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Abstract

In longitudinal studies with subjects measured repeatedly across time, an important problem is how to select a model
generating data by choosing between a linear regression model and a linear latent growth model. Approaches based both
on information criteria and asymptotic hypothesis tests of the variances of ”random” components are widely used but
not completely satisfactory. We propose a test statistic based on the trace of the product of an estimate of a variance
covariance matrix defined when data come from a linear regression model and a sample variance covariance matrix. We
studied the sampling distribution of the test statistic giving a representation in terms of an infinite series of generalized
F-distributions. Knowledge about this distribution allows us to make inference within a classical hypothesis testing
framework. The test statistic can be used by itself to discriminate between the two models and/or, if duly modified, it can
be used to test randomness on single components. Moreover, in conjunction with some model selection criteria, it gives
additional information which can help in choosing the model.

Keywords: Generalized F-distribution, Hypothesis testing, Linear Mixed Models

1. Introduction

It is common practice in many applications to collect multiple measurements on subjects across time by focusing on
the process of change when, typically, both data dependency and differential growth for different individuals can occur.
If we assume that the subjects constitute a sample from the population of interest and we wish to draw conclusions
about typical patterns in the population and the subject-to-subject variability of these patterns, we are fitting linear latent
growth models. In this paper these models are analyzed by using a mixed-modeling framework (Laird & Ware, 1982).
Linear mixed models can be viewed as extensions of linear regression models and attempt to account for within-subject
dependency in the multiple measurements by including one or more subject-specific latent variables in the regression
model. Typically, an additional random effect is included for each regression coefficient that is expected to vary among
subjects. An important practical problem is how to discriminate between a linear regression model and a linear mixed
model and how to choose the random effect components. In order to address the issue of which model is more suitable, one
might use standard model selection measures based on information criteria such as the widely used Akaike Information
Criteria (AIC; Akaike, 1973), the Bayesian Information Criteria (BIC; Schwarz, 1978) the conditional Akaike Information
Criterion (cAIC, Vaida & Blanchard, 2005). These approaches are based on the choice of models that minimize an
estimate of a specific criterion which usually involves a trade-off between the closeness of the fit to the data and the
complexity of the model. We refer to the paper of Muller et al. (2013) for a review of these approaches and other
methods such as shrinkage methods like the LASSO (Tibshirani, 1996), Fence methods (Jiang et al., 2008) and Bayesian
methods. The validity of all the methods proposed depends on the underlying assumptions. The review paper of Muller
et al. (2013) gives an overview of the limits and most important findings of above approaches, extracting information
from some published simulation results. As is known, one of the major drawbacks of these approaches is that they fail
to give any measure of the degree of uncertainty of the model chosen. The value they produce has not a straight-forward
interpretation.

Alternatively, because model selection is closely related to hypothesis testing, the choice between a linear regression mod-
el (LRM) and a linear latent growth model (LLGM) and the evaluation of its uncertainty could be conducted considering
a formal hypothesis test on the variances of ”random” components. Noting that models are nested, it is natural to consider
the likelihood ratio test. However, the difficulty with this is that it makes the usual approach of comparing the likelihood
ratio test statistic with the chi-square distribution inappropriate. The question of whether the variance of a component is
zero depends on whether said variance takes its value on the boundary of the parameter space. This situation is known as
”non-standard” in relation to the other uses of the likelihood ratio test. The major consequence is that in large samples
−2 times the logarithm of the likelihood ratio cannot be treated as a chi-square distribution, but rather, as a mixture of
chi-square distributions. Determining the weights of this mixture distribution is difficult especially for testing multiple
variance components or a subset of them. For more details see, for example, Self & Lang (1987), Stram & Lee (1994),
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Verbeke & Molenberghs (2003), Giampaoli & Singer 2009. Comparing the likelihood ratio statistic with the critical value
from a chi-square sampling distribution tends not to reject the null as often as it should. Other tests not based on the
likelihood function can be implemented Silvapulle & Sen (2005) but their validity should be carefully detected when
applied to linear mixed models. Moreover, all these tests are only valid asymptotically. Finite sample distributions of the
likelihood ratio test require simulations and are only reported in particular cases. For example, Crainiceanu & Ruppert
2004 introduced an efficient simulation algorithm based on the spectral representations of the likelihood ratio test and the
restricted likelihood ratio test statistics for models with a single variance component.

When we extend the analysis to multiple variance components, the complexity and difficulties increase. In these cases we
have to consider variance covariance matrices and the problem of testing the equality of two positive definite matrices.
Hypothesis testing approaches based on the equality of two positive definite matrices have a distinguished history in mul-
tivariate statistics. In most cases the likelihood ratio approach is used and the resulting test statistics involve the ratio of the
determinant of the sample covariance matrix under the null hypothesis and the alternative hypothesis. Other researchers
have studied tests based on the trace of two covariance matrices. Roy (1953), Pillai (1955), Pillai & Jayachandran (1968)
and Nagao (1973) develop trace-based tests and compare their performance to that of determinant-based tests. The trace
test proposed by Pillai for testing the equality of two variance covariance matrices appears to be useful in discriminating
between an LRM and an LLGM by appropriately defining the two matrices involved.

Let’s denote with V the variance covariance matrix of the ordinary least square estimators when data come from an LRM
and let V +Ω be the variance covariance matrix of the same estimators when data come from an LLGM where Ω denotes
the covariance matrix of the random effects. The Pillai test statistic proposed in the paper is based on an estimate of
1
k tr V−1(V+Ω) withΩ that plays a a crucial role in discriminating between the two models. IfΩ is a positive semi definite
matrix,Ω ≽ 0, 1

k tr V−1(V+Ω) > 1. In this case we can state that data come from an LLGM. IfΩ = 0, 1
k tr V−1(V+Ω) = 1

and data come from an LRM. In section 2 the test statistic is defined after introducing several notations. In section 3 we
analyze the sampling distribution. When data come from an LRM it has a ”standard” F-distribution, when data come from
an LLGM the sampling distribution is more complex. It is a linear combination of standard F-distributions. The exact
form of a linear combination of standard F-distributions is studied. Following the work of Kourouklis & Moschopoulos
(1985) a unified sampling distribution involving a generalized F-distribution is proposed which is based on an infinite
series representation and is relatively easy to implement. In section 4 we discuss the test statistic to make inference. In
section 5, we analyze a slight modification of the test so that inference on randomness of single components of the model
is possible. Finally, in section 6, two applications are investigated. In subsection 6.1 we applied the test to a data set
on tourism. Said data set is sufficiently ”regular” to allow a clear-cut answer regarding the choice of the model. The
answers produced by the test are not in conflict with those given by other indicators for example by some model selection
criteria. The advantage derived from the hypothesis testing approach is that we could attach (an estimate of) a measure
of the degree of uncertainty to the choice of the model. In subsection 6.2 the test is applied to a Cadralazine data set
previously analyzed by Vaida & Blanchard (2005). In this case different model selection criteria applied to the data set do
not give clear-cut indications about the model. There is a disagreement which also remains when using the test proposed
in this paper but we can still provide additional information by computing an estimate of the probability of accepting the
”wrong” model. Finally, in Appendix A and B the sampling distribution and the moments of the test statistic proposed
are derived.

2. Notation and Test Statistic

Let us suppose that t observations on the i-th of n units are described by the model yi = Xβi + ui, i = 1, . . . , n, where X
is a t × k matrix containing a column of ones and a column of constant time values, βi is a k × 1 vector of coefficients
unique to the i-th experimental unit, and ui is a t × 1 vector whose component is the measurement error at a time point for
individual i.

Let us also suppose that each experimental unit and its response curve is considered to be selected from a larger population
of response curves; thus the regression coefficient vectors βi may be viewed as random drawings from some k-variate
population: βi = θ + vi, i = 1, . . . , n, where vi is an unobserved random variable that configures individual growth.

In this paper we discuss testing under the following assumptions: (a) ui ∼ N
(
0, σ2It

)
, (b) vi ∼ N (0,Ω), Ω is a positive

semi definite matrix, (c) ui ⊥ vi, where the symbol ⊥ indicates independence of random variables. We refer to this model
as a linear latent growth model (LLGM).

If Ω = 0, then the regression coefficients are fixed. We refer to this model as a linear regression model (LRM). The
normality assumptions are introduced for testing purposes.

By replacing the random component in the model we have

yi = Xθ + εi, εi ∼ N
(
0, XΩX′ + σ2It

)
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Let bi = (X′X)−1X′yi be the ordinary least square estimators of θ computed for each individual unit. Note that the
bi’s are independent and normally distributed with mean θ and variance-covariance matrix σ2(X′X)−1 + Ω. Let S b =

(n − 1)−1 ∑n
i=1

(
bi − b

) (
bi − b

)′
be the sample variance covariance matrix of bi with b = 1

n
∑n

i=1 bi. When data come
from an LLGM, S b is a simple unbiased estimator of σ2(X′X)−1 + Ω, when data come from an LRM S b is an unbiased
estimator of σ2(X′X)−1 Gumpertz & Pantula (1989).

To discriminate between an LRM or an LLGM we propose the following test statistic

T =
1
k

tr
(X′X)S b

s2 (1)

where s2 = 1
n
∑n

i=1 s2
i , with s2

i =
(yi−Xbi)′(yi−Xbi)

T−k (Swamy, 1970).

When data come from a linear regression model (Ω = 0), (1/s2)(X′X) is ”close” to S b and we expect the test statistic T to
be approximately equal to one. When data come from an LLGM we expect that T > 1. The greater T the stronger is the
evidence against an LRM.

The sampling distribution of T is defined in the next section.

3. Sampling Distribution of Test Statistic

Given the assumptions of normality on the model, in Appendix A is shown that

T =
1
k

k∑
i=1

sii

s2 ∼
1
k

k∑
i=1

(
1 +
ηi

σ2

)
F(n−1),n(t−k) (2)

where sii, i = 1, . . . , k is the i−th diagonal element of (X′X)1/2S b(X′X)1/2, ηi are eigenvalues of the matrix (X′X)1/2Ω(X′X)1/2

and F is for F−distribution.

The sampling distribution (2) is a linear combination of independent F variates whose distribution does not admit a closed
and simple form. However, because it can be seen as a linear combination of ratios of independent gamma variates,
the single gamma-series representation proposed by Kourouklis & Moschopoulos (1985) and Moschopoulos (1985) is
particularly useful for defining the density of T and for computing quantiles after switching the order of summation and
integration. In Appendix A we show that the density function of T is

fT (x) =
∞∑

l=0

wl GF (δ, α, γ) (3)

where GF is for Generalized Fisher-distribution (GF-distribution), δ = n(t−k)
k(n−1) η, α = k(n−1)/2+ l, γ = n(t−k)/2, wl = Cdl

with dl that can be obtained recursively by the formula
d0 = 1

dl+1 = 1
l+1

∑l+1
i=1

[∑k
j=1 α j

(
1 − η

λ j

)i
]

dl+1−i, l = 0, 1, 2, . . .

where λi =
(
1 + ηi

σ2

)
, η = mini{λi}, C =

∏k
i=1

(
η
λi

)α j
, αi =

n−1
2 .

When data come from an LRM, Ω = 0 and T ∼ Fk(n−1),n(t−k).

In Appendix B moments of T are derived. In particular it has been shown that the expected value is given by E(T ) =
n(t−k)

n(t−k)−2η where η = (1/k)
∑k

i=1(1 + ηi/σ
2). As n increases E(T ) converges to η and Var(T )→ 0 (see Appendix B).

An example of the behavior of the sampling distribution of T can be shown designing a simple simulation. Let t = 7,

k = 2, X a matrix containing a column of ones and a column of constant time values and Ω =
[

230 −46
−46 21

]
.

Fig.: 1(a) shows the behavior of the density function of T for n = 5 and different σ2 defined as σ2 = τ det(Ω). Increasing
τ, σ2 becomes large compared with the elements of Ω, η is close to one and the density of T is close to an Fk(n−1),n(t−k),
the F−distribution of T when data come from an LRM (Ω = 0).

Fig.: 1(b) shows the behavior of the density of T for different n and σ2 fixed (τ = 0.3). The larger the number of units, n,
the lower is the variance of the distribution, Var(T ) −→ 0 as n −→ ∞. For increasing n the distribution of T concentrates
around η = 4.53.

The density function (3) is not difficult to implement in practice and in most statistical software there is a function that
computes the generalized F-distribution. In this paper computations are made with R Core Team (2014) where a library
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Figure 1. Density functions of T for different σ2, σ2 = τ det(Ω), and different n. cv is for critical value

(GB2) (or flexsurv) allows us to compute density, distribution function, quantile function and random generation for the
GF-distribution.

The weights of the series representation can be troublesome to implement. Moreover, their computation can become
too CPU-time consuming. In these cases η may be adjusted to make the convergence of the series faster Kourouklis &
Moschopoulos (1985).

When the variability of the scale parameters is large and/or the shape parameters are small the convergence of the weights
is extremely slow. This fact can discourage application of the proposed expression and, especially, simulation studies of
its properties; therefore an approximation of the weights could be necessary.

For η ≤ mini{λi} the weights, wl, define probabilities of an infinite discrete distribution Vellaisamy & Upadhye (2009) and
they can be approximated by a theoretical discrete distribution. For more than two random variables, Barnabani (2015)
proposed to approximate these probabilities with the generalized negative binomial distribution of Jain & Consul (1971)
resulting in a fast and ”excellent” approximation. For two linear independent random variables, simple algebra shows that
the weights are described exactly by a negative binomial distribution Barnabani (2015). The infinite discrete distribution
(l,wl)0,1,2,... must be truncated after the desired accuracy. When n is large the terms of the series are small.

4. Inference on the Model

When data come from an LLGM, the sampling distribution of T depends on ηi ≥ 0, the eigenvalues of the matrix
(X′X)1/2Ω (X′X)1/2 and the expected value given by E(T ) = n(t−k)

n(t−k)−2η (see Appendix B). We can observe that η = 1 ⇔
Ω = 0 that is, if and only if data come from an LRM; η > 1 ⇔ Ω ≽ 0 if and only if data come from an LLGM. η > 1
occurs when at least one eigenvalue is greater than zero. The term ηi

σ2 can be seen as the extra factor due to the i − th
random effect. It is zero when the random effect does not occur.

”Natural” estimators of ηi’s are η̂i’s i = 1, . . . , k, the eigenvalues of (X′X)1/2 Ω̂ (X′X)1/2 where Ω̂ is an estimate of Ω.
Ω̂ can be estimated in several ways. Following Swamy (1970) we define Ω̂ = S b − s2(X′X)−1 as a difference of two
matrices. This definition can yield negative estimates for variances of some of the coefficients and/or may not be a
positive definite matrix. In this case we could have negative eigenvalues. Although negative η̂i could appear to be
misleading, the definition of Ω̂ is coherent with the sampling distribution of T and allows for obtaining the equality
T = 1

k tr (X′X)S b
s2 = (1/k)

∑k
i=1(1 + η̂i/s2) which shows that T can be seen as an estimate of η.

The models describing T are different for the two data sources. The series representation of GF-distribution used to
describe an LLGM contains the other as a special case constraining the parameter η to one. We call the more general
model the alternative hypothesis and the restricted model the null hypothesis. We can make inference by defining the null
hypothesis H0 : η = 1 (H0 : η ≤ 1) against the alternative H1 : η > 1. Thus, H0 is rejected if T is ”much” greater than one.

The power of the test statistic proposed here depends on the behavior of the ratio ηi/σ
2. When T is close to one we fail

to reject the null hypothesis but two situations can occur (a) We make a right decision, data are effectively generated by
an LRM, and ηi/σ

2 = 0, (b) We make a wrong decision, data are generated by an LLGM but σ2 is large compared with
the elements of Ω so that ηi/σ

2 is ”small” and T is close to one. An analysis of the power of the test statistic leads us to
enumerate the following ”standard” features:

1. The farther η is from one, the greater is the power of the test, everything else being equal.
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2. Given Ω, the larger is the variance σ2, the lower is the power of the test and the greater is the probability to fail to
reject the null hypothesis. See Fig.: 1(a).

3. The larger the number of units, n, the greater the power of the test, everything else being equal. Note that larger n
reduces both the variance of F-distribution (the sample distribution of T under the null hypothesis) and the variance of
GF-distribution (the sample distribution of T under the alternative hypothesis) and thus provides a greater chance to
reject H0 when it is not correct.

5. Inference on a Single Component

If T is greater than a critical value, then likely data come from an LLGM and detecting which component is random
becomes important. Otherwise, if we fail to reject an LRM an analysis of single components can give further information
on the model.

When data come from an LLGM the sampling distribution of T depends on
(
1 + ηi/σ

2
)

with ηi/σ
2 that can be seen as

the extra factor due to the random effect. An estimate of this parameter replacing ηi with η̂i and σ2 with s2 can help to
identify the number of random components but not which component is random. Therefore, we propose to modify the
extra factor, ηi/σ

2, replacing ηi with ωii and σ2 with σ2xii where ωii is the entry (i, i) of the matrix Ω and xii the entry
(i, i) of the matrix (X′X)−1. The ”new” parameter, ϕi =

(
1 + ωii

σ2 xii

)
, expresses the extent of ”total” variability of the i − th

coefficient (σ2xii + ωii) in relation to the ”residual” variance σ2xii. Given a finite σ2 > 0 and varying ωii, ϕi is greater
than one and it measures how far we move from a situation of zero variance. The greater the value of ϕi the stronger this
evidence. When ωii = 0 the parameter ϕi is equal to one and the i − th component is zero variance. Given that ωii > 0,
then for increasing σ2, ϕi approaches one.

The reciprocal of ϕi, ϕ−1
i =

σ2 xii

σ2 xii+ωii
, can be seen as the share of ”residual” variance on the ”total” variability. It ranges

between zero and one. When ωii > 0, ϕ−1
i < 1 and we face a randomness on the i − th component. When ωii = 0,

ϕ−1
i = 1 and the i − th component is zero variance. Observe that ϕ−1

i can be seen as a scalar form of the matrix product

σ2(X′X)−1
[
σ2(X′X)−1 + Ω

]−1
the trace of which (divided by k) has been proposed by Theil (1963) to measure the shares

of prior and sample information in the posterior precision in the mixed regression estimation.

A ”natural” estimator of ϕi is ϕ̂i = 1 + ω̂ii
s2 xii where ω̂ii is the entry (i, i) of the matrix Ω̂. The sampling distribution of ϕ̂i is

immediate. Because of the equality ϕ̂i = 1 + ω̂ii
s2 xii =

ŝii
s2 xii where ŝii is the (i, i) entry of the matrix S b, we have

ϕ̂i ∼
(
1 +

ωii

σ2xii

)
F(n−1),n(t−k) (4)

which is a scale multiple of an F variate and can be seen as an GF-distribution with
δ = n(t − k)

(
1 + ωii

σ2 xii

)
/(n − 1), α = (n − 1)/2 and γ = n(t − k)/2.

The sampling distribution (4) is obtained by observing that (n − 1)S b/σ
2 ∼ Wk

(
(X′X)−1 + Ω/σ2, n − 1

)
and (n − 1)̂sii/σ

2 ∼(
xii +

ωii
σ2

)
χ2

n−1. This implies that ŝii
σ2 xii ∼

(
1 + ωii

σ2 xii

)
χ2

n−1
n−1 , replacing σ2 with s2 we get (4).

When data come from an LRM, ωii = 0 and ϕi = 1. We define H0 : ϕi = 1 (H0 : ϕi ≤ 1) the null hypothesis. In
this case the estimate ω̂ii can assume values that are greater or less than zero with ϕ̂i ranging around one according to
an F−distribution. Actually, ω̂ii ≤ 0 if and only if ϕ̂i ≤ 1 and the probability P

(
ω̂ii ≤ 0

)
can be computed with the

F−distribution. If data come from an LLGM, ωii > 0 and ϕi > 1. We call H1 : ϕi > 1 the alternative hypothesis. In this
case the estimate ω̂ii can still assume values that are greater or less than zero but the negative values become increasingly
less frequent the stronger the evidence against the null hypothesis. Thus, the null hypothesis H0 is rejected if ϕ̂i is ”much”
greater than one. Of course a p − value can also be computed.

A ”confounding” situation can appear when the ”residual” variance σ2xii is large compared with the elements ofΩ. In this
case ϕi could be close to one and the test statistic ϕ̂i has a GF-distribution close to an F−distribution. In this case there is
a large probability of failing to reject the null hypothesis in favor of the alternative. This problem is clearly explained, for
example, in the work of Gumpertz & Pantula (1989).

Observe that ŝii
s2 xii is a pivotal quantity and a confidence interval for ϕi can be computed when data come from an LLGM.

Fixing α we can determine two percentiles of F-distribution such that

P
(
F(n−1),n(t−k),1−α/2

s2xii

ŝii
≤ ϕ−1

i ≤ Fn−1,n(t−k),α/2
s2xii

ŝii

)
= 1 − α (5)

Thus, if data come from an i − th random component, we can compute a confidence interval for the share. This result can
give further information about the choice of random components. If we automatically compute the confidence interval
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for each component we could face two situations: (a) an interval contained in (0, 1), in which case the component is
presumably random, and (b) an interval around one, in which case a substantial ”indeterminacy” occurs. We could have
a zero variance component or a random component with σ2 which dominates the variance of the component, thereby
confounding the choice.

6. Two Applications

In this section we apply the test statistic T to two data set. The first concerns tourism in Tuscany (Italy) and consists
of the index number (base year 2002) of accommodations (the response variable) on 260 municipalities from 2003 to
2009. These data were first processed in order to obtain homogeneous groups of units. In the paper we work with 98
”homogeneous” municipalities. We call this data set ”tourism data”. The second application concerns a case study of a
pharmacokinetics dataset analyzed in the paper of Vaida & Blanchard (2005) to which we refer for further explanations
of data. The dataset consists of plasma drug concentrations from 10 cardiac failure patients who were given a single
intravenous dose of 30 mg of cadralazine, an anti-hypertensive drug. Each subject has the plasma drug concentration,
in mg/l, measured at 2, 4, 6, 8, 10 and 24 hours, for a total of 6 observations per subject. We refer to this data set as
”Cadralazine data”.

The results obtained in the next sections on the analysis of T statistic are accompanied by other indicators based on
information criteria. It is simply done to have some results based on other embedded approaches for comparable purposes.
From a methodological point of view the approach used here is based on probabilities which have nothing to do with above
information criteria.

As we shall see, the tourism data set make it possible to give clear and evident answer about the choice of the model. The
information criteria applied to Cadralazine data do not give a straight-forward interpretation. This ”indeterminacy” in the
choice of the model is not removed with the test proposed in this paper, however it may be used for providing additional
information.

6.1 Tourism Data

Trajectories of index numbers of 98 ”homogeneous” municipalities drawn from tourism data are plotted in the left panel
of Fig.: 2. By observing the tourism data, each unit appears to have its own trajectory approximated by linear functions
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Figure 2. Spaghetti plots for tourism data and Cadralazine data

with specific intercepts and slopes.

The trajectories are ”high” or ”low” suggesting two hypotheses from an economic point of view. One is that the growth of
tourism in each municipality at time t could be determined solely by an overall regional political economy. Statistically
this is modeled with a vector of fixed population parameters which capture the regional political economy plus an overall
random deviation from the same. On the other hand, data show different steepness across municipalities, suggesting that
the unit-specific intercepts and slopes could not be fixed but vary across units with a growth in tourism influenced not
only by the regional political economy, but also by specific characteristics of each municipality. This suggests that data
could be modeled by adding a random component to the parameter vector in order to distinguish the various trajectories.
Statistically we ask whether it is more appropriate to model data with a linear regression model or a linear latent growth
model.

By applying the hypothesis testing approach proposed in this paper we can make the following comments:

• We found a value of the test statistic T = 4.76, which, when compared with the critical value F194,490,0.95 =

1.212, falls into the rejection region. Consequently, we reject the hypothesis that data come from an LRM. The

162



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 3; 2017

computation of the probability of Type II error requires Ω which is unknown. Replacing the variance covariance
matrix with Ω̂ we observe an estimated (conditional) probability close to zero.
• The p − value is close to zero confirming strong evidence against the null hypothesis.
• ϕ̂1 = 3.245 and ϕ̂2 = 3.7313 compared with F97,490,0.95 = 1.279 confirm that both components are random.
• The confidence intervals of the shares are: 0.21719 ≤ ϕ−1

1 ≤ 0.40331 and 0.19351 ≤ ϕ−1
2 ≤ 0.3593. It is likely that

the ”true” shares belong to the interval (0, 1), thus confirming randomness on both coefficients.

The above results are compared with AIC and BIC indicators normally used in model selection. These indicators are
computed with the package lme4 Bates et al. (2014) of R software. AIC shows a value of 6122.482 when applied to an
LRM which reduces to 5925.687 in an LLGM case. A reduction is also observed with BIC, from 6136.075 (LRM) to
5952.872 (LLGM). These two indicators confirm the choice of a linear latent growth model to describe data. We also
computed the conditional AIC proposed by Vaida & Blanchard (2005), defined for linear mixed models only and not
comparable with other indicators. The value it produces, cAIC = 5776.097, has not a straight-forward interpretation and
the fact that it is less than the others, does not mean that the LLGM must be chosen.

6.2 Cadralazine Data

The plot of the response versus time of Cadralazine data is given in the right panel of Fig.: 2. The data for each patient
are well described by a straight line, but the slopes and intercepts of the ten regression lines differ from subject to subject.
Two models are proposed, a linear regression model with fixed intercepts and slopes, and a mixed effects model with
random intercepts and slopes.

The choice between the two models is first conducted through several model selection criteria. If we compare the AIC
and BIC indicators we observe a disagreement. They produce conflicting results with the AIC indicating that we should
choose an LLGM, while the BIC value gives a different interpretation, thus reversing the choice. Moreover, observe the
differences between the indicators computed, ∆AIC = 161.72(LRM)−157.92(LLGM) = 3.794, ∆BIC = 170.5(LLGM)−
168.0(LRM) = 2.5 This values appear to be ”low” even though they do not have a straight-forward interpretation.

The ”indeterminacy” emerging in this example is not removed with the test proposed in this paper, however it may provide
additional information:

• We found a value of the test statistic T = 1.7829, which when compared with the critical value, F18,40,0.95 = 1.8682,
falls into the acceptance region. We fail to reject an LRM. The closeness of the observed value to the critical value
suggests caution in choosing the model. Indeed, we found a p − value = 0.0639 that confirms our caution. These
results reflect the disagreement of the AIC and BIC indicators.

• The estimated matrix, Ω̂ =
[
−0.31161613 0.090664877
0.09066488 0.003131296

]
is indeterminate, it has both positive and negative

eigenvalues. The estimated single components are given by: ϕ̂1 = 0.0003025058 and ϕ̂2 = 0.3956518. If we
consider the critical values F9,40,0.025 = 0.2852681 and F9,40,0.975 = 2.451939 then ϕ̂1 falls into the rejection in-
terval with a strong evidence against an LRM (p − value = 0.0003025058) and ϕ̂2 falls into the acceptance region
with a p − value = 0.3956518. Formula (5) allows to compute confidence intervals for the two components,
0.03628 ≤ ϕ̂1 ≤ 0.3118, 0.4421 ≤ ϕ̂2 ≤ 3.7996.
• The AIC indicator guides the choice towards an LLGM. We also computed the conditional AIC showing a lower,

though not comparable, value than the other model selection criteria. Therefore, given a substantial indeterminacy
in the choice of the model, with the test statistic proposed in the paper we can give an estimate of the degree of
uncertainty of accepting an LLGM instead of an LRM. We suggest proceeding as follows:

1. Estimate the variance covariance matrix Ω̂. Here we proceed with an estimate produced by the package lme4
of R even though another estimate is plausible,

Ω̂ =

[
0.00054686 0.003727
0.003727 0.025400

]
.

2. We assume data come from an LLGM and we compute a critical value through a GF-distribution at a signifi-
cant level of 0.05 conditionally to Ω = Ω̂. The resulting critical value is 0.971.

3. Compute P (T > 0.971|Ω = 0) = 0.478 through the F-distribution. This estimated probability is taken as
a degree of uncertainty associated with the choice of an LLGM. Still again the result reflect a substantial
indeterminacy in the choice of the model.
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7. Conclusions

We propose a finite sample parametric test to discriminate between a linear regression model and a linear latent growth
model. The test statistic is based on the trace of the product of an estimate of a variance covariance matrix defined
when data come from a linear regression model and a sample variance covariance matrix based on ordinary least squares
estimators. The sampling distribution of the test statistic depends on the model generating the data and can have a
”standard” F-distribution or a linear combination of F-distributions. In this paper a unifying sampling distribution based
on an infinite series representation of generalized F-distributions is given. This result allows us to frame the choice of the
model in a classical hypothesis testing approach. By appropriately modifying the test statistic it is also possible to test
hypotheses on randomness of single elements of the linear latent growth model, thus avoiding the boundary problem of
the likelihood ratio statistic. The test statistic proposed in this paper has been applied to two data sets. With the tourism
data it is used by itself to discriminate between the two models, with the Cadralazine data it is used in conjunction with
several indicators based on information criteria that give an estimate of the probability of accepting or rejecting the model
chosen.
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A. Derivation of Sampling Distribution of Test Statistic

In this appendix the samplig distribution of the test statistic T is analyzed.

When data come from an LRM, Ω = 0 and (n − 1)S b/σ
2 ∼ Wk

(
(X′X)−1, n − 1

)
(Wk is for Wishart distribution). Then,

(n − 1)(X′X)1/2 S b
σ2 (X′X)1/2 ∼ Wk (I, n − 1) where (X′X)1/2 is the square root of (X′X). We have the following results

(i) (n− 1)sii/σ
2 ∼ χ2

n−1 where sii, i = 1, . . . , k is the i− th diagonal element of (X′X)1/2S b(X′X)1/2. Replacing σ2 by s2

we have
(n − 1)sii

s2 =
(n − 1)sii/σ

2

n(t−k)s2

n(t−k)σ2

∼
χ2

n−1

χ2
n(t−k)/n(t − k)

(A.1)

and sii

s2 ∼ Fn−1,n(t−k) (A.2)

(ii) By independence
∑k

i=1(n − 1)sii/σ
2 ∼ χ2

k(n−1) and

1
k

tr
(X′X)S b

σ2 ∼
χ2

k(n−1)

k(n − 1)

because tr
(
(X′X)1/2 S b

σ2 (X′X)1/2
)
= tr (X′X) S b

σ2 .
With the following equality

1
k

tr
(X′X)S b

s2 =
1
k

tr
(X′X)S b

s2

σ2

σ2

n(t − k)
n(t − k)

we derive the sampling distribution of T

T ∼ Fk(n−1),n(t−k) (A.3)

When data come from an LLGM (n − 1)S b/σ
2 ∼ Wk

[
(X′X)−1 + Ω/σ2, n − 1

]
. Therefore, a non singular matrix Q exists

such that n−1
σ2 Q′S bQ ∼ Wk

(
I + D

σ2 , n − 1
)

where D is a diagonal matrix of eigenvalues ηi ≥ 0 of the matrix (X′X)1/2Ω(X′X)1/2

and
trQ′S bQ = tr

(
(X′X)1/2S b(X′X)1/2

)
= tr (X′X) S b. We have the following results:
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(i) (n − 1) osii/σ
2 ∼

(
1 + ηi/σ

2
)
χ2

n−1 where osii denotes the i − th diagonal element of Q′S bQ and

osii

s2 ∼
(
1 + ηi/σ

2
)

Fn−1,n(t−k) (A.4)

(ii) As regards the distribution of T , it must be observed that

k∑
i=1

(n − 1)osii/σ
2 =

k∑
i=1

(n − 1)sii/σ
2 ∼

k∑
i=1

(
1 +
ηi

σ2

)
χ2

n−1 (A.5)

When we replace σ2 by s2, we have

T =
1
k

k∑
i=1

sii

s2 ∼
1
k

k∑
i=1

(
1 +
ηi

σ2

)
F(n−1),n(t−k) (A.6)

The above sampling distributions are now reproposed in terms of Generalized Fisher-distribution (GF-distribution). This
is necessary because (A.6) is difficult to implement in practice and it does not allow for computing the power of the test.

Let us consider (A.1). The statistic can be seen as the ratio of two independent gamma random variables where the
numerator is distributed as G

(
α = n−1

2 , λ1 = 2n(t − k)
)

and the denominator is distributed as G
(
γ = n(t−k)

2 , λ2 = 2
)

where
G(., .) is for gamma distribution, α and γ are shape parameters, λ1 and λ2 scale parameters. The distribution of the ratio,
Z, is called GF-distribution and has pdf Malik (1967)

f (z) =
δγ

B(α, γ)
(z + δ)−(α+γ) zα−1 (A.7)

where B(α, γ) is the Beta function, δ = λ1/λ2. Expression (A.7) is also known as Compound Gamma Distribution Dubey
1970. Therefore, we have

(n − 1)sii

s2 ∼ GF (δ, α, γ) (A.8)

The standard F-distribution (A.3) can be seen as a GF-distribution with δ = n(t−k)/k(n−1), α = k(n−1)/2, γ = n(t−k)/2.

The distribution given by (A.4) is a scalar multiple of a F variate which is a GF-distribution with δ = n(t−k)
(
1 + ηi/σ

2
)
/(n−

1), α = (n − 1)/2 and γ = n(t − k)/2.

The result given by (A.6) is a linear combination of independent F variates whose distribution does not admit a closed
and simple form. However, because it can be seen as a linear combination of ratios of independent gamma variates, the
gamma-series representation proposed by Kourouklis & Moschopoulos (1985) and Moschopoulos (1985) is particularly
useful for defining the distribution of (A.6). Following these papers the distribution of (A.5) is given by

k∑
i=1

(n − 1)sii

σ2 ∼
∞∑

l=0

wl G (ρ + l, 2 η)

where ρ =
∑k

i=1 αi = (n − 1)k/2, wl = Cdl, l = 0, 1, 2, . . ., d0 = 1, C =
∏k

i=1 (η/λi)αi , λi = 1 + ηi
σ2 , η = mini{λi},

dl = (1/l)
∑l

i=1 i gi dl−i with gi = (1/i)
∑k

j=1 α j

(
1 − η/λ j

)i

When we replace σ2 by s2, we have

k∑
i=1

(n − 1)sii

s2 =

∑k
i=1(n − 1)sii/σ

2

n(t−k)s2

n(t−k)σ2

∼
∞∑

l=0

wl
G (ρ + l, 2 η n(t − k))

G (n(t − k)/2, 2)
(A.9)

Finally, from (A.9) we have the distribution of T ,

fT (x) =
∞∑

l=0

wl GF (δ, α, γ) (A.10)

with δ = n(t−k)
k(n−1) η, α = ρ + l and γ = n(t − k)/2.
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B. Moments of test statistic T

The moments of T of order s are given by

E (T s) =
∞∑

l=0

wl E
(
Xs

GF

)
where

E
(
Xs

GF

)
= δs Γ(ρ + l + s)Γ(γ − s)

Γ(ρ + l)Γ(γ)

are the moments of a GF-distribution. Simple algebra allows us to write

E(T s) =
δs

(γ − 1) . . . (γ − s)

∞∑
l=0

wl (ρ + l)s (B.1)

where (.)s is the Pochhammer symbol for rising factorial, δ, γ, ρ and wl are defined in the previous section. We recall
(Barnabani (2014)) that E(l) =

∑∞
l=0 l wl =

∑k
i=1

(
λi
λ1
− 1

)
αi. Since αi = ρ/k, we write E(l) = ρM( λi

λ1
− 1) where M(.) is

for arithmetic mean. Moreover, E(l2) =
∑∞

l=0 l2 wl = ρM
[
λi
λ1

( λi
λ1
− 1)

]
+ ρ2

[
M( λi
λ1
− 1)

]2
. These results allow us to write

the first moment of T as

E(T ) =
δ

γ − 1

∞∑
l=0

wl (ρ + l) = µ1 η

(
1 +

E(l)
ρ

)
= µ1

1
k

k∑
i=1

λi = µ1M(λi) (B.2)

where µ1 =
n(t−k)

n(t−k)−2 is the first moment of an Fk(n−1),n(t−k), and λi = (1 + ηi
σ2 ). Thus, M(λi) is exactly η of section 3.

By (B.1), the second moment of T is given by

E(T 2) =
δ2

(γ − 1)(γ − 2)

∞∑
l=0

wl (ρ + l)2

that can be rewritten as

E(T 2) = µ2 η
2
(
1 +

2ρ + 1
ρ(ρ + 1)

E(l) +
1

ρ(ρ + 1)
E(l2)

)
(B.3)

where µ2 is the second moment of an Fk(n−1),n(t−k).

As n increases, 2ρ+1
ρ(ρ+1) E(l) −→ 2 M( λi

λ1
− 1), 1

ρ(ρ+1) E(l2) −→
[
M( λi
λ1
− 1)

]2
, µ2 −→ 1 and(

1 +
2ρ + 1
ρ(ρ + 1)

E(l) +
1

ρ(ρ + 1)
E(l2)

)
−→

[
1 + M(

λi

λ1
− 1)

]2

Moreover,

η2
[
1 + M(

λi

λ1
− 1)

]2

= [M(λi)]2

Therefore, as n −→ ∞, E(T 2) −→ [M(λi)]2. By (B.2) E(T ) −→ [M(λi)]. Then, the variance of T converges to zero as n
increases.
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