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Abstract

Simultaneous spatial autoregressive model is widely used for spatial data analysis, observed at a set of grid points in a
space. However a problem, not so well known, is that there exists no unique model unlike time series AR model for given
autocovariances or spectral density. We show that such a non-identifiability of the model implies existence of multiple
maximum likelihood estimates under Gaussianity and causes non-estimability of parameters and the singularity of Fisher
information matrix. Several types of necessary and sufficient conditions for the singularity are given.

Keywords: Fisher information matrix, maximum likelihood estimation, non-identifiability, simultaneous spatial autore-
gressive model, singularity.

1. Introduction

A simultaneous spatial autoregressive model for a weakly stationary random field {Xv; v ∈ Zn} with the mean 0 and the
autocovariance function γh = E(XvXv+h),h ∈ Zn is the model which satisfies the equation

P(T1, . . . , Tn)Xv = εv, v ∈ Zn, (1)

where {εv; v ∈ Zn} is a set of uncorrelated random variables with the mean 0 and the variance σ2, σ > 0. Here the operator

P(T1, . . . , Tn) =
∑
k∈K
βkT k1

1 · · ·T
kn
n

is an n-dimensional transfer function with the real coefficients βk,k ∈ K where 0 ∈ K is a set of finite points k =
(k1, k2, ..., kn) on Zn and β0 = 1. We denote the number of elements ofK is m, so that the number of regression parameters
as m − 1. The operators T j, j = 1, . . . , n are shift operators such as

T jXv = Xv1,...,v j+1,...,vn .

We assume the following for the weak stationary of the simultaneous spatial autoregressive model throughout this paper.

Assumption 1 P(z1, . . . , zn) =
∑

k∈K βkzk1
1 · · · z

kn
n is non zero on the domain D = {(z1, . . . , zn) ; |z1| = · · · = |zn| = 1} in Cn.

The spectral density of the model (1) is then

f (ω) =
σ2

|P(z1, . . . , zn)|2 ,

where z j = exp(iω j), j = 1, . . . , n and ω = (ω1, ω2, ..., ωn).

2. Non-identifiability of Simultaneous Spatial Autoregressive Model

We first note that any polynomial P(z1, . . . , zn) is decomposable into a product of prime factors hk(z1, . . . , zn), k = 1, ..., p
as

P(z1, . . . , zn) =
p∏

k=1

hk(z1, . . . , zn).
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Therefore, there exist 2p choices in selecting hk(z1, . . . , zn) or hk(z1, . . . , zn) for k = 1, ..., p to have a transfer function
P(z1, . . . , zn) which leads us to the spectral density

f (ω) =
σ2∏p

k=1 hk(z1, . . . , zn)hk(z1, . . . , zn)
. (2)

There is also freedom to add a factor of the form czℓ11 zℓ22 · · · z
ℓn
n to the transfer function P(z1, . . . , zn) for any constant c and

integers ℓ1, ℓ2, . . . , ℓn, since the constant c can be absorbed into the parameter σ2.

Example 1. Let us consider a simple one-dimensional autoregressive model,

Xv + β1Xv+1 + β−1Xv−1 = εv. (3)

Then there exist 22 = 4 different choices of transfer function for the spectral density

f (ω) =
σ2

0

(z − α1)(z − α2)(z−1 − ᾱ1)(z−1 − ᾱ2)
, (4)

where z = eiω and α1, α2 ∈ C are the roots of the polynomial P(z) = z + β1z2 + β−1 . In fact, there exist the following four
different transfer functions for the spectral density (4).

P1(z) = − 1
α1 + α2

z−1(z − α1)(z − α2) = 1 − 1
α1 + α2

z − α1α2

α1 + α2
z−1,

P2(z) = − 1
ᾱ1 + ᾱ2

z(z−1 − ᾱ1)(z−1 − ᾱ2) = 1 − ᾱ1ᾱ2

ᾱ1 + ᾱ2
z − 1
ᾱ1 + ᾱ2

z−1,

P3(z) =
1

1 + α1ᾱ2
(z − α1)(z−1 − ᾱ2) = 1 − ᾱ2

1 + α1ᾱ2
z − α1

1 + α1ᾱ2
z−1

and

P4(z) =
1

1 + ᾱ1α2
(z−1 − ᾱ1)(z − α2) = 1 − ᾱ1

1 + ᾱ1α2
z − α2

1 + ᾱ1α2
z−1.

It is easy to show that each transfer function has real coefficients, providing us a model (3) with different coefficients.
The variance parameter σ2 varies from transfer function to transfer function, σ2 = σ2

0/|α1 + α2|2 for P1(z) and P2(z), and
σ2 = σ2

0/|1 + α1ᾱ2|2 for P3(z) and P4(z). It is easy to see that P1(z) and P2(z) become identical if and only if α1 and
α2 are real and α1α2 = 1, and the P3(z) and P4(z) become identical if and only if α1 and α2 are real and α1 = α2. By
noting Assumption 1, we see that such conditions are summarized as β1 = β−1 with β2

1 < 1/4, that is, time reversible
simultaneous spatial autoregressive model. However, it does not mean unique transfer function for the spectral density of
time reversible model. The conditions α1 = α2 and α1α2 = 1 are not compatible because of Assumption 1. Only two of
the four transfer functions become identical and two others are not time reversible. We now see that there is no unique
model for the given spectral density (4) .

3. Maximum Likelihood Estimate

It is well known that the exact likelihood of simultaneous spatial autoregressive model has no closed form in terms of
parameters even if the Gaussianity is assumed. Historically, a lot of approximations of the log-likelihood have been
proposed. One of such approximations is that based on a modified periodogram, proposed by Guyon (1982). However,
the estimation procedure is not only expensive in computation but also inaccurate because it requires multiple integration
of the spectral density for each parameter value. In this respect, the approximation recently proposed by Rikimaru &
Shibata (2016) is stronger and more straightforward, and closed in time domain. They also proved that the parameter
estimate which maximises the approximation LA in the following is asymptotically efficient.

Let us assume that the observations {xv, v ∈ N} are on a rectangular latticeN = {(v1, v2, . . . , vn); 1 ≤ v j ≤ n j, j = 1, . . . , n}.
The N = n1n2 · · · nn observations are arranged to make a vector x in lexicographic order. By combining the m − 1
dimensional regression parameter vector β whose elements are arranged in lexicographic order of k , 0 ∈ K with σ, we
have the whole parameter vector θ. An approximation of the log-likelihood of θ proposed by Rikimaru & Shibata (2016)
is then
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LA =
1
2

log det (A) − N
2

log 2π − 1
2

xT Ãx,

where

A =
1
σ2

∑
k,k′∈K

βkβk′W
−k1+k′1
n1 ⊗ · · · ⊗W−kn+k′n

nn

and

Ã =
1
σ2

∑
k,k′∈K

βkβk′α
|k1−k′1|
n1 · · ·α|kn−k′n|

nn W−k1+k′1
n1 ⊗ · · · ⊗W−kn+k′n

nn .

Here the symbol ⊗ is Kronecker product and αn j = 1 + 1/n j, j = 1, . . . , n are shrinkage factors to retain
√

N consistency.

The matrix Wn is an n × n circulant matrix such that the off-diagonal elements (Wn) j, j+1 are all 1 for j = 1, . . . , n − 1,
(Wn)n,1 = 1 and the other elements are all 0. It is clear that Wn

n = W0
n = In and W−1

n = WT
n where In is the n × n identity

matrix.

The asymptotic efficiency proved is that the covariance matrix of the parameter estimate converges to the lower bound
given by the inverse of the Fisher information matrix I(θ), whose elements are given by

Ipq(θ) =
1

2 · (2π)n

∫
· · ·

∫
∂ log f (ω; θ)
∂θp

∂ log f (ω; θ)
∂θq

dω, p, q = 1, 2, ...,m, (5)

(Whittle, 1954; Guyon, 1982; Robinson & Vidal Sanz, 2006), provided that I(θ) is non-singular which is a key assumption
for the proof. It is rather unusual that the Fisher information matrix is singular in ordinary theory of statistics, but it often
happens in case of simultaneous spatial autoregressive model. Before investigating when and why it happens, we will see
other problems caused by non-identifiability of the model in maximum likelihood estimation by the following example.

Example 2. Consider the same model (3) as in Example 1. Assume that {Xv} has the spectral density (4) with α1 = −0.85,
α2 = −9.15 and σ0 = 0.1. Then four possible transfer functions for the spectral density are :

Transfer function β1 β−1 σ

P1(z) 0.10000 0.77775 0.01000
P2(z) 0.77775 0.10000 0.01000
P3(z) 1.04244 0.09683 0.01139
P4(z) 0.09683 1.04244 0.01139

This suggests that the Gaussian likelihood function has the same value for such four sets of parameter values, since they
share the same covariance structure. Therefore the likelihood function always has four maximum points on parameter
space unless some of four transfer functions are identical. In fact, the following result of numerical experiment demon-
strates this. In the experiment, N = 1000 random numbers are generated for {Xv} by using the transfer function P1(z)
with

β1 = −
1

α1 + α2
= 0.1 , β−1 = −

α1α2

α1 + α2
= 0.77775

and

σ = − σ0

α1 + α2
= 0.01.

Then, the following four maximum likelihood estimates are obtained by maximising LA in this experiment.

β̂1 β̂−1 σ̂ max LA

Estimate1 0.10146 0.77066 0.00973 3124.091
Estimate2 0.77066 0.10146 0.00973 3124.091
Estimate3 1.04858 0.09804 0.01116 3124.091
Estimate4 0.09804 1.04858 0.01116 3124.091
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Therefore, although the maximum likelihood estimate is consistent and asymptotically efficient as is proved, there is no
global unique solution. This implies that we always have several different estimates of parameters, which may depend
on the initial values of parameters for optimisation algorithm. There would be no good way to avoid such a problem
in practice, because the problem is not over-parametrisation but non-identifiability of transfer function for given spectral
density or covariances. Only a possible remedy would be to restrict our attention into a specific region of parameter space,
which is meaningful for the underlying problem and effective for restricting the transfer function into a unique one. We
might have to search for all possible solutions anyway since it would not be so easy to restrict the region beforehand.

4. Singularity of the Fisher Information Matrix I(θ)

We have seen that several different parameters, θ1, θ2, ..., θ2p are mapped from a given simultaneous spatial autoregressive
spectral density. The problem of simultaneous spatial autoregressive model is not only on such a non-identifiability
but also on the singularity of the Fisher information matrix which is closely related to the non-identifiability. We will
concentrate our attention into the singularity of Fisher information matrix I(θ) in (5), which is also the limit of

− 1
N
∂2 log f (x, θ)
∂θ∂θT . (6)

The following theorem states that the Fisher information matrix becomes singular if some of the parameters are duplicated.

Theorem 1 Fisher information matrix I(θ0) becomes singular when some of the parameters are duplicated for the spectral
density identified by θ0.

Proof. Let f0(ω) be the spectral density identified by θ0. Choose another f (ω) in the neighbourhood of f0(ω), which leads
us different θ1 and θ2 in the neighbourhood of θ0. We have then two corresponding maximum likelihood estimates θ̂1 and
θ̂2, which are zeros of the gradients of the log-likelihood

gk(θ) =
∂ log f (x, θ)
∂θk

, k = 1, 2, ...,m.

By Taylor expansion, we see that

0 = (θ̂1 − θ̂2)T ∂

∂θ
gk(θ∗k), k = 1, 2, ...,m (7)

holds true for θ∗k between θ̂1 and θ̂2. Rewrite (7) as

0 = N1/2−ϵ
(
(θ̂1 − θ1) − (θ̂2 − θ2) + (θ1 − θ2)

)T 1
N
∂

∂θ
gk(θ∗k), k = 1, 2, ...,m.

Then by setting θ1 = θ0 + N−1/2+ϵδ and θ2 = θ0 − N−1/2+ϵδ , we have

0 = δT I(θ0).

The following example illustrates what happens if the Fisher information matrix is singular. It would be clear if we note
that the Hessian matrix of the log-likelihood (6) is likely to be singular if it happened.

Example 3. Let us consider the same model as in Example 1. As is already seen, if β1 = β−1 and β2
1 < 1/4, then the

transfer functions P1 and P2 or P3 and P4 are identical and the Fisher information matrix becomes singular as

I(θ) =

 a a b
a a b
b b c

 ,
where

a =
−1 + 8β2

1 + (
√

1 − 4β2
1)3

β2
1(

√
1 − 4β2

1)3
, b =

−2(1 −
√

1 − 4β2
1)

σβ1

√
1 − 4β2

1

and c =
4
σ2 .

From the maximum likelihood equation,

0 =
1
√

N

∂ log f (x, θ)
∂θ

∣∣∣∣∣∣
θ̂

≈ 1
√

N

∂ log f (x, θ)
∂θ

+
1
N
∂2 log f (x, θ)
∂θ∂θT ·

√
N(θ̂ − θ),
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we see that 
a
√

N
{
(β̂1 + ˆβ−1) − (β1 + β−1)

}
+ b
√

N(σ̂ − σ)
a
√

N
{
(β̂1 + ˆβ−1) − (β1 + β−1)

}
+ b
√

N(σ̂ − σ)
b
√

N
{
(β̂1 + ˆβ−1) − (β1 + β−1)

}
+ c
√

N(σ̂ − σ)


is asymptotically normally distributed, so that we can only estimate β1 + β−1 and σ but not individual β1 or β−1.

4.1 Conditions for Non-Singularity of I(θ)

As is seen from Example 3, singularity of the Fisher information matrix I(θ) causes more serious problem, non-estimability
of individual parameters. It would be worthy of investigating what kind of conditions is necessary for the singularity of
I(θ) because the Fisher information matrix is a complicated function of parameters and it is not feasible to check it as it
is. We first derive a simple necessary and sufficient condition directly derived from the quadratic form of I(θ),

Q = yT I(θ)y =
1

2 · (2π)n

∫
· · ·

∫  m∑
j=1

y j
∂ log f (ω)
∂θ j

2

dω. (8)

Clearly a necessary and sufficient condition for the non-singularity is that the vector y = (y1, y2, . . . , ym) is zero whenever
Q = 0.

Theorem 2 A necessary and sufficient condition for I(θ) to be non-singular is

∂ log f (ω)
∂θ j

, j = 1, ...,m are linearly independent.

Corollary 1 A sufficient condition for non-singularity of I(θ) is that

∂γk

∂θ j
, j = 1, 2, ...,m are linearly independent f or a k.

Proof. We see that

Q =
m∑

p,q=1

ypyqIpq(θ) = lim
n1,...,nn→∞

1
2N

m∑
p,q=1

ypyqtr
(
Σ2 ∂Σ

−1

∂θp

∂Σ−1

∂θq

)

= lim
n1,...,nn→∞

1
2N

tr


Σ−1

m∑
j=1

y j
∂Σ

∂θ j

2
from Proposition B.1 in Rikimaru & Shibata (2016) by noting that ∂Σ−1/∂θp = Σ

−1(∂Σ/∂θp)Σ−1. Since the eigenvalues of
Σ−1 are bounded away from 0, we have

tr


Σ−1

m∑
j=1

y j
∂Σ

∂θ j

2 ≥ C tr


 m∑

j=1

y j
∂Σ

∂θ j

2
for a constant C > 0. It is enough to note that at most N elements of the matrix

∑m
j=1 y j ∂Σ/∂θ j are

∑m
j=1 y j ∂γk/∂θ j.

Corollary 2 If βk = β−k for any k ∈ K , then I(θ) is singular.

Proof. If βk = β−k for all k ∈ K , then

P(z1, . . . , zn) = P(z−1
1 , . . . , z

−1
n ).

It is enough to note that

∂ log f (ω)
∂βk

=
∂ log f (ω)
∂β−k
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holds true since

∂ log f (ω)
∂βk

= −
zk1

1 · · · z
kn
n

P(z1, . . . , zn)
−

z−k1
1 · · · z

−kn
n

P(z−1
1 , . . . , z

−1
n )

on the domain D.

Example 4. Consider a 2-dimensional model,

Xv1,v2 + β10Xv1+1,v2 + β−10Xv1−1,v2 + β01Xv1,v2+1 + β0−1Xv1,v2−1 = εv1,v2 ,

then the spectral density is

f (ω1, ω2) =
σ2

|1 + β10z1 + β−10z−1
1 + β01z2 + β0−1z−1

2 |2
.

There exists only two transfer functions P(z1, z2) = 1 + β10z1 + β−10z−1
1 + β01z2 + β0−1z−1

2 and P(z−1
1 , z

−1
2 ) for this spectral

density. This is because P(z1, z2) is prime factor. In fact, there exist no polynomials Q1(z1, z2) and Q2(z1, z2) of at most
order 2 with respect to z1 and z2, such that

z−1
1 z−1

2 P(z1, z2) = β10z2
1z2 + β01z1z2

2 + z1z2 + β0−1z1 + β−10z2 = Q1(z1, z2)Q2(z1, z2).

Therefore, P(z1, z2) is not decomposable into a product of transfer functions which accommodate with the underlying
model. It is clear that P(z1, z2) and P(z−1

1 , z
−1
2 ) are identical if and only if β10 = β−10 and β01 = β0−1. The singularity of

I(θ) follows from Theorem 1 as well as from Corollary 2 in this case.

A practical procedure to check if the Fisher information matrix is singular would be through the matrix,

B = (βℓ1 βℓ2 · · · βℓL )

where

βℓ j
=


βk1+ℓ j + βk1−ℓ j

βk2+ℓ j + βk2−ℓ j

...
βkm+ℓ j + βkm−ℓ j

 , j = 1, . . . , L.

Here ℓ j, j = 1, 2, ..., L are ordered indices in L = {ℓ |k − ℓ or k + ℓ ∈ K for a k ∈ K}. We should choose either ℓ j or −ℓ j

in L since βℓ j
= β−ℓ j

. Let us ki, i = 1, . . . ,m are indices arranged in lexicographic order in K and βk = 0 for k < K as a
convention. Note that it is always true that L > m − 1.

Theorem 3 A necessary and sufficient condition for the non-singularity of I(θ) is that B is of full rank.

Proof. We may restrict our attention into the non-singularity of the first (m − 1) × (m − 1) submatrix of I(θ), since the
last row and column off-diagonal elements are all 0 and the diagonal element is (2/σ)2. By setting ym = 0 in (8) and
introducing Y(z1, . . . , zn) =

∑
k j,0∈K y j zk1

1 · · · z
kn
n , we have

Q =
2

(2π)n

∫ {
Re

(
Y(z1, . . . , zn)
P(z1, . . . , zn)

)}2

dω.

Thus, Q = 0 implies

Y(z1, . . . , zn)P̄(z1, . . . , zn) + Ȳ(z1, . . . , zn)P(z1, . . . , zn) = 0.

A necessary and sufficient condition for the non-singularity of I(θ) is now that∑
k j,0∈K

y j (βk j−ℓ + βk j+ℓ) = 0 for any ℓ ∈ L

implies y j = 0, j = 1, 2, ...,m − 1. This completes the proof.

36



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 4; 2017

Example 5. The matrix B for the model in Example 1 is derived from

β0 =

 β−1+0 + β−1−0
β0+0 + β0−0
β1+0 + β1−0

 = 2

 β−1
1
β1

 , β1 =

 β−1+1 + β−1−1
β0+1 + β0−1
β1+1 + β1−1

 =
 1
β1 + β−1

1

 and β2 =

 β−1+2 + β−1−2
β0+2 + β0−2
β1+2 + β1−2

 =
 β1

0
β−1

 ,
as

B =

 2β−1 1 β1
2 β1 + β−1 0

2β1 1 β−1

 .
The determinant

det(B) = 2(β1 − β−1)(1 + β1 + β−1)(1 − β1 − β−1)

is zero if and only if β1 = β−1 since 1 + β1 + β−1 , 0 and 1 − β1 − β−1 , 0 from Assumption 1. Thus, we see that
the condition β1 = β−1 with β2

1 < 1/4 is not only necessary and sufficient condition for some of transfer functions being
identical, but also for the singularity of the Fisher information matrix in this example.

4.2 Unilateral Simultaneous Spatial Autoregressive Model

It is taken it for granted that unilateral simultaneous spatial autoregressive model including AR model in time series,

P(T1, · · · ,Tn) =
∑

k1,··· ,kn≥0,k∈K
βkT k1

1 · · ·T
kn
n

is always identifiable and the Fisher information matrix I(θ) is non-singular. However, it would be worthy of proving
in the frame work of simultaneous spatial autoregressive model. Then, it becomes clearer that the problems we have
discussed are due to the lack of unilaterality of general simultaneous spatial autoregressive model.

Theorem 4 Unilateral simultaneous spatial autoregressive model is always identifiable and the Fisher information matrix
I(θ) is always non-singular.

Proof. It is only possible to choose hk(z1, z2, ..., zn), k = 1, 2, ..., p to find out transfer function P(z1, z2, ..., zn) for the spectral
density (2). Any other choice contradicts with the unilaterality of the model. Therefore unilateral simultaneous spatial
autoregressive model is always unique for given spectral density. On the other hand the quadratic form (8) is then rewritten
as

Q =
2

(2π)n

∫ {
Re

(
Y(z1, . . . , zn)
P(z1, . . . , zn)

)
− ym

σ

}2

dω

=
2

(2π)n

∫ {Y(z1, . . . , zn)
P(z1, . . . , zn)

}2

+ 2
∣∣∣∣∣Y(z1, . . . , zn)
P(z1, . . . , zn)

∣∣∣∣∣2 + Y(z−1
1 , . . . , z

−1
n )

P(z−1
1 , . . . , z

−1
n )

2

−ym

σ

Y(z1, . . . , zn)
P(z1, . . . , zn)

+
Y(z−1

1 , . . . , z
−1
n )

P(z−1
1 , . . . , z

−1
n )

 + y2
m

σ2

 dω,

where Y(z1, . . . , zn) =
∑

k1,...,kn≥0,k,0∈K yk zk1
1 · · · z

kn
n . Since P(z1, . . . , zn) and Y(z1, . . . , zn) are both analytic non zero function

on the domain D, we have∫ {
Y(z1, . . . , zn)
P(z1, . . . , zn)

}k

dω = −
∫

D

{
Y(z1, . . . , zn)
P(z1, . . . , zn)

}k 1
z1 · · · zn

dz1 · · · dzn = 0

and ∫ Y(z−1
1 , . . . , z

−1
n )

P(z−1
1 , . . . , z

−1
n )

k

dω = −
∫

D

Y(z−1
1 , . . . , z

−1
n )

P(z−1
1 , . . . , z

−1
n )

k
1

z1 · · · zn
dz1 · · · dzn = 0

for any integer k. Therefore

Q =
2

(2π)n

∫ {
2
|Y(z1, . . . , zn)|2
|P(z1, . . . , zn)|2 +

y2
m

σ2

}
dω.

is zero if and only if Y(z1, . . . , zn) = 0 and ym = 0. This proves the non-singularity of I(θ).
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5. Concluding Remarks

We have shown that simultaneous spatial autoregressive model is non-identifiable from the covariance structure or the
spectral density. Several different regression parameters with different standard deviation of the disturbance are mapped
from a spectral density. Therefore, we have to be careful about estimation of parameters based on the second moments, for
example, estimation by Gaussian maximum likelihood principle. There could be many other estimates even if an estimate
had been obtained by giving an initial value to an optimisation algorithm. A practical procedure would be to find out all
estimates and pick up one which is most meaningful for the underlying phenomena. This non-identifiability of the model
has been already mentioned in the context of two sided moving average model (Rosenblatt, 1980). A cure he proposed is
to employ bispectrum, which can be applied for the model, too. But we leave it for future investigation, together with an
investigation of the type of parameter mapping from the spectral density.

Another problem we have investigated in this paper is possible singularity of the Fisher information matrix, where not
all parameters are estimable. Theorem 1 demonstrates that it happens when some of parameters mapped from a spectral
density are duplicated. Non-identifiability of simultaneous spatial autoregressive model leads us not only to multiple
estimates of parameters but also non-estimable parameters. We need to check such a singularity before estimation. Oth-
erwise, we may face unconvergence of optimisation algorithm or instability of the estimate. Several types of conditions
given in Section 4 would be useful for the check. There are a lot of open problems left, for example, converse of Theorem
1 or any other type of necessary and sufficient condition for the non-singularity than that given in Theorem 3.
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