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Abstract

We propose a new method of testing for a function’s convexity, monotonicity, or positivity, based on some noisy observa-
tions of the function made over a finite set T of points in the domain, where the observations can be made multiple times
at each point in T . One of the traditional approaches to the test of a function’s shape characteristic is to fit a convex, a
monotone, or a positive function, depending on the shape characteristic we wish to test for, to the data set minimizing
the sum of squared errors, and to compute the sum of squared differences (SSD) between the fit and the data set. While
the traditional approach proceeds by observing the SSD as the number of points in T increases to infinity, we propose
observing the SSD as r, the number of observations taken at each point in T , increases to infinity. This new way of ob-
serving the asymptotic behavior of the SSD leads to a test procedure that does not require the estimation of any additional
parameters, and hence, is easy to implement. The proposed test procedure is proven to achieve a prescribed power as
r → ∞. Numerical examples illustrate that the proposed test successfully detects the convexity/monotonicity/positivity of
a function, as well as the non-convexity/non-monotonicity/non-positivity of a function.

Keywords: convexity detection, monotonicity detection, positivity detection, hypothesis test, convex regression, isotonic
regression, nonparametric test, multivariate regression

1. Introduction

The goal of this paper is to develop a hypothesis test for determining whether an unknown function f∗ : Rd → R is
convex, monotone, or positive using some noisy measurements of f∗ at points X1, . . . , Xn ∈ Rd.

The convexity/monotonicity/positivity of a function has significant implications in many areas of applications. In eco-
nomics, the concavity of the utility curve as a function of a person’s income implies that the marginal utility diminishes
as income increases (p. 31 of Keynes, 1935). In the context of statistical inference, the monotonicity of a function that
one wishes to estimate from noisy data indicates that one can fit a monotone function to the data set to reconstruct the
underlying function (Barlow et al., 1972).

In this paper, we assume that we can observe noisy measurements of f∗(Xi) for 1 ≤ i ≤ n, and these observations can be
made multiple times independently of each other. Thus, we are able to obtain the data set ((Xi, Yi j) : 1 ≤ i ≤ n, 1 ≤ j ≤ r),
where

Yi j = f∗(Xi) + ϵi j,

the Xi’s are either Rd-valued random vectors or deterministic points in Rd, and the ϵi j’s are independent and identically
distributed (iid) random variables with E(ϵi j | X1, . . . , Xn) = 0 and E(ϵ2i j | X1, . . . , Xn) = σ2 for some σ < ∞.

To determine whether the function f∗ is convex/monotone/positive or not, we consider the following pairs of the null and
alternative hypotheses:

Null Hypothesis Alternative Hypothesis

H0
c : f∗ < Fc Ha

c : f∗ ∈ Fc for a test of convexity,

H0
m : f∗ < Fm Ha

m : f∗ ∈ Fm for a test of monotonicity,

H0
p : f∗ < Fp Ha

p : f∗ ∈ Fp for a test of positivity,
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Figure 1. The solid line is f∗ and the dashed line is the function to which f̂c converges as r → ∞.

where

Fc = {g : Rd → R | g(tv + (1 − t)w) ≤ tg(v) + (1 − t)g(w) for v,w ∈ Rd and t ∈ [0, 1]},
Fm = {g : Rd → R | g(v) ≤ g(w) for v = (v(1), . . . , v(d)) and w = (w(1), . . . ,w(d)) ∈ Rd with v(k) ≤ w(k), 1 ≤ j ≤ d}
Fp = {g : Rd → R | g(v) ≥ 0 for v ∈ Rd}.

When the context is clear, H0
c , H0

m, and H0
p will be referred to as the null hypotheses and Ha

c , Ha
m, and Ha

p the alternative
hypotheses.

The proposed test procedure is described as follows.

Test of Convexity: When one suspects that the unknown function f∗ is convex, a natural step to take in order to estimate
f∗ is to fit a convex function f̂c : Rd → R to the data set ((Xi,Y i) : 1 ≤ i ≤ n), where Y i =

∑r
j=1 Yi j/r for 1 ≤ i ≤ n,

which minimizes the sum of squared distances between the fit and the data set. The fitted function f̂c can be defined by
the solution to the following infinite-dimensional minimization problem:

Minimize
1
n

n∑
i=1

(
Y i − g(Xi)

)2
(1)

over g ∈ Fc. Problem (1) turns out to be equivalent to the following finite-dimensional quadratic programming problem:

Minimize
1
n

n∑
i=1

(
Y i − g(Xi)

)2
(2)

Subject to g(X j) ≥ g(Xi) + ξTi (X j − Xi), 1 ≤ i, j ≤ n

in the decision variables g(Xi) ∈ R and ξi ∈ Rd for 1 ≤ i ≤ n, where ξTi denotes the transpose of ξi (Lemma 2.5 of Seijo &
Sen, 2011).

When f∗ is truly convex, the mean square error (MSE), defined by

1
n

n∑
i=1

(
Y i − f̂c(Xi)

)2
,

converges to 0 as r → ∞ because
∑n

i=1(Y i − f̂c(Xi))2/n ≤ ∑n
i=1(Y i − f∗(Xi))2/n =

∑n
i=1 ϵ̄i/n → ∞ as n → ∞ by the

minimizing property of f̂c and the strong law of large numbers, where ϵ̄i =
∑r

j=1 ϵi j/r for 1 ≤ i ≤ n. Proposition 1 of this
paper also shows that the rate of convergence is of order 1/r. However, when f∗ is not convex, the MSE will possibly
converge to a certain positive number as r → ∞ because f̂c converges to a function that is different from f∗. Figure 2
shows a graph of f∗, which is not convex, and the function to which f̂c converges as r → ∞.

The test statistic of our proposed procedure is therefore the MSE multiplied by r as follows:

TSc =
r
n

n∑
i=1

(
Y i − f̂c(Xi)

)2
(3)
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The asymptotic behavior of the MSE suggests that we do not reject H0
c if the test statistic TSc diverges to infinity as

r → ∞. The critical value will be derived from Propositions 1 and 2 in Section 2 at a prescribed value of the Type II error.

Test of Monotonicity: For a test of monotonicity, we will use a similar procedure. When one suspects that f∗ is monotone,
one can fit a monotone function f̂m : Rd → R to the data set, which minimizes the sum of squared errors. The fitted
function f̂m is the solution to the following quadratic program:

Minimize
1
n

n∑
i=1

(
Y i − g(Xi)

)2
(4)

Subject to g(Xi) ≤ g(X j) for Xi = (Xi(1), . . . , Xi(d)) and X j = (X j(1), . . . , X j(d))
satisfying Xi(k) ≤ X j(k) for k = 1, . . . , d

in the decision variables g(X1), . . . , g(Xn) ∈ R. The proposed test statistic is then defined by

TSm =
r
n

n∑
i=1

(
Y i − f̂m(Xi)

)2
(5)

and H0
m is not rejected if the test statistic TSm diverges to infinity as r → ∞.

Test of Positivity: For the test of positivity, the proposed test statistic is given by

TSp =
r
n

n∑
i=1

(
Y i − f̂p(Xi)

)2
, (6)

where f̂p is the solution to the following quadratic program:

Minimize
1
n

n∑
i=1

(
Y i − g(Xi)

)2
(7)

Subject to g(Xi) ≥ 0, 1 ≤ i ≤ n

in the decision variables g(Xi) for 1 ≤ i ≤ n. H0
p is not rejected if the test statistic TSp diverges to infinity as r → ∞.

Tests of convexity/monotonicity/positivity have been widely studied in the statistics literature. Various types of hypothesis
tests are proposed with different test statistics. However, most work in the literature has focused on observing the behavior
of the test statistic as n → ∞ with a fixed value of r (Yatchew, 1992; Hall & Jeckman, 2000; Baraud et al., 2005) or
imposed a condition that requires the normality of the ϵi j’s (Bartholomew, 1959; Shapiro, 1988; Baraud et al., 2005). For
example, the MSE has been studied as a test statistics in Shapiro (1988), but the behavior of the test statistic is studied
only for the case where n→ ∞ with r fixed. Empirical studies suggest that the weights used in Shapiro (1988) are difficult
to compute exactly, so the test procedure proposed by Shapiro (1988) is computationally burdensome (Sen & Silvapulle,
2002). Bartholomew (1959) used the MSE as a test statistic, but he assumed that the ϵi j’s are normally distributed and
did not consider the case where r → ∞. Yetchew (1992) also considered the MSE as a test statistic, but did not consider
the case where r → ∞, and focused only on the case where f∗ is defined on the one-dimensional set R. Others have used
various types of test statistics to test a function’s convexity/monotonicity/positivity. For example, Ghosal et al. (2000)
use a locally weighted version of Kendall’s tau statistic as a test statistic, whereas Wang & Meyer (2011) use regression
splines and their derivatives to define a test statistic.

In this paper, we take a different point of view from the existing literature. Even though increasing n to infinity may
result in a good estimator of the true function f∗(x) over all x ∈ Rd, increasing r to infinity can provide simpler and
more practical tests for convexity/monotonicity/positivity detection that are easier to implement. We thus observe the
asymptotic behavior of our test statistic as r → ∞ and derive the critical value accordingly. The critical value turns out to
be a percentile of (σ2/n)χ2

n, where χ2
n follows the chi-square distribution with n degrees of freedom. Considering the fact

that σ2 can be easily estimated from the sample variance of Y11, . . . ,Y1r, the critical value can be readily computed from
the data set.

The situation where r is large arises frequently in practice. In particular, this situation arises when f∗ is an unknown
function that we want to estimate using “computer simulation” and when we are able to select any point x in the domain
of f∗, get an estimate of f∗(x) through computer simulation, and repeat this procedure as many times as we wish. For
example, when f∗ is the price of a stock option that is contingent on the price x ∈ R of the underlying stock, we can use
computer simulation to get an estimate of f∗(x) at any point x as many times as we wish, and hence, r can be made as
large as we wish.
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Our main contribution is therefore proposing a simple and practical test procedure that is based on the idea that the MSE
converges to 0 as r → ∞ if f∗ is convex, and diverges to infinity as r → ∞ if f∗ is not convex. The proposed procedure
does not require estimation of any additional parameters. Furthermore, it does not rely on any assumptions regarding the
distribution of the Xi’s and the ϵi j’s. The test statistic and the critical value can be easily computed from the data set.

This paper is organized as follows. In Section 2, we prove that the proposed test achieves a prescribed power as r → ∞.
We also describe the proposed test procedure in more detail. In Section 3, we apply the proposed test to different types of
f∗, and observe the conclusion of our test as r → ∞. The numerical results in Section 3 illustrate that the proposed test
successfully rejects the null hypothesis when the alternative hypothesis is true for r sufficiently large. Concluding remarks
are included in Section 4.

2. The Asymptotic Behavior of the Test Statistics and the Proposed Test Procedure

In order to analyze the behavior of the test statistics, we will impose some probabilistic assumptions on the ϵi j’s. In
particular, we require the following assumptions:

A1. Given X1, X2, . . . , the ϵi j’s are iid random values.

A2. E
(
ϵi j | X1, . . . , Xn

)
= 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ r.

A3. E
(
ϵ2i j | X1, . . . , Xn

)
= σ2 for 1 ≤ i ≤ n and 1 ≤ j ≤ r and for some σ < ∞

We first establish in Proposition 1 the fact that the asymptotic distribution of the test statistics defined in (3), (5), and (6)
as r → ∞ is similar to the distribution of (σ2/n)χ2

n.

Proposition 1 Assume A1–A3. Then, for a fixed n,

lim sup
r→∞

P
 r

n

n∑
i=1

(
Y i − f̂c(Xi)

)2
> τ

∣∣∣∣∣ f∗ ∈ Fc

 ≤ P
(
(σ2/n)χ2

n > τ
)
,

lim sup
r→∞

P
 r

n

n∑
i=1

(
Y i − f̂m(Xi)

)2
> τ

∣∣∣∣∣ f∗ ∈ Fm

 ≤ P
(
(σ2/n)χ2

n > τ
)
,

lim sup
r→∞

P
 r

n

n∑
i=1

(
Y i − f̂p(Xi)

)2
> τ

∣∣∣∣∣ f∗ ∈ Fp

 ≤ P
(
(σ2/n)χ2

n > τ
)

for any τ ≥ 0, where χ2
n follows the chi-squared distribution with n degrees of freedom.

Proof. We begin by proving the existence and the uniqueness of f̂c, f̂m, and f̂p. The existence and the uniqueness of f̂c is
proven in Lemma 2.3 of Seijo & Sen (2011). To prove the existence of f̂m, we note that Problem (4) is a minimization
problem of a coercive function over a non-empty closed subset of Rn. By Theorem 2.32 on page 25 of Beck (2014),
the solution to Problem (4) exists. To prove the uniqueness of the solution, suppose on the contrary that Problem (4)
has two distinct minimizers, say v = (v(1), . . . , v(n)) and w = (w(1), . . . ,w(n)). Since φ : Rn → R, defined by φ(z) =∑n

i=1(Y i − z(i))2/n for z = (z(1), . . . , z(n)) ∈ Rn, is strictly convex and (1/2)v+ (1/2)w is a feasible solution to Problem (4),
we must have φ((1/2)v+ (1/2)w) < (1/2)φ(v)+ (1/2)φ(w). Since φ(v) = φ(w), we have φ((1/2)v+ (1/2)w) < φ(v), which
contradicts the fact that v is a minimizer of Problem (4). Therefore, Problem (4) has a unique minimizer. The existence
and the uniqueness of f̂p follows using similar arguments.

Now, we are ready to prove the main statement of Proposition 1. Suppose f∗ ∈ Fc. Then,

1
n

n∑
i=1

(
f̂c(Xi) − Y i

)2 ≤ 1
n

n∑
i=1

(
f∗(Xi) − Y i

)2
(8)

since f∗ is convex and f̂c minimizes
∑n

i=1

(
Y i − g(Xi)

)
/n over all convex functions g. Next, we will prove that

r
n

n∑
i=1

(
f∗(Xi) − Y i

)2
=

r
n

n∑
i=1

ϵ̄2i ⇒
σ2

n
χ2

n (9)

as r → ∞. To prove (9), we first note that, for any η ∈ R,

P
 r

n

n∑
i=1

ϵ̄2i > η

 = E
P  r

n

n∑
i=1

ϵ̄2i > η

∣∣∣∣∣ X1, . . . , Xn


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and that

P
 r

n

n∑
i=1

ϵ̄2i > η

∣∣∣∣∣ X1, . . . , Xn

→ P
(
(σ2/n)χ2

n > η
)

almost surely as r → ∞ by the weak law of large numbers (A1, A2, and A3) and the continuous mapping theorem.
Applying the bounded convergence theorem to P((r/n)

∑n
i=1 ϵ̄

2
i > η | X1, . . . , Xn) yields

E
P  r

n

n∑
i=1

ϵ̄2i > η

∣∣∣∣∣ X1, . . . , Xn

→ P
(
(σ2/n)χ2

n > η
)
,

and hence, (9) follows.

Combining (8) and (9) yields

P
 r

n

n∑
i=1

(
Y i − f̂c(Xi)

)2
> τ

 ≤ P
 r

n

n∑
i=1

(
Y i − f∗(Xi)

)2
> τ

→ P
(
(σ2/n)χ2

n ≥ τ
)

as r → ∞, and hence, the first inequality of Proposition 1 follows. The rest of Proposition 1 uses similar arguments. 2

Proposition 1 enables us to suggest the following test procedure.

Proposed Hypothesis Test

1. Using the data set ((Xi,Y i) : 1 ≤ i ≤ r), compute the test statistic TSc from (3) for a test of convexity, TSm from
(5) for a test of monotonicity, and TSp from (5) for a test of positivity.

2. Let β be the prescribed value of the Type II error. In other words, β is the desired probability of not rejecting the
null hypothesis when the alternative hypothesis is true. Let z1−β be the 100(1− β)th percentile of (σ2/n)χ2

n. When σ2

is not known, σ2 can be estimated from the sample variance of Y11, . . . , Y1r, i.e.,
∑r

j=1(Y1 j − Y1)2/(r − 1).

3. If the test statistic is less than or equal to z1−β, then reject the null hypothesis in favor of the alternative hypothesis.
Otherwise, do not reject the null hypothesis.

The following proposition shows that the proposed test achieves the prescribed power as r → ∞.

Proposition 2 Assume A1–A2. Then

lim inf
r→∞

P
(
Reject H0

c | f∗ ∈ Fc

)
≥ 1 − β,

lim inf
r→∞

P
(
Reject H0

m | f∗ ∈ Fm

)
≥ 1 − β,

lim inf
r→∞

P
(
Reject H0

p | f∗ ∈ Fp

)
≥ 1 − β.

Proof. Since

P
(
Reject H0

c

∣∣∣∣∣ f∗ ∈ Fc

)
= P
 r

n

n∑
i=1

(
Y i − f̂c(Xi)

)2 ≤ z1−β

∣∣∣∣∣ f∗ ∈ Fc

 = 1 − P
 r

n

n∑
i=1

(
Y i − f̂c(Xi)

)2
> z1−β

∣∣∣∣∣ f∗ ∈ Fc

 ,
it follows, by Proposition 1, that

lim inf
r→∞

P
(
Reject H0

c

∣∣∣∣∣ f∗ ∈ Fc

)
= 1 − lim sup

r→∞
P
 r

n

n∑
i=1

(
Y i − f̂c(Xi)

)2
> z1−β

∣∣∣∣∣ f∗ ∈ Fc

 > 1 − P
(
(σ/r)χ2

r > z1−β
)
= 1 − β.

The rest of Proposition 2 uses similar arguments. 2

3. Numerical Results

In this section, we apply the proposed test procedure to various types of f∗. We conduct the proposed hypothesis test for
each case of f∗, and observe whether the null hypothesis is rejected or not as we increase r. By repeating the procedure
multiple times for each case of f∗, we estimate the proportion of time that the null hypothesis is rejected. Numerical results
in Sections 3.1, 3.2, and 3.3 display that the proportion of time that H0

c ,H
0
m, or H0

p is rejected converges to 1 as r increases
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Figure 2. The dotted lines are the lower and upper limits for the 95% confidence interval of the proportion of time rejecting
H0

c (upper three graphs), H0
m (middle three graphs), or H0

p (bottom three graphs) in the case where f∗ is f1, f2, f3, f4, f5, f6,
f7, f8, or f9 from top left to bottom right. The solid lines are the centers of the 95% confidence intervals. The horizontal
axis is r, the number of observations made at each point in the domain, in all graphs. n = 64.

to infinity when f∗ is convex, monotone, or positive, respectively, whereas the proportion of time that H0
c ,H

0
m, or H0

p is
rejected converges to 0 as r increases to infinity when f∗ is not convex, not monotone, or not positive, respectively. These
results support Proposition 2 in Section 3, which claims that the power of the proposed test converges to 1 as r → ∞.
They also suggest that the type I error converges to 0 as r → ∞ for n sufficiently large.

We conducted all simulations using a 64-bit computer with an Intel(R) Core(TM) i7-6600U CPU at 6 GHz and a memory
of 237 GB. We programmed all simulations in MATLAB R2010a.

3.1 Test of Convexity

We consider the case where f∗ is one of the following test functions:

f1 : R3 → R given by f1(x) = x(1)2 + x(2)2 + x(3)2 for x = (x(1), x(2), x(3)) ∈ R3,

f2 : R3 → R given by f2(x) = 3x(1) − x(2) + 2x(3) for x = (x(1), x(2), x(3)) ∈ R3, and

f3 : R3 → R given by f3(x) = x(1)2 − x(2)2 + x(1)x(3) for x = (x(1), x(2), x(3)) ∈ R3.

For f1, f2, and f3, we let {X1, . . . , Xn} be given by{(
−1 + 2u/n1/3 − 1/n1/3,−1 + 2v/n1/3 − 1/n1/3,−1 + 2w/n1/3 − 1/n1/3

)
: 1 ≤ u, v,w ≤ n1/3

}
.

We then generate the Yi j’s from Yi j = fk(Xi)+Ui j(−1, 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ r, and 1 ≤ k ≤ 3, where the Ui j(−1, 1)’s are
iid random variables uniformly distributed between −1 and 1. We next compute f̂c by solving the quadratic programming
problem in (2) using CVX, a package for specifying and solving convex programs (Grant & Boyd, 2014), and the test
statistic TSc by using Equation (3). When conducting the proposed test procedure, β is set as 0.05. The proposed test
procedure is repeated 2,000 times. The 95% confidence interval of the proportion of time that H0

c is rejected is computed
using these 2,000 trials and is reported in Table 1 when n = 8, in Table 2 when n = 27, and in Table 3 when n = 64 for
a variety of r values. Figure 2 reports the 95% confidence interval of the proportion of time that H0

c is rejected, based on
100 iid replications, when n = 64 for a variety of r values.

Tables 1, 2 and 3 and Figure 2 show that the proportion of time that H0
c is rejected becomes close to 1 for the convex

functions, f1 and f2, and to 0 for the non-convex function f3 (when n is sufficiently large) as r → ∞.
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Table 1. The 95% confidence interval of the proportion of time rejecting H0
c in the case where f∗ is f1, f2, and f3 when n

= 8.

r f∗ = f1 f∗ = f2 f∗ = f3

5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
50 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

100 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 2. The 95% confidence interval of the proportion of time rejecting H0
c in the case where f∗ is f1, f2, and f3 when n

= 27.

r f∗ = f1 f∗ = f2 f∗ = f3

5 1.00 ± 0.00 0.92 ± 0.01 0.63 ± 0.02
10 1.00 ± 0.00 0.98 ± 0.01 0.32 ± 0.02
50 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

100 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

Table 3. The 95% confidence interval of the proportion of time rejecting H0
c in the case where f∗ is f1, f2, and f3 when n

= 64.

r f∗ = f1 f∗ = f2 f∗ = f3

5 0.83 ± 0.02 0.75 ± 0.02 0.70 ± 0.02
10 0.95 ± 0.01 0.88 ± 0.01 0.74 ± 0.02
50 1.00 ± 0.00 0.99 ± 0.00 0.06 ± 0.01

100 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

3.2 Test of Monotonicity

We next consider the case where f∗ is one of the following test functions:

f4 : R3 → R given by f4(x) = x(1) + x(2) + x(3) for x = (x(1), x(2), x(3)) ∈ R3,

f5 : R3 → R given by f5(x) = 0 for x = (x(1), x(2), x(3)) ∈ R3, and

f6 : R3 → R given by f6(x) = min(x(1)+ x(2)+ x(3),−0.2x(1)− 0.2x(2)− 0.2x(3)) for x = (x(1), x(2), x(3)) ∈ R3,
where min(a, b) denotes the minimum of a and b for a, b ∈ R.

For f4, f5, and f6, we let {X1, . . . , Xn} be given by{(
−1 + 2u/n1/3 − 1/n1/3,−1 + 2v/n1/3 − 1/n1/3,−1 + 2w/n1/3 − 1/n1/3

)
: 1 ≤ u, v,w ≤ n1/3

}
.

We then generate the Yi j’s from Yi j = fk(Xi)+Ui j(−1, 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ r, and 4 ≤ k ≤ 6, where the Ui j(−1, 1)’s are
iid random variables uniformly distributed between −1 and 1. We next compute f̂m by solving the quadratic programming
problem in (4) using CVX, and the test statistic TSm by using Equation (5). When conducting the proposed test procedure,
β is set as 0.05. The proposed test procedure is repeated 2,000 times. The 95% confidence interval of the proportion of
time rejecting H0

m is computed using these 2,000 trials and is reported in Table 4 when n = 8, in Table 5 when n = 27, and
in Table 6 when n = 64 for a variety of r values. Figure 2 reports the 95% confidence interval of the proportion of time
that H0

m is rejected, based on 100 iid replications, when n = 64 for a variety of r values.

Tables 4, 5 and 6, and Figure 2 show that the proportion of time rejecting H0
m becomes close to 1 for the monotone

functions, f4 and f5, and to 0 for the non-monotone function f6 (when n is sufficiently large) as r → ∞.

3.3 Test of Positivity

We consider the case where f∗ is one of the following test functions:

f7 : R3 → R given by f7(x) = x(1) + x(2) + x(3) + 3 for x = (x(1), x(2), x(3)) ∈ R3,

f8 : R3 → R given by f8(x) = 0 for x = (x(1), x(2), x(3)) ∈ R3, and

f9 : R3 → R given by f9(x) = x(1) + x(2) + x(3) for x = (x(1), x(2), x(3)) ∈ R3.
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Table 4. The 95% confidence interval of the proportion of time rejecting H0
m in the case where f∗ is f4, f5, and f6 when

n = 8.

r f∗ = f4 f∗ = f5 f∗ = f6

2 0.95 ± 0.01 0.54 ± 0.02 0.64 ± 0.02
10 1.00 ± 0.00 0.95 ± 0.01 0.98 ± 0.01

100 1.00 ± 0.00 0.99 ± 0.00 0.74 ± 0.02

Table 5. The 95% confidence interval of the proportion of time rejecting H0
m in the case where f∗ is f4, f5, and f6 when

n = 27.

r f∗ = f4 f∗ = f5 f∗ = f6

2 0.76 ± 0.02 0.36 ± 0.02 0.44 ± 0.02
10 1.00 ± 0.00 0.88 ± 0.01 0.85 ± 0.02

100 1.00 ± 0.00 0.98 ± 0.01 0.00 ± 0.00

Table 6. The 95% confidence interval of the proportion of time rejecting H0
m in the case where f∗ is f4, f5, and f6 when

n = 64.

r f∗ = f4 f∗ = f5 f∗ = f6

2 0.65 ± 0.02 0.31 ± 0.02 0.38 ± 0.02
10 1.00 ± 0.00 0.77 ± 0.02 0.89 ± 0.01

100 1.00 ± 0.00 0.98 ± 0.01 0.00 ± 0.00

For f7, f8, and f9, we let {X1, . . . , Xn} be given by{(
−1 + 2u/n1/3 − 1/n1/3,−1 + 2v/n1/3 − 1/n1/3,−1 + 2w/n1/3 − 1/n1/3

)
: 1 ≤ u, v,w ≤ n1/3

}
.

We then generate the Yi j’s from Yi j = fk(Xi)+Ui j(−1, 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ r, and 7 ≤ k ≤ 9, where the Ui j(−1, 1)’s are
iid random variables uniformly distributed between −1 and 1. We next compute f̂p by solving the quadratic programming
problem in (7) using CVX, and the test statistic TSm by using Equation (6). When conducting the proposed test procedure,
β is set as 0.05. The proposed test procedure is repeated 2,000 times. The 95% confidence interval of the proportion of
time rejecting H0

p is computed using these 2,000 trials and is reported in Table 7 when n = 8, in Table 8 when n = 27, and
in Table 9 when n = 64 for a variety of r values. Figure 2 reports the 95% confidence interval of the proportion of time
that H0

p is rejected, based on 100 iid replications, when n = 64 for a variety of r values.

Tables 7, 8 and 9, and Figure 2 show that the proportion of time rejecting H0
p becomes close to 1 for the positive functions,

f7 and f8, and to 0 for the non-positive function f9 (when n is sufficiently large) as r → ∞.

3.4 Comparisons with an Existing Method

In this section, we apply our proposed method and the method proposed by Yatchew (1992) to test for a function’s
convexity, and compare their performance.

We assume that f∗ is one of the following test functions:

f10 : R→ R given by f10(x) = x2 for x ∈ R, and

f11 : R→ R given by f11(x) = 2.3(x − 0.5)x(x + 0.5) for x ∈ R.

We let Xi = −1 + (2i − 1)/n for 1 ≤ i ≤ n.

To apply our proposed method, we generate the Yi j’s from Yi j = f∗(Xi) + Ni j(0, 12) when f∗ = f10 or Yi j = f∗(Xi) +
Ni j(0, 0.52) when f∗ = f11 for 1 ≤ i ≤ n and 1 ≤ j ≤ r, where the Ni j(0, 12)’s and the Ni j(0, 0.52)’s are iid random
variables normally distributed with a mean of 0 and variances of 1 and 0.52, respectively. We next compute f̂c by solving
the quadratic programming problem in (2) using CVX, and the test statistic TSc by using Equation (3). When conducting
the proposed test procedure, β is set as 0.05. The proposed test procedure is repeated 100 times. The 95% confidence
interval of the proportion of time that H0

c is rejected is computed using these 100 trials and is reported in Tables 10 and
11 for a variety of r values when n = 5.

We next apply the method proposed by Yatchew (1992). In this method, only one observation of f∗(x) is made at each
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Table 7. The 95% confidence interval of the proportion of time rejecting H0
p in the case where f∗ is f7, f8, and f9 when

n = 8.

r f∗ = f7 f∗ = f8 f∗ = f9

2 1.00 ± 0.00 0.54 ± 0.02 0.12 ± 0.01
10 1.00 ± 0.00 0.96 ± 0.01 0.00 ± 0.00
20 1.00 ± 0.00 0.98 ± 0.01 0.00 ± 0.00

Table 8. The 95% confidence interval of the proportion of time rejecting H0
p in the case where f∗ is f7, f8, and f9 when

n = 27.

r f∗ = f7 f∗ = f8 f∗ = f9

2 1.00 ± 0.00 0.45 ± 0.02 0.03 ± 0.01
10 1.00 ± 0.00 0.97 ± 0.01 0.00 ± 0.00
20 1.00 ± 0.00 0.99 ± 0.00 0.00 ± 0.00

Table 9. The 95% confidence interval of the proportion of time rejecting H0
p in the case where f∗ is f7, f8, and f9 when

n = 64.

r f∗ = f7 f∗ = f8 f∗ = f9

2 1.00 ± 0.00 0.41 ± 0.02 0.01 ± 0.00
10 1.00 ± 0.00 0.96 ± 0.01 0.00 ± 0.00
20 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

point x in the domain of f∗. So, we generate the Yi1’s from Yi1 = f∗(Xi)+Ni(0, 12) when f∗ = f10 or Yi1 = f∗(Xi)+Ni(0, 0.52)
when f∗ = f11 for 1 ≤ i ≤ n, where the Ni(0, 12)’s and the Ni(0, 0.52)’s are iid random variables normally distributed with
a mean of 0 and variances of 1 and 0.52, respectively. We then compute the following test statistic proposed by Yatchew
(1992):

n1/2

(2η)1/2 (σ̄2
n − σ̂2

n), (10)

where σ̄2
n =
∑n

i=1(Yi1 − f̄ (Xi))2/n, σ̂2
n =
∑n

i=1(Yi1 − f̂ (Xi))2/n, f̄ (X1), . . . , f̄ (Xn) is the solution to the following quadratic
program:

Minimize
n∑

i=1

(Yi1 − g(Xi))2/n

Subject to |g(Xi)| ≤ L0, 1 ≤ i ≤ n
|g(Xi) − g(X j)|
|Xi − X j|

≤ L1, 1 ≤ i, j ≤ n, i , j∣∣∣∣∣∣g(Xi) − g(X j)
Xi − X j

−
g(X j) − g(Xk)

X j − Xk

∣∣∣∣∣∣ /|Xi − Xk | ≤ L2/2, 1 ≤ i, j, k ≤ n, i , j, j , k, k , i

g(Xi) ≤
X j − Xi

Xk − Xi
g(Xk) +

Xk − X j

Xk − Xi
g(Xi), 1 ≤ i, j, k ≤, Xi ≤ X j ≤ Xk

over g(X1), . . . , g(Xn) ∈ R, f̂ (X1), . . . , f̂ (Xn) is the solution to the following quadratic program:

Minimize
n∑

i=1

(Yi1 − g(Xi))2/n

Subject to |g(Xi)| ≤ L0, 1 ≤ i ≤ n
|g(Xi) − g(X j)|
|Xi − X j|

≤ L1, 1 ≤ i, j ≤ n, i , j∣∣∣∣∣∣g(Xi) − g(X j)
Xi − X j

−
g(X j) − g(Xk)

X j − Xk

∣∣∣∣∣∣ /|Xi − Xk | ≤ L2/2, 1 ≤ i, j, k ≤ n, i , j, j , k, k , i
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Table 10. The 95% confidence interval of the proportion of time rejecting H0
c in the case where f∗ = f10.

n × r Proposed Method (n = 5) Yatchew (r = 1)

10 0.76 ± 0.08 0.00 ± 0.00
20 0.95 ± 0.04 0.37 ± 0.09
30 1.00 ± 0.00 0.73 ± 0.04
40 1.00 ± 0.00 0.95 ± 0.04
50 1.00 ± 0.00 0.93 ± 0.05

Table 11. The 95% confidence interval of the proportion of time rejecting H0
c in the case where f∗ = f11.

n × r Proposed Method (n = 5) Yatchew (r = 1)

20 0.56 ± 0.10 0.27 ± 0.09
40 0.55 ± 0.10 0.35 ± 0.09
60 0.39 ± 0.10 0.37 ± 0.09
80 0.28 ± 0.09 0.24 ± 0.08

100 0.13 ± 0.07 0.22 ± 0.08
120 0.07 ± 0.05 0.26 ± 0.09

over g(X1), . . . , g(Xn) ∈ R, and η = (
∑n

i=1(Yi1 − f̂ (Xi))4/n) − σ̂4
n. L0, L1, and L2 are the upper bounds on | f∗|, the absolute

value of the first derivative of f∗, and the absolute value of the second derivative of f∗, respectively. We set L0 = 40, L1 =

40, and L2 = 80 for f10, and L0 = 3, L1 = 9, and L2 = 18 for f11. Once the test statistic is evaluated from Equation (10),
H0

c is rejected if the test statistic is between the 100(β/2)th percentile and the 100(1 − β/2)th percentile of the standard
normal distribution with β = 0.05. This procedure is repeated 100 times. The 95% confidence interval of the proportion
of time that H0

c is rejected is computed using these 100 trials and is reported in Tables 10 and 11 for a variety of r and n
values.

The results in Tables 10 and 11 show that the proposed method exhibits good performance in identifying the convexity of
non-convexity of a function.

4. Conclusions

In this paper, we proposed a new method of testing for a function’s convexity/monotonicity/positivity. The proposed
method differs from the existing methods in the literature in that it observes the behavior of the test statistic as r → ∞
rather than as n → ∞. Propositions 1 and 2 establish that the proposed method successfully detects a function’s con-
vexity/monotonicity/positivity and achieves a prescribed value of the type II error as r → ∞. An interesting point
that can be raised next is whether the proposed test procedure can successfully detect a function’s non-convexity/non-
monotonicity/non-positivity. Our numerical results in Section 3 indicate successful detection of non-convexity/non-
monotonicity/non-positivity when n is large enough to capture the overall shape of the underlying function f∗. Therefore,
a promising research topic for the future is the study of the probability of the Type I error of the proposed test procedure
when both r and n increase to infinity.
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