα[ f̄α(ti, Xti )]ti,ti+1 + Iα[ f̄α(tit , Xti )]tit ,t


+

∑
α∈B(Aγ)

 it−1∑
i=o

Iα[ f̄α(ti, Xti )]ti,ti+1 + Iα[ f̄α(tit , Xti )]tit ,t


+

∫ t

0
J(Xtis−)dNs, (57)

and the jump adapted scheme is

Yt = Y0 +
∑

α∈Aγ\v

 it−1∑
i=o

Iα[ f̄α(ti,Yti )]ti,ti+1 + Iα[ f̄α(tit ,Yti )]tit ,t

 +
∫ t

0
J(Ytis−)dNs, (58)

for t ∈ [0,T ]. From Lemma(3) we have

E
(

sup
t0≤s≤T

|Xs|2
∣∣∣∣∣∣Ft0

)
≤ C(1 + E(|Xt0 |2))

Now let’s prove the same result for the jump adapted scheme.

E
(

sup
0≤s≤T

|Ys|2
∣∣∣∣∣∣Ft0

)
≤ E

(
sup

0≤s≤T
(1 + |Ys|2)

∣∣∣∣∣∣F0

)

≤ E

 sup
0≤s≤T

(1 + |Y0 +
∑

α∈Aγ\v
{

it−1∑
i=o

Iα[ f̄α(ti,Yti )]ti,ti+1

+Iα[ f̄α(tit , Yti )]tit ,t +

∫ s

0
J(Xtiu−)dNu|2)

∣∣∣∣∣Ft0

)

≤ E

 sup
0≤s≤T

(1 + 2|Y0|2 + 4

∣∣∣∣∣∣∣∣
∑

α∈Aγ\v
{

it−1∑
i=o

Iα[ f̄α(ti, Yti )]ti,ti+1

+Iα[ f̄α(tit ,Yti )]tit ,t

∣∣∣2 + 4
∣∣∣∣∣∫ s

0
J(Xtiu−)dNu

∣∣∣∣∣2)

∣∣∣∣∣∣F0

)

≤ E
(

sup
0≤s≤T

(1 + |Y0|2)
)
+ 4

∑
α∈Aγ\{v}

E

 sup
0≤s≤T

∣∣∣∣∣∣∣
it−1∑
i=o

Iα[ f̄α(ti,Yti )]ti,ti+1

+ Iα[ f̄α(tit ,Yti )]tit ,t

∣∣∣2∣∣∣∣F0

)
+ 4E

(
sup

0≤s≤T

∣∣∣∣∣∫ s

0
J(Xtiu−)dNu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
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Then from the Lema(2) and the Linear growth condition(25) we have

∑
α∈Aγ\{v}

E

 sup
0≤s≤T

∣∣∣∣∣∣∣
it−1∑
i=o

Iα[ f̄α(ti,Yti )]ti,ti+1 + Iα[ f̄α(tit ,Yti )]tit ,t

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣F0


≤ K2

∑
α∈Aγ\{v}

∫ T

0
E

(
sup

t0≤s≤u
| f̄α(s,Ys)|2

∣∣∣∣∣∣F0

)
du

≤ K2

∑
α∈Aγ\{v}

∫ T

0
E

(
sup

t0≤s≤u
(1 + |Ys|2)

∣∣∣∣∣∣F0

)
du

≤ C
′

2

∫ T

0
E

(
sup

t0≤s≤u
(1 + |Ys|2)

∣∣∣∣∣∣F0

)
du (59)

E
(

sup
0≤s≤T

∣∣∣∣∣∫ s

0
J(Xtiu−)dNu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
≤ E

(
sup

t0≤s≤T

∣∣∣∣∣∫ s

0
J(Xtiu−)dÑu + λ

∫ s

0
J(Xtiu−)du

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
,

where Ñ is the compensated
poisson measure

≤ 2E
(

sup
t0≤s≤T

∣∣∣∣∣∫ s

0
J(Xtiu−)dÑu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
+ 2E

(
sup

t0≤s≤T

∣∣∣∣∣∫ s

0
J(Xtiu−)du

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
≤ 8E

 ∣∣∣∣∣∣
∫ T

0
J(Xtiu−dÑu

∣∣∣∣∣∣2
∣∣∣∣∣∣∣F0

 + 2E
(

sup
t0≤s≤T

∣∣∣∣∣∫ s

0
J(Xtiu−)du

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
Using the Itô’s isometry for jump and the linear growth condition (4) we get

E
(

sup
0≤s≤T

∣∣∣∣∣∫ s

0
J(Xtiu−)dNu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
≤ C

′

3

∫ T

0
E

(
sup

t0≤s≤u
(1 + |Ys|2)

∣∣∣∣∣∣F0

)
du

(60)

Subtituting (59) and (60) into (59) we have

E
(

sup
0≤s≤T

|Ys|2
∣∣∣∣∣∣F0

)
≤ C

′

1(1 + E(|Y0|2)) +C
′

4

∫ T

0
E

(
sup

t0≤s≤u
(1 + |Ys|2)

∣∣∣∣∣∣F0

)
du

(61)

Then by applying the Gronwall inequality, we obtain

E
(

sup
0≤s≤T

|Ys|2
∣∣∣∣∣∣F0

)
≤ C

′
(1 + E(|Y0|2)), (62)

where C
′

is a positive constant. The final step of proof consists of analyzing the mean square given by

Z(t) := E
(

sup
0≤s≤t
|Xs − Ys|2

∣∣∣∣∣∣F0

)

≤ E

 sup
0≤s≤t

∣∣∣∣∣∣∣∣X0 − Y0 +
∑

α∈Aγ\{v}
{

is−1∑
i=0

Iα[ f̄α(ti, Xti ) − f̄α(ti,Yti )]ti,ti+1

+Iα[ f̄α(tis , Xtis ) − f̄α(tis ,Ytis )]tis ,s

+
∑

α∈B(Aγ)

 it−1∑
i=o

Iα[ f̄α(ti, Xti )]ti,ti+1 + Iα[ f̄α(tis , Xtis )]tis ,s


+

∫ s

0
{J(Xtiu−) − J(Ytiu−)}dNu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)

≤ Cste

|x0 − Y0|2 +
∑

α∈Aγ\{v}
Aα

t +
∑

α∈B(Aγ)

Bαt + Dt

 (63)
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∀t ∈ [0,T ] where Aα
t , Bαt and Dt are defined as follows

Aα
t := E

 sup
0≤s≤t

∣∣∣∣∣∣∣
is−1∑
i=0

Iα[ f̄α(ti, Xti ) − f̄α(ti,Yti )]ti,ti+1

+ Iα[ f̄α(tis , Xtis ) − f̄α(tis ,Ytis )]tis ,s

∣∣∣2∣∣∣∣F0

)
, (64)

Bαt := E

 sup
0≤s≤t

∣∣∣∣∣∣∣
it−1∑
i=o

Iα[ f̄α(ti, Xti )]ti,ti+1 + Iα[ f̄α(tis , Xtis )]tis ,s

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣F0

 , (65)

and

Dt := E
(

sup
0≤s≤t

∣∣∣∣∣∫ s

0
{J(Xtiu−) − J(Ytiu−)}dNu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
(66)

Now by using the Lemma(2)and Lipschitz(23) we get

Aα
t := E

 sup
0≤s≤t

∣∣∣∣∣∣∣
is−1∑
i=0

Iα[ f̄α(ti, Xti ) − f̄α(ti,Yti )]ti,ti+1

+ Iα[ f̄α(tis , Xtis ) − f̄α(tis ,Ytis )]tis ,s

∣∣∣2∣∣∣∣F0

)
≤ cste

∫ t

0
E

 sup
0≤s≤u

|Xtiu − Ytiu |
∣∣∣∣∣∣2 F0

 du

≤ cste
∫ t

0
Z(u)du (67)

In the same way using the Lemma(2)and Linear growth condition(25) we get

Bαt := E

 sup
0≤s≤t

∣∣∣∣∣∣∣
it−1∑
i=o

Iα[ f̄α(ti, Xti )]ti,ti+1 + Iα[ f̄α(tis , Xtis )]tis ,s

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣F0


≤ cste

∫ t

0
E

(
sup

0≤s≤u
| f̄α(s, Xs)|2

∣∣∣∣∣∣F0

)
du

≤ cste∆ψ(α)
∫ t

0
E

(
sup

0≤s≤u
(1 + |Xs|2

∣∣∣∣∣∣F0

)
du

≤ cste∆ψ(α)
(
t +

∫ t

0
E

(
sup

0≤s≤u
|Xs|2

∣∣∣∣∣∣F0

)
du

)
(68)

where ψ(α) =
{

2l(α) − 2 : l(α) = n(α)
l(α) + n(α) − 1 : l(α) , n(α) So for α ∈ B(Aγ), we have l(α) ≥ γ+1 if l(α) = n(α) and l(α)+n(α) ≥ 2γ

if l(α) , n(α) so that ψ(α) ≥ 2γ. Therefore applying Lemma(3) together with the above result we have

Bαt ≤ Cste∆2γ(1 + |X0|2) (69)
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Now let us analyze the last term

Dt := E
(

sup
0≤s≤t

∣∣∣∣∣∫ s

0
{J(Xtiu−) − J(Ytiu−)}dNu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
= E

(
sup

0≤s≤t

∣∣∣∣∣∫ s

0
{J(Xtiu−) − J(Ytiu−)}dÑu

+

∫ s

0
{J(Xtiu−) − J(Ytiu−)}du

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
≤ 2E

(
sup

0≤s≤t

∣∣∣∣∣∫ s

0
{J(Xtiu−) − J(Ytiu−)}dÑu

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
+2E

(
sup

0≤s≤t

∣∣∣∣∣∫ s

0
{J(Xtiu−) − J(Ytiu−)}du

∣∣∣∣∣2
∣∣∣∣∣∣F0

)
≤ 8E

(∫ t

0

∣∣∣J(Xtiu−) − J(Ytiu−)
∣∣∣2 du

∣∣∣∣∣∣F0

)
applying Doob’s inequality
and Itô’s isometry for jump

+2λE
(∫ t

0

∣∣∣J(Xtiu−) − J(Ytiu−)
∣∣∣2 du

∣∣∣∣∣∣F0

)
≤ Cste

∫ t

0
Z(u)du. (70)

Then from the results (67), (69) and (70) we have for t ∈ [o,T ]

Z(t) ≤ cste{E(|x0 − Y0|2) + ∆2γ(1 + |X0|2) +
∫ t

0
Z(u)du (71)

Therefore for t = T we have

Z(T ) ≤ cste{E(|x0 − Y0|2) + ∆2γ(1 + |X0|2) +
∫ T

0
Z(u)du (72)

Using the Assumptions(22) and applying the Gronwall inequality we obtain

Z(T ) ≤ K∆2γ +

∫ T

0
Z(u)du (73)

≤ K∆2γ where K is a positive constant (74)

Finally we get the desired result that concludes the proof as√
E

(
sup

0≤s≤T
|Xs − Ys|2

∣∣∣∣∣∣F0

)
=

√
Z(T ) ≤ K∆γ (75)

4. Numerical Results

In this section we present some numerical results based on the Merton jump diffusion model as defined in Eq(6), where
the jump’s magnitude Y j, j = 1 . . . is assumed i.i.d and log-normal distributed with mean µ j and standard deviation σ j.
We use a Monte-Carlo approach, we simulate the process, using the JAD scheme, defined in Eq(11), and compare it with
the exact path. Considering the discretization time 0 = t0 < t1 < . . . < tN = T , combined with the jumps time τi, i = 1 . . .,
the jump adapted scheme Y∆ =

{
Yti , i = 0, . . . ,N

}
of the process X is :

Yti+1 = Yti+1− +

∫ ti+1

ti
J(Yti+1−)dNt (76)

where

Yti+1− = Yti + µYti h + σYti

√
hεi +

1
2
σ2Yti h(ε2

i − 1) (77)

For the following set parameters values µ = 2, sigma = 1; λ = 1, µ j = 0, sigma j = 2, T = 1; we obtained:
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• Number of iterations N=100 and step size h=1/100

• Number of iterations N=1000 and step size h=1/1000

5. Conclusion

Through this paper we have presented the Jump adapted discretization scheme for jump diffusion with numerical on
Merton Jump diffusion process. This jump discretization is more tractable since it avoids the computation of multi
stochastic integral involving Poisson measure and Wiener process. The jump adapted discretization scheme has been
proved to converge strongly with order one to the exact solution for a non dependent mark jump.
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