International Journal of Statistics and Probability; Vol. 6, No. 4; July 2017
ISSN 1927-7032  E-ISSN 1927-7040
Published by Canadian Center of Science and Education

Jump Adapted Scheme Of a Non Mark Dependent Jump Diffusion
Process with Application to the Merton Jump Diffusion Model

Renaud Fadonougbo! & George O. Orwa?
! Pan African University Institute for Basic Sciences Technology and Innovation, Kenya
2 Statistics and Actuarial Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

Correspondence: Renaud Fadonougbo, Pan African University Institute for Basic Sciences Technology and Innovation,
Kenya. E-mail: renaudfadonougbo @ gmail.com

Received: October 11,2016  Accepted: June 1, 2017  Online Published: June 26, 2017
doi:10.5539/ijsp.vondp80 URL: https://doi.org/10.5539/ijsp.von4p80

The research is financed by (Pan African University)
Abstract

This paper provides a complete proof of the strong convergence of the Jump adapted discretization Scheme in the univari-
ate and mark independent jump diffusion process case. We put in detail and clearly a known and general result for mark
dependent jump diffusion process. A Monte-Carlo simulation is used as well to show numerical evidence.
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1. Introduction

Since three decades, extensive research have been conducted on the dynamics of asset prices, bond etc, and there is no
more doubt about the evidence of presence of jumps, see (Johannes, 2004; Akgiray & Booth, 1988; Glasserman & kou,
2003). The jump diffusion modeling was first introduced by (Merton, 1976) for option pricing. He showed that asset
dynamics present discontinuous path instead of continuous one as claimed in Black-Scholes derivation, see (Black &
Scholes, 1973), (Cox, Ingersoll, & Ross, 1985) and (Vasicek, 1977). The jump process, now became popular as it drew
more attention and being very useful as modeling frame in many area of finance such as credit risk modeling, interest rate,
and in the computation of Value at Risk (Var), see (Johannes, 2004; Akgiray & Booth, 1988; Glasserman & Kou, 2003)
and (Ait-Sahalia & Yu, 2006). It is also used to describe some stylized facts presented by financial data, see (Glasserman,
2004, page 134). Regardless of the importance of the jump diffusion process, its implementation remains a challenge. The
process is always described as solution of a given stochastic differential equation(SDE), but it is only known in its explicit
form just in few cases, and their probability distribution is not always known see (Ait-Sahalia, Fan, & Peng, 2009) and
(Yu, 2007). That complexity has led researchers to conduct extensive research of finding appropriate way to approximate
the stochastic process. Such approximation is essentially based on discretization approach. As discretization approach
there are two range methods of discretization of jump diffusion processes which are the weak convergence approximation
and the strong convergence approximation, see details in (Bruti-Liberati & Platen, 2007). In this work we are interested
in one type of strong convergence approximation, called Jump adapted discretization as it offers a simple computation
and allows easily an extension of discretization methods known for diffusion processes. Based on (Bruti-Liberati &
Platen2007) convergence theorem, we derived similar result for one dimension Jump adapted approximation with a non
dependent Mark jump with a compound Poisson process.

1.1 Jump Diffusion Model

The model under study is a univariate parametric jump diffusion process defined on the probability space (Q, Fr, 7, P)
as:
dX, = u(X;, 9)dt + o(X;, )dW, + J(X,)dN, (1)

with, X; the vector of dimension n = 1 that represents the state, W, a standard Brownian motion of dimension d = 1,
u(X,,0) : R* — R" is the drift, 0/(X,,0) : R" — R™ is called diffusion and the variance matrix of the process can be
defined as: V(x, ) = o(X,, )o(X,, 9) .

N, the pure jump process whose intensity is A(0) , J; is the jump size with probability density v(.,8), whose support is
C c R"and 0 € ®, a compact subset of R, that parameterizes the model. To be consistent we have to differentiate the
values of the process before and after the occurrence of a potential jump. Therefore we will denote by X;_ and J;_ the
value and the size respectively of the process and the jump before the occurrence of jump. Thus 1 can be rewritten as

lo(X,,0)7 is the transposition of o (X;, 6)
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follows:
dX, = u(X,—, 0)dt + o(X,—, 0)dW, + J(X,_)dN, 2)

where X,_ = lim X,,. Let us made the following conditions on the coefficient functions.
u<t

- Lipschitz conditions

u(x(1), 0) = u(yi, OFF < Cilxe = i, 107 (x1, 6) = 0 (i, O < Calx, = yil?, 3)
I (x) = JGP < Calxe =yl
forallr € [0,T] and x,y € R4
- Linear growth conditions

luCxe, OF < Ky (1 + x), lo(xr, O)FF < Ka(1 + [x),

[ )? < K3(1 + |x%), “)

forallt € [0,T] and x, € R?.

Therefore under conditions(3) and (4) the SDE(1)admits a unique strong solution see (Bruti-Liberati-Platen, 2007). Here
are some examples of univariate jump diffusion process.

1 One of the basic example of univariate jump diffusion process is as follows:

where, N, is a Poisson process with arrival rate 4, J;, i.i.d. N(u;, o-?) the jump size, u(X;,0) = u; o(X;,0) = o and
0 = (u, 0, A, uj, 0 ;). The conditional distribution is well known and it is as follows:

X/ | Xy =x~ N(x+pu(t—s)+ juj, 0'2(t —-5)+ jO’?).

2 The following is the Merton jump diffusion process described as follows:
dS, =uS,-dt+oS,-dW; + §,_dJ; 6)

with J, = ZIL’I(YJ- — 1), where Y1, Y, ... are i.i.d. random variables. The solution of the SDE(6)is known and it is
S, = Soe(/"%)””W(’)H?/:’ | Y; see (Merton, 1976).

1.2 Discretization Review Method

The transition density has an analytic expression for a few cases, and in general no, many approaches have proposed to
get an approximation. In fact most of the method have been proposed for diffusion process. Since the jump diffusion
process in the absence of jump remains a diffusion process is better to have an overlook of these different methods.

As first method, we have the Euler scheme approximation for which the diffusion process X; solution of the following
(SDE):
dX; = u(Xy, 0)dt + o (X, )dW; (7N

is approximated by the following discrete time model:

Xin = Xi—iyn — uXi—yn, 0) + o X—1yn, 0) + Vhe; (8)

where €; ~ i.i.dN(0,1). Meanwhile of how easy it is to implement the closed form expression of the transition, the
accuracy of this approximation depends on the interval observation 2. When it is small, the approximation is accurate, but
when it is large the approximation can be poor.

(Merton, 1980; Lo, 1988) have found out that the approach is not consistent when # is fixed. A closely approach has been
suggested by (Gollnick, Houthakker, & Taylor, 1968) and (Bergstrom, 1966), and it is defined on integrating the SDE and
the use of the following trapezoidal rule approximation:

ih h
f u(Xy, 6)dt = 3 {uXin, 0) + u(Xi—1yn, 0)} &)
(i-Dh
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The two approximations are equivalent when £ is small. Unfortunately the consistency of the approach is measured in
term of 4 and some authors have showed the asymptotic bias in the estimate is O(h?).

Therefore many works have been done to reduce the discretization bias on the Euler’s approximation, see (Elerian, 1998)
and (Tse, Zhang, & Yu, 2004) that have improved the method of (Milstein, 1979). The first used a second order term in
a stochastic Taylor series expansion has been used to refine the approximation (8), while the later in a Bayesian context
improved the Milstein’s scheme.

(Merener, 2004) argued that the Euler scheme converges weakly with order one while the Milstein scheme with order two.
They found that between the time of ocurence of jumps, the dynamics of process are purely diffusive and it is possile to
be simulated using standard discretization methods. Under conditions on the coefficient functions of the jump-diffusion
process, they showed that the method used conserves the same weak convergence order for both jump diffusion and pure
diffusion processes and the construction of jumps does not degrade the convergence of the method.

The following section describes the discretization approach, futher the proof of convergence is presented in section and
finally the section 3 has been consecrated to some example and numerical results using Monte-Carlo approach.

2. Jump Adapted Scheme

The discretization approach used is called Jump-diffusion adapted approximation(JAD) that consists of separating the
diffusion part from the jump one. An appropriate discretization is used for the diffusion part where the effect of the
jump is added at due time. This method is based on Itd-Taylor expansion of the drift and diffusion term regardless
of the jump part, see (Bruti-Liberati & Platen2007). Since we assumed that the jump occurs at discrete point time
and between two discretization points the process has a diffusion dynamics. We consider a jump time dicretization

0=1 <t <...<ty=T;constructed by a superposition of the jump times {7y, ...} to a deterministic equidistant grid
with maximum step size A > 0. From the SDE(2) and for ¢ € [#;,#,,1) we have :
Tir] Tit1 tiv1 tis
f aX, = f w(X,—,0)dt + f o(X,—,0)dW, + f Ji—dN, (10)
ti f t .

i i i i

As X;_ denotes the value of the process just before the occurrence of a potential jump, it may be then expressed as a
solution of the following SDE:
dX; = Xy, 0)dt + o(X;;, 0)dWs,

and applying the It6 formula, this leads to:

! 1 !
u(X,0) = M(Xti,9)+f/«tx(Xs,G)ﬂ(Xs,G)dS+Ef/lxx(xsﬁ)crz(xs,ﬁ)ds
1 t

i

!
+ f px(X e, )0 (X, 6)AW
\

i

and

t 1 t
O-(Xl’ 9) = O—(Xfi? 0) + f O—)C(XX’ G)M(XS, H)ds + E f O—XX(XS9 Q)O'Z(XS’ H)ds
t; t;

!
+ [ o o0 aaw,
ti
Subtituting u(X;, #) and o(X;, 0) into (10) we have:
Xfx+l = Xl'

i

liv1 liv1 Tiv1 !
+ f w(X,,, O)dr + f o (X, 0)dW, + f f o (X,, 0)0(Xs, 0)dWdW,
t t ti 1

i i

. f f [ﬂX(XS’Q)/J(Xs,Q)-i—%(/JXX(XS,Q)O'Z(XX,Q))}det
t; li

N f f [a(xs,e)u(xs,en%(axx(xsﬁ)(r%xx,e))] dsdW,
t 4

i1 t titv1
+f f,uX(XS,H)O'(XS,H)dWSdt+f Ji—dN;
t; ti 1

i1
= X[H]_ + f J[_dNt
1

i
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From (11) we deduce the following approximation Y2 = {Y,,i = 0,..., N} of X, where:

lit1
Yti+1 = YIM— + f J(le—)de (11)
t
where
livl tiv] lit1 !
Yoo = Y, + f u(Y,,, 0)dt + f o (Y, 0)dW, + f f oo (Ys, 0)0(Ys, 0)dW,dW,
1 t; L 1
1

= Y, +u¥,,0)h+o(¥;,0) ‘/Egi + EO'X(Yti, 0o (Ys,, G)h(a? -1 (12)

Y2 is a jump adapted scheme and it converges strongly at time ¢ with order one to the solution X of the SDE(2),the proof
is given in the following section.

3. Convergence

Before we state the result of the convergence, we have to define a certain compact notation that we use to make explicit
the proof.

For m € N, we define the set of all multi-indices « as follows:

My ={a =1, J2,---5J0;Ji €{0,1,...,m};i € {1,...,1}, for [ € N}U {v} where v is the multi-index of length zero.
n(a@) the number of component of « that equals to 0, a— denotes the multi index obtained by deleting the last component
of @, —a is the one obtained by the deleting the first component of «.

Let £° be the set of functions f(z,x) : [0,T] x RY — R’ from C'? and L* the set of f(¢, x) with partial derivatives

% f(t,x),i €{1,...,d}, we also introduce the following operator for a function f(z, x) € £*
) d 9 1 G & 2
7(0) _ 9 i o 1 ij rj
LOf(t.2) = 2 f(t.2) + ;ﬂ (607 f(1.0) + 3 ZJ} ; oot 2 (0, ) (13)
and
4
LW f(t,x) := Z o —f(t,x), kX €{l,...,m} VYt €[0,T]andx € RY (14)
— oxt

The Ito coefficient function f,, for all @ € M,, and for f(z,x) : [0, T] x R¢ — R? is defined by:

£(t,x) for (@) =0
7o) fapu@x)  for le)=1,j1=0
Jo(t, %) := ft, o (t,x) for la)=1,j €(l,...,m)
LUF (t,x) for Ila)>2,j €{0,...,m)

5)

We also require to define some compact notation to represent the multiple stochastic integral obtained from the 1t6’s Taylor
expansion. So it is fundamental to define those integral on an appropriate set of integrable function. So let define:

H

{g: sup E(lg(1)) < oo}

t€[0,T]

T
Ho = {g:E( j; Ig(s)lds)<oo} (16)
T
{g:E( f |g(s)|2ds)<oo},
0

for j € {1,2,...m}, and H,) define the set of all predictable process g() for which the following multiple stochastic
integral is defined.

Aﬁ
S
=

|

g(p) if /=0 and a=v
Ia/[g()]p‘r = j';)r Ia—[g()]p,zdz ‘ if [>1 and jl =0 (17)
|, To-180)pdW:' if 1> 1 and ji €{1,2,...m}
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where p and 7 are two stopping times with0 < p <7 < T,a.s.

In the more explicit case i.e in dimension one where m = 1 and d = 1, we have:

(13) = LOf(t,x) := L f(t,0) + p(t, ) 2 f(1, %) + 12 2 f(1, x)
and
(14) = LOf(t,x) := 0 2 f(t,x), V1€ [0, Tlandx € R.

Then considering the function f(#, x) = x we have:

X for lla)=0
AU () for  Ua)=1,j1=0
A for  ley=1,ji=1 (18)
LUV o(t,x) for Ua) =2, ji €101}
and
8(p) if I=0and a=v
(17) = L[g0lyr :i={ [, le-[801pedz  if =1 and ji =0 (19)
Jy lo-[801pcdW, if 121 and ji = 1
Let’s define now the set for y = 1, the hierachical set
Ay ={aeM,: () +ne) <2y },
we also define the remainder set B(A,) of A, by
BA)=(@eM,-A,-ac A
For illustration we found that: A, = {v; (0); (1); (1, 1)} and B(A,) = {(0, 0); (0, 1); (1, 0)}.
Using (19) and (18) we can write Y, _ and X, _ as follows:
Yiao = Yut D0 dalfolts Yl = D Lalfalt, Y, (20)
a€A,\v a€A,
Xpo =X+ D Llfalt Yl + D Lol folti Xi)lis, 1)
a€A,\v a€B(A,)

(20) and (21) are called Wagner-Platen expansion, see

Definition The scheme Y2 is said to converge strongly with order y > 0 at time T to the solution X of a given (SDE) if
there exists a positive constant C such that:

e(A) = VE( X7 - Yr ) < CAY

Assumption 1. Fory = 1, let Y2 = {Y,,t € [0, T1} be the order y jump adapted time discretization with step size A. Let
consider the following assumptions:

E(Xy) < o and E(Xo - Yol?) < KA”. (22)

Forae A,,te[0,T]and x,y € R, the 1té coefficients satisfy the following Lipschitz condition

| folto0) = fot, ) IS Ky [ x—y]. (23)
Forally € A, U B(A,)
fro € C*Pandf, € H,, (24)
forte[0,T] and x € R? .
| folt, ) P< Ko(1 + [x). (25)
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Theorem 1. Under the Assumptions(1), the following estimate

0<s>T

\/E( sup | X, — Y, |2 /ﬂo) < K3AY (26)

holds where the constant K3 does not depend on A
Before to prove the theorem above we have to get some preliminaries results. The following lemma is about the bound-
edness of the It6 multi-stochastic integral.

Lemma 1. For @ € My, \ {v}, g € H, and for two stopping times T\ and T, such that ¥ -measurable and satisfying the
conditions tg <171 <17 <11 + A< T,a.s Then,

T2
(I)gz,: E( Sup | Ia/[g(-)]rl,.\' |2 |/('_-Tl) S 4l(ﬂ)*n(l¥)Al(Q)+n(d)*l f P‘rl,z’ (27)
TI1SS<T) T
where
Pr = E( sup [g(0)l |77, ) <o (28)
TSIz

forz € [11,12].

Proof: The proof of (27) is done by induction on the different cases of @, applying the Cauchy-Schwarz inequality we get:
-When a = (0) with /(@) = 1 and n(a) =1
5 2
f 8(z2)dz
Tl

<(s—-11) f g()Pdz. 29)

That leads to:
2

o7, = E ( sup g(z)dz 7’71]
T1<855T)
< E( sup (S_Tl)f lg(2)Pdz Tn)
T1<85<7)
- E((Tz ) f 9P| 7 )
< AE( [ wora: Tn)
T1
(30)
T2
o7 < Af E( Ig(z)lziﬂ])dz since 1, is F;, — measurable
T
= glom@pl@m@-l f P 31
T
-When a = (1) with /(@) = 1 and n(a) = 0. The process
!
{LolgW]r it € [11, T} = {f g(s)dWy,t € [7'17T]} (32)
1

is a martingale. We have

2
(Da’

T2

E

sup

f 8(z)dW:;
TISS<T> T
s 2
4E( f g()dw,
71
T2
4E( f lg(2)*dz
T

)

‘7:,]] from the application of Doob’s inequality

IA

TTI) from the isometry formula
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Since 73 is ¥+, -measurable we have

-When a = (ji, j») with j, = 0 then Vj; we have by applying the Cauchy-Schwarz inequality we get:

@G’

T2

o7, < E( f lg(2)*dz ”ﬁl)

= o[ (0|7 e

T

75
4 f (sup MG T,)dz
T T1<t<z

T2
— 41(01)—11((1) Al(a)+n(a)— 1 f PT1 -

71

IA

- E[nsigrz Ia_[g(-)]ﬂ,za’z2 Trl)

< E(ngﬁ@-m f V- [gO)ley P 7'11)
Y f o (8O, ez ﬁl)

< AE(f o (8O, Pz ﬁ])

.

g
g

AE( f " sup M [g()]n Pz

1 TISS<Ty

T2
= AE(f dZX Sup |I(1—[g(')]T1,S|2
T

T1<8<T)

< AZE( sup [Io-[g()]r, s

T1<S<T)

7:‘1'1)

_ 2 [ a—
= A0

Considering the previous result we conclude that,

A

q);)fz < A24l(a—)—n(a—)Al(oz—)+n(oz—)—1 f‘l'z PT],Z

T

T)
— 4[(&)—n(a)Al(a)+n(a)—l f PT] -

71

Since (@) = l(a—) + 1 and n(@) = n(a—) + 1

-When a = (ji, j») with j, = 1 then Vj, using the fact that the process

ol8Ole st € [11, T}

(33)

(34)

(35)

(36)

is a martingale we obtain through the application of Doob’s inequality and It6’s isometry we get the expected result as
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follows

q)(l/

T2

IA

IA

IA

2

7:‘1'1]

Fr ) Doob’s inequality

f Lo (8Os AW,

T

E( sup

TISS<T2

s

4E( f lo-[8()], 2P dz

T1

4.(\]~~ sup |Ia—[g(')]‘r1>5|2dz

T TISS<T)

2

f To_[g()]r, oW,

Fr ) [td’s isometry

7:‘1'1)
7:‘1'1)

T2
4(f dzx sup | [g()]r
T]

TI<S<T)

4((‘1'2—7'1) sup lo-[g()]r, s

TISS<T,

4A( sup |lo-[8()], s

T1<85<1)

g

T2

41(0—)+1—n(a—)Al(a—)+1+n(a—)—1 f PT] -

71

T2
41((t)—n(a)Al(a)+n(a)—l f PT] -

T

Since I(@) = I(a—) + 1 and n(a) = n(@—) and that completes the proof of the lemma(1).

(37

Lemma 2. For « a given multi-index in M{v}, a time discretization {t;,i = 0... N} with step size A € (0,1), and g € H,

and

where

Then

DF =

Proof:

D = E[ sup

|

_ t
(t — 1g)A20@ 1)flu Py, .du
4l@)=n(@)+2 (@) +n(a)-1 ft : Py .du  when: (@) # n(a)

Prou = E( sup [g(2)°

10<z<u

7‘_;0)<oo

i1 2

> Lal8Ohs + Lol <
i=0

7:10]

when : (@) = n(a)

o<zt

i;=max{ie{0,1...}:1 <t}

(38)

(39)

(40)

(41)

1. From the definition of i, for z € [#;, #;+1), the relation ;. = ¢; holds. Then, for a multi index a = (ji, j2) with j, =0,

we have

—_

i;—

Lo[8O]iy + Lalg8O]s 2

ng

i.—

f L8]y ds + f Tu L8l ods

i iz

LT

i—

2 liv1 z
f Ia—[g(-)]t,vs,sds + f Iaf [g(')]tis,Sds
i=0 Vi fi

f lo-[8()]y, sds

87
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For a = (j1, j») with j, = 1, we have

|
—_

L lg)s i + Ia[g(-)]t,j,z

13

Il
_ O

i—

1l
- o

lit1 Z
f Lo [8() ]y W, + f Lo L8, SdW,
i li li;

i;—

liv1 4
Y[ tetsOn v+ [ hten, v,
i=0 Vi liy

74
= f Lo-[8()]y;, sdWs (43)
to
2. Let consider the case l(@) = n(a@)
. 2
oy = E( sup f Lo-[8()]y, sds 7‘70]
1h<z<t fo

IA

E( sup (Z - tO) f |I(l/— [g(~)]t,'l\.,s|2ds

to<z<t

7’[0) Cauchy-Schwarz inequality

IA

(r—m)E( f o-[g()];, sI*ds ﬁo)

= =) [ B0l |7 ds

0
!
< (t—to)fE sup |lo-[g()];, o ﬁ)ds
to 1;,<z<s
!
= (t—to)f E|ECsup |lo-[g0)],, P15, Fiy | ds (44)
1o 1jy<Z<s
=02~

Since #o < t; and then 7, C F;, for s € [to, 1].

From Lemma(1) we subtitute the value of ®¢~ into (44) and yields

o < (1- 1o)4l@)-nt@=)
! S
X f E (Al(ry)+n(ry)l f Px,y,de 7‘-,0) ds
fo tig l
t
< (- lo)4l(o’_)_”(“—) f E (Al(a—)+n(a—)—1(s _ tix)Pt,vx,si 7:[O)ds
fo
t
< ([ — t0)4l(0z—)—n(oz—)Al(a—)+n(a—) f E (P[iv,s| 7__to) ds (45)
fo

since (s — t;)) < A. Given that ;, C F;,_for s € [19, 1]

E(P, J|F,) = E(E( sup [g()*IF7,)

tiy<u<s
%0]
< E ( sup [g(u)? ﬁo)
ty<Su<s

= Py (46)

ﬁ‘o)

= E[ sup |g(u)l?

tig<uss
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It then follows

A
]
IA

!
(t _ t0)4l(ar—)—n(a—)Al(a—)+n(a—) f Pto,sds

4]
= (t- tO)A2(Z(G)—1)

That completes then the proof of the case (@) = n(a).

(47)

3. Let consider the case for the rpulti-index a = (J1, j») such that (@) # n(@) and j, = 1. For that we know that the
multiple stochastic integral { ft 0 I [gO];,, .sd Ws} is a martingale. We then have

(03
(Df

IA

IA

4
E( sup | | Io-[g(W)]s, sdW,|?

th<z<t o

4E(| f Lo 18O, AW,

fo

4E( f o g0, P ds

to

7:[0)

?,0) It6’s isometry

f E (1a-L8O)Ny, sP| F5,) ds

And as the previous proof it leads to

4
< f E(E(la-180,, sPI1F:,)| F1,) ds
4]
< 4E|ECsup [lo-[gOs oPI3)| T [ ds
1y <z<s
=@
< 44l @=)=n(a~)
t s
Xf E(Al(af—)+l’l(af—)—l fq Pt< 7dZ ?; )ds
fo tiy o !
t
< 41((1—)—n(a—)+1Al(a—)+n(a—) f E (Pt s| 7:’ )dS
< iss 0
4]
t
(D;y < 4l(a—)—n(a—)+lAl(a—)Jrn(ry—)f Pt SdS
= 0,
o

!
4l(a)—n((1)Al((y)+n((y)—l f Pto,sds

1o

since l(a-) = (@) — 1 and n(a-) = n(a).

?}0) Doob’s inequality

(48)

(49)

(50)

4 To complete the proof we finally consider the case of @ = (ji, j») such that (o) # n(@) and j, = 0. Applying
Cauchy Schwarz inequality on @f, we get

o

i—1 g
_ E{ SUp |3 L8l + Lal2ON, | | T
1h=z=1 |20
i1 2
< 2E| sup Zla[g(~)]t[,l;+1 7:10]
n<zst |45

+2E( sup [Tl

to<z<t

?;0)
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2o Lal8( s, + L8] is a discrete time martingale, see (Kloeden & Platen, 1992) Then considering the first

term of (51) we have,

IA

IA

IA

E[
4E

4FE

4F

4E

i1 2

Z Lo [8()])si 1
i=0

sup
th<z<t

Fo

i1 2

Z Lo[8()], 11, 9",0] Doob’s Inequality
i=0

=2 2

IR FI0) Y A TI6) M
i=0

[ Q-2 i—2

| > T8Ol P +21 ) Lal8O )y Ealg O, | 1, -1)
i=0 i=0

+ E(algOs,ya, | Fr-t] 720 )

=2
DIRATIGI G
i=0

+ E(algO)s, 0, P Fr-0)| F)

(52)

since from the discrete martingale property of the stochastic integral I,[g(.)];,_, , we have E(1,[g()];,_, ., | Fi,-1=0.
By applying the Lemma(1) on E(1l,[g()];, ., *| 77,-1) we get

i1 2

Z Io/ [g(')]ti,fm
i=0

E| sup
<zt
=2

?ito]
1> LalgOlis, P
i=0

ti
+ 4l(a)—n(oz)Al((y)+n(0/)—l f P’itl-udM:|

ti—1

< 4E(

7:10]
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Expanding Zj’:_oz I,1g()]i s, as Z;’:_Ol 1,18()];, .., we obtain
i1
> Ll
i=0

i3

| > Lalg Ol

i=0

2

E| sup

1<zt

4E(

tis -1
+4I(a/)—n(a) Al(a)+n(a)—1 f Pti, S ,udu

ti—2

Fo

IA

tis
+ 41((1)—n(a/)Al(a)+n(a/)—1 f Pt,-l_] ,udu]

tip—1
4E[

ti,—1
+4l(w)—n(a)Al(a)+n(a)—l f Pli,,z,udu

ti—2

ﬁo)
i—3

DIRATISIE

i=0

IA

ti,
+ 4[(&)—n(a)Al(a)+n(a)—l f Ptifz,udu]

ti-1
4E(

t;,
+ 4[((1/)—n(a)Al((t)+n(a)—1 f Pt;,g,udu]

ti—2

7—70) since Pli,flylt < Pri,—Zsu

i-3

| > Lelg Ol

i=0

IN

7‘?0) (53)

and repetitively it leads to

i1 2

Z Lo [8()] sty
i=0

E| sup

1<zt

Fio

IA

!
41(&)—n(0z)+lAl(a)+n(a)—lE (f Pt udu
0,
fo

!
4l(a)—n(a)+lAl(ry)+n((1)—l f Pto,udu

0]

Considering now the secoond term of equation (51) using Cauchy Schwarz inequality we have

z 2
E(sup L o ﬁ) = E[sup f L[g()];, udu go)
fo<z<t o<zt |Jt;,
v4
< E(sup(z—ri) f o [8()];, ul*du ﬁo)
fo<z<t ti;

Similarly as in the proof of Lemma(l) we obtain

E( sup |Ia[g(-)]t,-z,z'2

to<z<t

!
7_-%) < 4l((1)—n(a)Al(Q)+n(a)—1f on,udlL
0]

Therefore, from the equations (54) and (54) we finally get

! !
(D;y < 2(41((1)—n(a)+1Al(a)+n(a)—lf Pto,udu +4l(a)—n(a)Al(d)+n(a)—1 f Ptg,udu)
f to
!
< 41((1)—n(tl)+2A1(11)+n(a)—1 f on,udu, (54)
o

and that completes the proof of Lemma(2).

The following Lemma is an intermediary result required to handle the moment of the solution of the SDE(2).
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Lemma 3. Assuming conditions (3) and (4) satisfied and let

E(1X,,|») < c0. (55)
Then the solution X, of (2) satisfies
E ( sup 1X,[?

to<s<T

7'?0) < C(1+ E(X, ")) (56)
for every t € [ty, T, with C a positive constant that depends only on (T — ty) and the linear growth bound.

Proof of Theorem(1)

Considering the Wagner-Platen expansion for the diffusion process as described in equations(20) and (21) the solution of
the SDE(2) at time ¢ € [0, T'] can be written as follows:

i—1
X = X+ ) {Zla[ﬁ,(ti,x,,>]t[,t,+.+Ia[ﬁ,(r,-/,xn)]t,.,,t}
acA,\v \i=o
i—1
+ > {Z Tofatis Xy + Ll X, )],,,,,}
a€B(A,) \i=o
!
+ f J(X;, -)dN,, (57)
0
and the jump adapted scheme is
ii—1 !
Yo=Y+ ) {Zla[fam, Y,,.nzl.,,,.ﬂ+1(,[ﬁ,<ri,,Y,,>]fi,,,}+ f J(¥,, N, (58)
aeA,\v \i=o 0

for t € [0, T]. From Lemma(3) we have

E( sup |X,*

to<s<T

ﬁo) < C(1 + E(X, %)

Now let’s prove the same result for the jump adapted scheme.

E( sup |Y|? 7—';0) < E( sup (1 +[Y,%) 7:0)
0<s<T 0<s<T
i—1
< Elsup (1+1Yo+ > O Llfalt Yl
0<s<T a€A,\v i=o
+I(I[ﬁl(ti,7 Yti)]ti,,t +f J(Xti“ _)dNu|2) 7—70)
0
ii—1
< E|sup (1+2YoP +4| >0 (O Lalfalt Yol

0<s<T

a€A,\v i=o

X3 2
- 2
MU Yl + 4 f J(X,, )dN, )%)
0
i1
< E(sup (1+|Y0|2>)+4 > E(sup D Lol faltis Yl
0<s<T aeANv) 0<s<T |5,

2
_ 2
+ Llfo(t, Yt;)]ri,,tl

5”0) +4E( sup

0<s<T

7

[ e, am,
0
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e

Then from the Lema(2) and the Linear growth condition(25) we have

%, ] ur

i—1 2

D Tt Y, + 1l V)N,

aeAN) 0<s<T i=o0
< KoY f ( sup 1fa(s, Yo %)du
€AY to<s<u
< Z f ( sup (1 +[Y,P) %)du
aE.?I \{v th<s<u
< G f (sup(1+|YS|2) %)du (59)
0 to<s<u
X 2
E( sup fJ(le-“—)dNu To)
0<s<T 1J0
S s 2 v
< E[ sup f J(X, )N, +/1f J(X, du ) th:rele the compensated
nes<T 1 Jo u o u poisson measure
s 2 s 2
< ZE( sup fJ(X,,,N_)dN,, %)+2E( sup fJ(X,,.M_)du To)
th<s<T 1J0 to<s<T 1J0
T 2 s 2
< SE( f J(X;, -dN, %) +2E( sup f J(X;,,-)du ‘7:0)
0 t<s<T 1J0

Using the It&’s isometry for jump and the linear growth condition (4) we get

X 2 T
E( sup f J(X,, -)dN, %) < c;f E( sup (1 +|Y*) 7—‘0) du
0<s<T IJO 0 to<s<u
(60)
Subtituting (59) and (60) into (59) we have
T
E( sup |, %) < C1 +E(|Yo|2))+c;f E( sup (1 + Y% %)du
0<s<T 0 to<s<u
(61)
Then by applying the Gronwall inequality, we obtain
E( sup |Y,° %) < C'(+E(YoP), (62)
0<s<T

where C” is a positive constant. The final step of proof consists of analyzing the mean square given by

Z@t) = E(sup X — Y2 %)
0<s<t
ig—1
< {sup Xo-Yo+ ) Zla Folt X)) = folti, Y,
O<s<r ae_‘?{y v}
+Ia[fa([t}, Xt;s) - fa/(tiv, Yt,s )]t,-x,x
i—1
) {Z INTAUS ) Ia[ﬂ(t,-x,xf,v)],,,;,s}
a€B(A,) \ i=o
S 2
+ f (X, ) - J(¥,, )N, %)
0
< Cste{lxo—Y0|2+ Z AY + Z B;'+D,} (63)

a€A N} a€B(A,)
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vt € [0, T] where AY, BY and D, are defined as follows

ig—1

Ay = E[supz

0<s<t |70

Ll foti X)) = fo(ti, Yl

+ Ll X,) = i Yo | 70). (64)

i—1 2

B? = E[ sup Z I(l[.f;(ti’ X))ty + Ia[‘f;l(ti.\-axr,-x )]zis,s

0<s<t

=0

7"0] ; (65)

and

2

7"0) (66)

D, = E(sup f (X, ) - J(¥,, )N,
0

0<s<t

Now by using the Lemma(2)and Lipschitz(23) we get

i—1
A? = E(sup I(Y[ﬁl(tiaxti)_ﬁl(ti’ Yl
0<s<t i=0
= - 2
+ Loltis X)) = Joltis i)l | 70)
' 2
< cstef E| sup |X;, =Y, || Fo|du
0 0<s<u
!
< cstefZ(u)du 67)
0

In the same way using the Lemma(2)and Linear growth condition(25) we get

i—1 2

B;y = E[ sup Z Ia[ﬁl(tis X))ttt [a,r[fa(tiw Xt,“. )]r,l&.,s

:

0<s<t i—o
t -
< cstef E( sup |f,(s, X)) %)du
0 0<s<u
15
< csteA‘”(“)f E( sup (1 + 1X,[? To) du
0 0<s<u
I3
< csteAV@ (r + f E( sup X, %)du) (68)
0 0<s<u
) 2e) -2 (@) = n(@) . _
where (o) = o)+ n(@) =1 : Ia) # n(a) So for o € B(A,), we have (@) > y+1if l(@) = n(@) and [(@)+n(a) = 2y

if I(@) # n(a) so that Y(a) > 2y. Therefore applying Lemma(3) together with the above result we have

Ba

t

< CsteA”(1 + 1Xo]») (69)
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Now let us analyze the last term

X 2
D, := E( sup f {J(Xz;“—) - J(Yz;,,—)}dNu 7:())
0<s<t 1J0
= E ( sup f (J(X,,-) = J(¥,, )}dN,
0<s<t 1J0
X 2
+ f (J(X,, ) = J(¥,, bdu %)
0
X B 2
< 2E( sup f (J(X,,-) = J(¥,, )}dN, %)
0<s<t 1J0
X 2
+2E( sup f V(X;,-) = J(Y;, )ldu 7—'0)
0<s<t 0
! 2 applying Doob’s inequality
= 8E(f0 |J(Xt""_) - J<Yt""_)| du TO) and Itd’s isometry for jump
!
+2/1E( f X, ) - J(¥, O du 5"0)
0
!
< Cstef Z(u)du. (70)
0
Then from the results (67), (69) and (70) we have for t € [0, T]
3
Z(t) < este{E(1xg — Yol*) + A7 (1 + |Xo|») + f Z(u)du (71)
0
Therefore for t = T we have
T
Z(T) < estelE(|xo — Yo*) + A¥(1 + |Xo|*) + f Z(u)du (72)
0
Using the Assumptions(22) and applying the Gronwall inequality we obtain
T
Z(T) < KA+ f Z(w)du (73)
0
< KAY where Kisa positive constant (74)

Finally we get the desired result that concludes the proof as
\/E( sup X, — Y ?
0<s<T

In this section we present some numerical results based on the Merton jump diffusion model as defined in Eq(6), where
the jump’s magnitude Y;, j = 1... is assumed i.i.d and log-normal distributed with mean x; and standard deviation o ;.
We use a Monte-Carlo approach, we simulate the process, using the JAD scheme, defined in Eq(11), and compare it with
the exact path. Considering the discretization time 0 =7y < #; < ... < ty = T, combined with the jumps time 7;,i = 1...,
the jump adapted scheme Y2 = {Y,,i = 0,..., N} of the process X is :

7—‘0) = VZ(T) < KA (75)

4. Numerical Results

lit1
Yti+1 = Yti+]’ + f J(Yfm*)dNt (76)
1,

i

where
1
Y. = Y, +uY,h+o¥, Vhe + EU'ZY,ih(s? -1) (77)

For the following set parameters values u = 2, sigma = 1; 1 =1, u; = 0, sigma; = 2, T = 1; we obtained:
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e Number of iterations N=100 and step size h=1/100

0 02 04 0.6 0.8 l

Exact path -~ - -- JAD path

e Number of iterations N=1000 and step size h=1/1000

0 02 04 0.6 0.8 l

Exact path ----- JAD path

5. Conclusion

Through this paper we have presented the Jump adapted discretization scheme for jump diffusion with numerical on
Merton Jump diffusion process. This jump discretization is more tractable since it avoids the computation of multi
stochastic integral involving Poisson measure and Wiener process. The jump adapted discretization scheme has been
proved to converge strongly with order one to the exact solution for a non dependent mark jump.
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