
International Journal of Statistics and Probability; Vol. 6, No. 3; May 2017 

ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

183 

Characterizations Based on Cumulative Entropy of the Last-order Statistics 

Osman Kamari
1
 

1 
College of Administration and Economics, University of Human Development, Sulaymaniyah, Iraq 

Correspondence: Osman Kamari, College of Administration and Economics, University of Human Development, 

Sulaymaniyah, Iraq. E-mail: osman.kamari@uhd.edu.iq 

 

Received: November 22, 2016   Accepted: April 19, 2017   Online Published: April 23, 2017 

doi:10.5539/ijsp.v6n3p183          URL: https://doi.org/10.5539/ijsp.v6n3p183 

 

Abstract 

Cumulative Entropy (CE) as a measure of uncertainty alternative to Shannon entropy is proposed by Di Crescenzo and 

Longobardi (2009). In this paper, some properties of the cumulative entropy are derived and under conditions are showed 

the cumulative entropy of the last order statistics can determine the distribution function uniquely. Weibull family is 

characterized by ratio of the cumulative entropy of the last order statistics to its expectation. Also, some inequalities are 

presented for the cumulative entropy of reversed residual lifetime of a parallel system. 
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1. Introduction 

Shannon (1948) introduced entropy, known Shannon entropy, as a measure of uncertainty for a random variable. Suppose 

𝑋 be a non-negative continuous random variable having probability density function 𝑓 and cumulative distribution 

function 𝐹. Hence, Shannon entropy ℎ(𝑋) of a continuous non-negative random variable 𝑋 with probability density 

function 𝑓(𝑥) is defined as 

ℎ(𝑋) = − ∫ 𝑓(𝑥)
+∞

0

𝑙𝑜𝑔 𝑓(𝑥)  𝑑𝑥                

Di Cresceno and Longbardi (2002) introduced the entropy of the reversed residual  lifetime 𝑋𝑡 = [𝑡 − 𝑋|𝑋 < 𝑡] as a 

dynamic measure of uncertainty as follows 

𝐻(𝑋; [𝑡]) = − ∫
𝑓(𝑥)

𝐹(𝑡)
 𝑙𝑜𝑔

𝑡

0

 
𝑓(𝑥)

𝐹(𝑡)
 𝑑 𝑥          

It’s clear that H(X; ∞) = ℎ(𝑋). 

Rao et al. (2004) defined Cumulative Residual Entropy(CRE) as an alternative measure of uncertainty to Shannon entropy 

in that the probability density function is replaced by survival(reliability) function and obtained some properties and 

applications of that(2005).  Rao showed CRE overcomes some problems with Shannon entropy. Some properties of CRE 

are: CRE is more general rather than the Shannon entropy, it has more mathematical properties rather than Shannon 

entropy, and it is easily computed from sample data. CRE has applications in reliability engineering and image processing, 

for more details see Rao (2004, 2005). CRE for a non-negative univariate random variable is as follows: 

𝐶𝑅𝐸(𝑋) = − ∫ �̅�(𝑥) 𝑙𝑜𝑔 �̅�(𝑥) 𝑑𝑥.
∞

0

              

That �̅�(𝑥) = 𝑃(𝑋 > 𝑥) = 1 − 𝐹(𝑥) is the survival function of 𝑋. 

Crescenzo and Longobardi (2009) introduced a new information measure that turns out to be useful to measure 

information on the reversed residual lifetime of a system. The reversed residual lifetime is a concept in reliability that is 

convenient to describe the time elapsing between the failure of a system and the time when it is down. This measure is 

defined as follows: 

𝐶𝐸(𝑋) = − ∫ 𝐹(𝑥) log 𝐹(𝑥) 𝑑𝑥 

∞

0

                                                                 (1) 

where 𝐹(𝑥) is the cumulative distribution function of the non-negative random variable 𝑋. Also, they proposed 

dynamic form of cumulative entropy that called dynamic cumulative entropy and obtained some of its properties. 
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Cumulative entropy for reversed residual lifetime with distribution function 𝐹𝑡(𝑥) = 𝑃[𝑡 − 𝑋|𝑋 < 𝑡] is  

𝐶𝐸(𝑋; 𝑡) = − ∫ 𝐹𝑡(𝑥)𝑙𝑜𝑔𝐹𝑡(𝑥) 𝑑𝑥 = − ∫
𝐹(𝑥)

𝐹(𝑡)
𝑙𝑜𝑔

𝐹(𝑥)

𝐹(𝑡)
𝑑𝑥

𝑡

0

𝑡

0

 

It’s clear 𝐶𝐸(𝑋; ∞) = 𝐶𝐸(𝑋). 

By using probability integral transformation 𝐹(𝑥) = 𝑈 that 𝑈 have uniform distribution function on (0,1), then we 

obtain 

𝐶𝐸(𝑋) = − ∫
𝑢 𝑙𝑜𝑔𝑢

𝑓(𝐹−1(𝑢))
𝑑𝑢

1

0

 

That 𝐹−1 is inverse function of 𝐹. 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  be a random sample, the order statistics of the sample is defined by the arrangement 

𝑋1, 𝑋2, … , 𝑋𝑛from the minimum to the maximum by 𝑋1:𝑛 , 𝑋2:𝑛, … , 𝑋𝑛:𝑛. Order statistics are used in entropy estimation, 

quality control, reliability, insurance, etc. For more details see Arnold et al. (1992), David and Nagaraja (2003).  

Baratpour (2010) have derived characterizations result based on Cumulative residual entropy of first order statistics. Also 

Thapliyal et al. (2013) studied cumulative entropy and dynamic cumulative entropy using order statistics. They showed a 

characterization property that dynamic cumulative entropy of the i th order statistics determines the distribution function. 

The purpose of this paper is characterization result the parent distribution based on Cumulative Entropy of the last order 

statistics. 

The paper is organized as follows: In section 2, characterizing the parent distributions based on the CE of the last order 

statistics is presented. Also, Weibull distribution is characterized based on the ratio of the CE of the last order statistics to 

the expectation of it. Last section  includes some Characterizations based on CE of reversed residual lifetime of parallel 

systems.  

2. Characterizations Based on the Last-order Statistics 

Last order statistics is an important special case of order statistics. Suppose 𝑋𝑛:𝑛 be the last order statistics in a random 

sample of size n, cumulative distribution function of 𝑋𝑛:𝑛 is 𝐹𝑋𝑛:𝑛
(𝑥) = (𝐹(𝑥))𝑛, Thus CE of 𝑋𝑛:𝑛 is defined as 

follow: 

𝐶𝐸(𝑋𝑛:𝑛) = −𝑛 ∫(𝐹(𝑥))𝑛

∞

0

𝑙𝑜𝑔𝐹(𝑥)𝑑𝑥 

By changing variable 𝐹(𝑥) = 𝑈, we have  

𝐶𝐸(𝑋𝑛:𝑛) = −𝑛 ∫
𝑢𝑛log (𝑢)

𝑓(𝐹−1(𝑢))

1

0

𝑑𝑥                                                                  (2) 

In the following theorem, we show that only in Weibull family the ratio of the CE of the last order statistics to the 

expectation of it is constant. First we need a lemma taken from Baratpour (2010). 

Lemma 2.1: For any increasing sequence of positive integers {𝑛𝑗, 𝑗 ≥ 1}, the sequence of polynomials {𝑥𝑛𝑗} is 

complete on L(0,1), if and only if ∑
1

𝑛𝑗

∞
𝑗=1  be infinitely. 

Theorem 2.1: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are positive, independent and identically(iid) distributed observations from an 

absolutely continuous cumulative distribution function 𝐹(𝑥) and probability density function 𝑓(𝑥). Then 𝐹(𝑥) 

belongs to Weibull family if and only if 
𝐶𝐸(𝑋𝑛:𝑛)

𝐸(𝑋𝑛:𝑛)
= 𝑐(> 0) for all 𝑛 = 𝑛𝑗, 𝑗 ≥ 1 such that ∑

1

𝑛𝑗

∞
𝑗=1  be infinitely. 

Proof: The ‘if’ part of the theorem is trivial. Hence we prove ‘only if’ part, using  

integral transformation 𝐹(𝑥) = 𝑈 in 
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𝐸(𝑋𝑛:𝑛) = ∫ 𝑛𝑥𝑓(𝑥)[𝐹(𝑥)]𝑛−1

∞

0

𝑑𝑥 = 𝑛 ∫[𝐹(𝑢)]−1

1

0

𝑢𝑛−1𝑑𝑢                               (3) 

according to relations (2) and (3) we obtain  

𝐶𝐸(𝑋𝑛:𝑛)

𝐸(𝑋𝑛:𝑛)
= −

∫
𝑢𝑛log (𝑢)

𝑓(𝐹−1(𝑢))
1

0
𝑑𝑢

∫ [𝐹(𝑢)]−11

0
𝑢𝑛−1𝑑𝑢

                                                                 (4) 

Relation (4) coincides c, so we have 

∫
𝑢𝑛 log(𝑢)

𝑓(𝐹−1(𝑢))

1

0

𝑑𝑢 + 𝑐 ∫[𝐹(𝑢)]−1

1

0

𝑢𝑛−1𝑑𝑢 = 0 

∫ 𝑢𝑛−1

1

0

[
𝑢 log 𝑢

𝑓(𝐹−1(𝑢))
+ 𝑐𝐹−1(𝑢)] 𝑑𝑢 = 0                                                 (5) 

If relation (5) holds for 𝑛 = 𝑛𝑗, 𝑗 ≥ 1 such that ∑
1

𝑛𝑗

∞
𝑗=1 = ∞, then from lemma 2.1 we have 

(1 − 𝑣) log(1 − 𝑣)

𝑓(𝐹−1(1 − 𝑣))
+ 𝑐𝐹−1(1 − 𝑣) = 0 

Because 
𝑑 𝐹−1(1−𝑣)

𝑑 𝑣
=

1

𝑓(𝐹−1(1−𝑣))
 then it follows: 

(1 − 𝑣) log(1 − 𝑣)
𝑑 𝐹−1(1 − 𝑣)

𝑑 𝑣
+ 𝑐𝐹−1(1 − 𝑣) = 0      𝑣 ∈ (0,1) 

By solving this differential equation, we have 

𝑑 𝐹−1(1 − 𝑣)
𝑑 𝑣

 𝐹−1(1 − 𝑣)
= −

𝑐

(1 − 𝑣) log(1 − 𝑣)
 

 F−1(1 − v) = c1[− log(1 − v)]c , v ∈ (0,1)   thus F(x) = 1 − exp {− (
x

c1
)

1

c
} , x > 0 we conclude that F(x) belongs 

to the Weibull family. 

 

Theorem 2.2: Suppose 𝑋, 𝑌 be two positive random variables with probability density functions 𝑓(𝑥) and 𝑔(𝑥) and 

absolutely continuous distribution functions 𝐹(𝑥) and 𝐺(𝑥), respectively. Then 𝐹  and 𝐺 belong to the same family 

of distributions, but for a location shift, if and only if  

𝐶𝐸(𝑋𝑛:𝑛) = 𝐶𝐸(𝑌𝑛:𝑛) 

for 𝑛 = 𝑛𝑗, 𝑗 ≥ 1 such that ∑
1

𝑛𝑗

∞
𝑗=1  be infinitely.                                                

Proof: The ‘if’ part of the theorem is trivial. Hence we prove ‘only if’ part, according to relation (2) if 𝐶𝐸(𝑋𝑛:𝑛) =
𝐶𝐸(𝑌𝑛:𝑛), then 

∫ 𝑢𝑛

1

0

log 𝑢 [
1

𝑓(𝐹−1(𝑢))
−

1

𝑔(𝐺−1(𝑢))
] 𝑑𝑢 = 0                                                 (6) 

if for all 𝑛 = 𝑛𝑗 , 𝑗 ≥ 1 such that ∑
1

𝑛𝑗

∞
𝑗=1 = ∞, then from Lemma 2.1 we can conclude that 

𝑓(𝐹−1(𝑡)) = 𝑔(𝐺−1(𝑡)) ,    0 < 𝑡 < 1. 
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Because 
𝑑𝐹−1(𝑡)

𝑑𝑡
=

1

𝑓(𝐹−1(𝑡))
, we have 

𝑑𝐹−1(𝑡)

𝑑𝑡
=

𝑑𝐺−1(𝑡)

𝑑𝑡
  , 0 < 𝑡 < 1 , then 𝐹−1(𝑡) = 𝐺−1(𝑡) + 𝑑 , 0 < 𝑡 < 1.  this 

means for a change of location parameter, 𝐹 and 𝐺 belong to the same family. 

 

3. Characterizations Based on Cumulative Entropy of Reversed Residual Lifetime of Parallel Systems 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  be continuous and iid random variables with common cumulative distribution function 𝐹 

denote the lifetimes of 𝑛 components of a parallel system. Also 𝑋1:𝑛 , 𝑋2:𝑛, … , 𝑋𝑛:𝑛 be the ordered lifetimes of the 

components. Then 𝑋𝑛:𝑛  represents the lifetime of that parallel system with cumulative distribution function 

𝐹𝑋𝑛:𝑛
(𝑥) = (𝐹(𝑥))

𝑛
, 𝑥 > 0. The distribution function of [𝑡 − 𝑋𝑛:𝑛|𝑋𝑛:𝑛 < 𝑡] is 𝐹𝑋𝑛:𝑛

(𝑥) = (
𝐹(𝑡−𝑥)

𝐹(𝑡)
)𝑛 that [𝑡 − 𝑋𝑛:𝑛] 

is called reversed residual lifetime of system. Now cumulative entropy for reversed residual lifetime of parallel system 

with distribution function 𝐹𝑋𝑛:𝑛
(𝑥) is as follows: 

𝐶𝐸(𝑋𝑛:𝑛,𝑡) = − ∫ 𝑋𝑛:𝑛,𝑡 log 𝑋𝑛:𝑛,𝑡  𝑑𝑥 = − ∫ (
𝐹(𝑥)

𝐹(𝑡)
)

𝑛𝑡

0

log (
𝐹(𝑥)

𝐹(𝑡)
)

𝑛

𝑑𝑥

∞

0

= −
1

(𝐹(𝑡))
𝑛 ∫(𝐹(𝑥))

𝑛

𝑡

0

log(𝐹(𝑥))
𝑛

 𝑑𝑥 + 𝑛 log 𝐹(𝑡) ∫ (
𝐹(𝑥)

𝐹(𝑡)
)

𝑛𝑡

0

𝑑𝑥

= −
1

(𝐹(𝑡))
𝑛 ∫(𝐹(𝑥))

𝑛
log(𝐹(𝑥))

𝑛
𝑑𝑥

𝑡

0

+ 𝑛 log 𝐹(𝑡) 𝐾𝑋𝑛:𝑛
(𝑡)                                             (7) 

That 𝐾𝑋𝑛:𝑛
(𝑡) = 𝐸(𝑡 − 𝑋𝑛:𝑛|𝑋𝑛:𝑛 < 𝑡) is the mean reversed residual lifetime of the system. 

Now according to relation(7) and that log 𝐹(𝑡) ≤ 0, we obtain some lower bounds for 𝐶𝐸(𝑋𝑛:𝑛) as follows: 

𝐶𝐸(𝑋𝑛:𝑛,𝑡) ≤ −
1

(𝐹(𝑡))
𝑛 ∫(𝐹(𝑥))

𝑛
log(𝐹(𝑥))

𝑛
𝑑𝑥

𝑡

0

≤ −
1

(𝐹(𝑡))
𝑛 ∫(𝐹(𝑥))

𝑛
log(𝐹(𝑥))

𝑛
𝑑𝑥

∞

0

=
1

(𝐹(𝑡))
𝑛 𝐶𝐸(𝑋𝑛:𝑛) 

hence, for all t we have 

𝐶𝐸(𝑋𝑛:𝑛) ≥ (𝐹(𝑡))
𝑛

𝐶𝐸(𝑋𝑛:𝑛,𝑡) 

According to non-negativity of 𝐶𝐸 and relation (7) we obtain 

𝐾𝑋𝑛:𝑛
(𝑡) ≤ −

1

𝑛 log|𝐹(𝑡)|(𝐹(𝑡))
𝑛 ∫(𝐹(𝑥))

𝑛
log(𝐹(𝑥))

𝑛
𝑑𝑥

𝑡

0

≤ −
1

𝑛 log|𝐹(𝑡)|(𝐹(𝑡))𝑛
∫(𝐹(𝑥))

𝑛
log(𝐹(𝑥))

𝑛
𝑑𝑥

∞

0

≤ −
1

𝑛 log|𝐹(𝑡)|(𝐹(𝑡))𝑛
 𝐶𝐸(𝑋𝑛:𝑛) 

Finally  

𝐶𝐸(𝑋𝑛:𝑛) ≥ 𝑛 log|𝐹(𝑡)|(𝐹(𝑡))𝑛 𝐾𝑋𝑛:𝑛
(𝑡) 

Theorem 3.1: Suppose 𝑋  and 𝑌  be two positive random variable with density functions 𝑓(𝑥) and 𝑔(𝑥)  and 

absolutely continuous cumulative distribution functions 𝐹(𝑥)  and 𝐺(𝑥), respectively. Then 𝐹 and 𝐺 belong to the 

same family of distributions, but for a change in location and scale parameters, if and only if for 𝑡 > 0  

𝐶𝐸(𝑋𝑛:𝑛,𝑡) = 𝐶𝐸(𝑌𝑛:𝑛,𝑡) 

for 𝑛 = 𝑛𝑗 , 𝑗 ≥ 1 such that ∑
1

𝑛𝑗

∞
𝑗=1  be infinitely. 
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Proof: The ‘if’ part of the theorem is obvious. So to prove ‘only if’ part, if for all 𝑛 = 𝑛𝑗 , 𝑗 ≥ 1 , ∑
1

𝑛𝑗

∞
𝑗=1 = ∞, 

𝐶𝐸(𝑋𝑛:𝑛,𝑡) = 𝐶𝐸(𝑌𝑛:𝑛,𝑡), then according to theorem (2.2) [𝑋|𝑋 < 𝑡] and [𝑌|𝑌 < 𝑡] have the same distribution but for 

a location shift, means 𝑓𝑡(𝑥) = 𝑔𝑡(𝑥 + 𝑐) that 𝑓𝑡  , 𝑔𝑡 are respectively density functions of [𝑋|𝑋 < 𝑡] and [𝑌|𝑌 < 𝑡]. 

Hence 𝑓(𝑥) =
𝐹(𝑡)

𝐺(𝑡)
𝑔(𝑥 + 𝑐) that is 𝐹 and 𝐺 belong to the same family of distributions but for a change in location 

and scale parameters. 
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