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Abstract

A new method for estimating an unknown, multivariate function from noisy data is proposed in the case where the
unknown function is assumed to be smooth. The proposed method finds the minimizer of the smoothness of a function
while imposing an upper bound on the sum of squared errors between the function and the data set. The proposed
estimator is designed to be numerically sound by eliminating the dependency on any artificially plugged-in parameters
that traditional methods use and by tackling the ill-conditioned numerical settings that traditional methods suffer from.
Hence, it is expected to perform better than existing estimators numerically. We prove the existence of the proposed
estimator and show that we can compute the proposed estimator through a convex program. Empirical studies illustrate
that the proposed method is effectively applied to the problem of estimating the average payoff of a stock option that is
contingent on two different stocks.
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1. Introduction

We look at the problem of estimating an unknown function f∗ : Ω ⊂ Rd → R, where Rd is the d-dimensional Euclidean
space. We presume that we observe r noisy measurements Yi1, . . . ,Yir of f∗ at each ti = (x1(i), . . . xd(i)) ∈ Ω and that

Yi j = f∗(ti) + ϵi j

for 1 ≤ i ≤ n and 1 ≤ j ≤ r, where ϵi1, . . . , ϵir are independent and identically distributed (iid) random variables with a
mean of 0 and a variance of σ2

i < ∞.

In many applications, f∗ is assumed to be smooth. We thus assume that f∗ has partial derivatives of total order m that are
square integrable over Ω. In such a case, one naturally tries to fit a function f to data by minimizing the smoothness of
the fitted function f , which can be measured by

Jd
m( f ) =

∑
α1+···+αd=m,

α1,...,αd are non−negative integers

∫
Ω

. . .

∫ (
∂m f

∂xα1
1 . . . ∂xαd

d

)2

dx1 . . . dxd

over f ∈ X, where

X =

g : Ω→ R
∣∣∣∣ g is an analytic function and

∫
Ω

. . .

∫ (
∂mg

∂xα1
1 . . . ∂xαd

d

)2

dx1 . . . dxd < ∞

for all nonnegative integers α1, . . . , αd satisfying α1 + · · · + αd = m
}
.

While minimizing the smoothness Jd
m of f over X, we also want to ensure that the fitted function f is close to the data

points. The closeness between f and the data points can be measured by

I( f ) =
1
n

n∑
i=1

(
Y i − f (ti)

)2
,
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where Y i =
∑r

j=1 Yi j/r for 1 ≤ i ≤ n. An upper bound on I( f ) can be obtained by noticing that

1
n

n∑
i=1

(
Y i − f∗(ti)

)2
=

1
n

n∑
i=1

ϵ2i

ϵ i , r∑
j=1

ϵi j/r for 1 ≤ i ≤ n


≈ 1

nr

n∑
i=1

(
N(0, σ2

i )
)2

for large r by the weak law of large numbers

≈ 1
nr

n∑
i=1

σ2
i for large n by the strong law of large numbers,

where N(0, σ2) is normally distributed with a mean of 0 and a variance of σ2. The notation “≈” expresses equality in
some appropriate sense.

Since σ2
i can be estimated by the sample variance

∑r
j=1

(
Yi j − Y i

)2
/(r − 1) for 1 ≤ i ≤ n, an upper bound S 2 on I( f ) can

be obtained by

S 2 =
1
nr

n∑
i=1

r∑
j=1

(
Yi j − Y i

)2
/(r − 1). (1)

So, we propose f̂n, the solution to the following minimization problem, as our estimate of f∗:

Problem (A) : Minimize f∈X
∑

α1+···+αd=m,
α1,...,αd are non−negative integers

∫
Ω

. . .

∫ (
∂m f

∂xα1
1 . . . ∂xαd

d

)2

dx1 . . . dxd

Subject to
1
n

n∑
i=1

(
Y i − f (ti)

)2 ≤ S 2.

Problem (A) can serve as an alternative approach to the following traditional problem:

Problem (B) : Minimize f∈X
1
n

n∑
i=1

(
Y i − f (ti)

)2
+ λJd

m( f )

for some λ > 0, which was studied extensively in the literature by Duchon (1977), Meinguet (1979), and Cox (1984)
among others. Despite its rich theory established by numerous researchers, the performance of the solution to Problem
(B) is dependent on the parameter λ, and the procedure of finding the right value of λ is computationally burdensome.
Furthermore, the solution to Problem (B) can be computed by solving a system of linear equations, which involves an
ill-conditioned matrix whose diagonal elements are all zero (page 145 of Dierckx, 1993). To tackle this ill-conditioned
setting, additional numerical procedures must be performed.

On the contrary, the numerical performance of the solution to Problem (A) does not depend on any artificially plugged-in
parameters since one can obtain a good estimate of S 2 via Equation (1). Moreover, we prove that Problem (A) always
has a solution and that the solution can be found by using a convex program. There are many efficient algorithms that
can solve a convex program with guaranteed convergence, so our convex program formulation makes it possible to utilize
such algorithms to find the solution to Problem (A) with guaranteed convergence. The numerical results in Section 3
illustrate that the solution to Problem (A) is computed successfully within a few seconds.

There are many applications where the independent variable of a regression function lies in the multi-dimensional space.
Even though Problem (A) was mentioned as one of the possible solutions to estimation of a multivariate smooth function
in Equations (8.2) and (8.3) on page 139 of Dierckx (1993), the existence of the solution to Problem (A) has not been
proved yet and a numerical procedure with guaranteed convergence has not been proposed so far. This paper provides
these missing foundations by proving the existence of the solution to Problem (A) and by providing numerical procedures
with guaranteed convergence based on convex programs.

This paper is organized as follows. In Section 2, we prove the existence of the solution to Problem (A), and provide the
convex program formulation of Problem (A). In Section 3, we present numerical results to illustrate that our proposed
estimator successfully recovers the underlying true function as n increases to infinity. Concluding remarks are included
in Section 4.
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2. Proposed Formulation

In this section, we prove that Problem (A) always has a solution in Proposition 1. Proposition 1 also describes how we
can solve Problem (A) with a convex program.

To describe the details of Proposition 1, we need some preliminaries. Let P be the set of all polynomials over Ω of the
total degree less than m. It should be noted that P is the vector space of the dimension

K =
(

m + d − 1
d

)
spanned by the monomials of the total degree less than m. For example, when d = 2, Ω = [0, 1]2, and m = 3, P is spanned
by φ1, . . . , φ6, which are defined by

φ1(x1, x2) = 1, φ2(x1, x2) = x1, φ3(x1, x2) = x2, φ4(x1, x2) = x2
1, φ5(x1, x2) = x2

2, φ6(x1, x2) = x1x2

for all (x1, x2) ∈ Ω. We will denote the K monomials of the total degree less than m by φ1, . . . , φK .

A set {u1, . . . , uK} of distinct points of Ω is called unisolvent for P if there exists a unique p ∈ P satisfying p(ui) = zi for
1 ≤ i ≤ K and for any real numbers z1, . . . , zK . It should be noted that {u1, . . . , uK} is unisolvent for P if and only if the
matrix M =

{
Mi j : 1 ≤ i, j ≤ K

}
, whose (i, j)th entry is φi(u j), is invertible.

For t = (x1, . . . , xd) ∈ Rd, ∥t∥ is defined by
(
x2

1 + · · · + x2
d

)1/2
.

We are ready to present Proposition 1.

Proposition 1 Assume that 2m > d and that {t1, . . . , tn} contains a subset {u1, . . . , uK} which is unisolvent for P. Then
there exists a solution f̂n to Problem (A). Furthermore,

(a) f̂n : Ω→ R can be represented as

f̂n(t) = â1φ1(t) + · · · + âKφK(t) +
n∑

i=1

âK+iR(t, ti)

for t ∈ Ω, where

R(t, ti) =
{
∥t − ti∥2m−d ln ∥t − ti∥, for t , ti
0, for t = ti

for t ∈ R2 if 2m − d is an even integer and R(t, ti) = ∥t − ti∥2m−d for t ∈ Rd if 2m − d is an odd integer.

(b) â1, . . . , âK+n, ŷ1, . . . , ŷn is the solution to the following program with the decision variables a1, . . . , aK+n, y1, . . . , yn ∈
R:

Minimize
K+n∑
i=1

K+n∑
j=1

Ci jaia j (2)

Subject to
1
n

n∑
i=1

(
Y i − yi

)2 ≤ S 2

K+n∑
i=1

aiφi(t j) = y j, j = 1, . . . , n,

where

Ci j =
∑

α1+···+αd=m,
α1,...,αd are non−negative integers

∫
Ω

. . .

∫ (
∂mφi

∂xα1
1 . . . ∂xαd

d

) (
∂mφ j

∂xα1
1 . . . ∂xαd

d

)
dx1 . . . dxd

for 1 ≤ i, j ≤ K + n and φK+i(t) = R(t, ti) for t ∈ Ω and 1 ≤ i ≤ n.

(c) Problem (2) is a convex program.

Proof. Let

C =
(y1, . . . , yn) :

n∑
i=1

(
Y i − yi

)
/n ≤ S 2

 .
3
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It should be noted that C is a nonempty, closed, and bounded subset of Rn.

By Talmi and Gilat (1977), for any (y1, . . . , yn) in Rn, there exists a unique f ∈ X such that

1. f (t) =
∑K+n

i=1 aiφi(t) for all t ∈ Ω and for some a1, . . . , aK+n,

2. f (ti) = yi for 1 ≤ i ≤ n, and

3. Jd
m( f ) ≤ Jd

m(g) for any g ∈ X satisfying g(ti) = yi for 1 ≤ i ≤ n.

The ai’s in 1 are uniquely determined by the following linear system with K + n variables and K + n linear equations:

K+n∑
i=1

aiφi(t j) = y j, 1 ≤ j ≤ n (3)

n∑
j=1

aK+ jφi(t j) = 0, 1 ≤ i ≤ K.

By the uniqueness of the ai’s, the linear system (3) is nonsingular, and hence, the mapping from (y1, . . . , yn) to
∑K+n

i=1
∑K+n

j=1

Ci jaia j is continuous. Hence, there exists (ŷ1, . . . , ŷn) ∈ C that minimizes
∑K+n

i=1
∑K+n

j=1 Ci jaia j over C.

Let â1, . . . , âK+n be the solution to (3) with (y1, . . . , yn) replaced with ŷ1, . . . , ŷn. It remains to show that f̂n : Ω→ R given
by f̂n(t) =

∑K+n
i=1 âiφi(t) for t ∈ Ω minimizes Problem (A). Let g be any function in X satisfying

∑n
i=1

(
Y i − g(ti)

)2
/n ≤ S 2.

By Talmi and Gilat (1977), there exists a function ḡ ∈ X and a1, . . . , aK+n that satisfy 1, 2, and 3 with yi replaced with
g(ti) for 1 ≤ i ≤ n. It should be noted that Jd

m(g) ≤ Jd
m(g). Since (g(t1), . . . , g(tn)) ∈ C and (ŷ1, . . . , ŷn) is the minimizer of∑K+n

i=1
∑K+n

j=1 Ci jaia j,

Jd
m( f̂n) =

K+n∑
i=1

K+n∑
j=1

Ci jâiâ j ≤
K+n∑
i=1

K+n∑
j=1

Ci jaia j = Jd
m(g) ≤ Jd

m(g),

resulting in Jd
m( f̂n) ≤ Jd

m(g). Hence, f̂n is a minimizer of Problem (A), proving (a).

To prove (b), we first notice that â1, . . . , âK+n, ŷ1, . . . , ŷn is a feasible solution to (2). Let ã1, . . . , ãK+n, y1, . . . , yn be a
feasible solution to (2). By Talmi and Gilat (1977), there exists a unique f ∈ X such that

i. f(t) =
∑K+n

i=1 aiφi(t) for all t ∈ Ω and for some a1, . . . , aK+n,

ii. f(ti) = yi for 1 ≤ i ≤ n, and

iii. Jd
m(f) ≤ Jd

m(g) for any g ∈ X satisfying g(ti) = yi for 1 ≤ i ≤ n.

Since f̃ : Ω→ R defined by f̃ (t) =
∑K+n

i=1 ãiφi(t) for t ∈ Ω satisfies f̃ (ti) = yi for 1 ≤ i ≤ n, it follows that

Jd
m(f) ≤ Jd

m( f̃ ). (4)

Since ŷ1, . . . ŷm is the minimizer of
∑K+n

i=1
∑K+n

j=1 Ci jaia j,

Jd
m( f̂ ) =

K+n∑
i=1

K+n∑
j=1

Ci jâiâ j ≤ Jd
m(f). (5)

A combination of (4) and (5) yields
K+n∑
i=1

K+n∑
j=1

Ci jâiâ j ≤
K+n∑
i=1

K+n∑
j=1

Ci jãiã j,

concluding that â1, . . . , âK+n, ŷ1, . . . , ŷn is a minimizer of (2).

To prove (c), we note that

K+n∑
i=1

K+n∑
j=1

Ci jaia j =
∑

α1+···+αd=m,
α1,...,αd are non−negative integers

∫
Ω

. . .

∫ (
∂mφ1

∂xα1
1 . . . ∂xαd

d

a1 + · · · +
∂mφK+n

∂xα1
1 . . . ∂x

αd
d

aK+n

)2

dx1 . . . dxd ≥ 0

4
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for all a1, . . . , aK+n ∈ R, and hence, Problem (2) is a quadratically constrained quadratic program. Thus, it follows that
Problem (2) is a convex program. 2

3. Numerical Results

We now examine how the proposed estimator f̂n can be calculated in two numerical settings.

In the first setting, we assume that the true function f∗ : [1, 3]3 → R is given by f∗(x1, x2, x3) = x1/2
1 + x1/2

2 + x1/2
3 for

(x1, x2, x3) ∈ [0, 1]3 and that we can observe a noisy measurement f∗(x1, x2, x3) + ϵ of f∗(x1, x2, x3), where ϵ is normally
distributed with a mean of 0 and a variance of 4.

In the second setting, we look at the case where the true function f∗(x1, x2) is the average payoff of a stock option that is
contingent on two different stocks, where x1 and x2 denote the prices of the underlying stocks.

In both settings, we calculate the mean square error (MSE) of the proposed estimator f̂n, defined by

1
n

n∑
i=1

(
f̂n(ti) − f∗(ti)

)2
,

and compare it to the MSE of the crude estimator Y1, . . . ,Yn, defined by

1
n

n∑
i=1

(
Y i − f∗(ti)

)2
.

The numerical results show that the MSE of the proposed estimator converges to 0 as n increases to infinity while the MSE
of the crude estimator converges to a positive constant. This phenomenon empirically shows that our proposed estimator
converges to the underlying function as n increases to infinity in the L2 sense.

We conducted all simulations using a 64-bit computer with an Intel(R) Core TM i7-6700K CPU at 4GHz and a 32 GB
RAM. We also programmed all simulations in MATLAB R2016a.

3.1 A Simple Case

We assume that f∗ : [1, 3]3 → R is given by f∗(x1, x2, x3) = x1/2
1 + x1/2

2 + x1/2
3 for (x1, x2, x3) ∈ [1, 3]3, {t1, . . . , tn} is given

by {(
1 + 2u/n1/3 − 1/n1/3, 1 + 2v/n1/3 − 1/n1/3, 1 + 2w/n1/3 − 1/n1/3

)
: 1 ≤ u, v,w ≤ n1/3

}
,

Yi j = f (ti) + ϵi j for 1 ≤ i ≤ n and 1 ≤ j ≤ r with r = 1, and the ϵi j’s are iid normal random variables with a mean of 0 and
a variance of 4.

We assume that it is known a priori that f∗ has integrable partial derivatives of a total degree of 2. Then, our proposed
estimator f̂n can be computed as

f̂n(x1, x2, x3) = â1φ1(x1, x2, x3) + â2φ2(x1, x2, x3) + â3φ3(x1, x2, x3) + â4φ4(x1, x2, x3) +
n∑

i=1

âi+4φi+4(x1, x2, x3)

for (x1, x2, x3) ∈ [1, 3]3, where

φ1(x1, x2, x3) = 1, φ2(x1, x2, x3) = x1, φ3(x1, x2, x3) = x2, φ4(x1, x2, x3) = x3,

φi+4(x1, x2, x3) =
(
(x1 − x1(i))2 + (x2 − x2(i))2 + (x3 − x3(i))2

)1/2

for 1 ≤ i ≤ n and (x1, x2, x3) ∈ [1, 3]3, and (â1, . . . , ân+4) is computed from the following program:

Minimize
n+4∑
i=1

n+4∑
j=1

aia j (6)

×
∫ 3

1

∫ 3

1

∫ 3

1

∂2φi

∂x2
1

∂2φ j

∂x2
1

+
∂2φi

∂x2
2

∂2φ j

∂x2
2

+
∂2φi

∂x2
3

∂2φ j

∂x2
3

+
∂2φi

∂x1∂x2

∂2φ j

∂x1∂x2
+
∂2φi

∂x2∂x3

∂2φ j

∂x2∂x3
+
∂2φi

∂x3∂x1

∂2φ j

∂x3∂x1

 dx1dx2dx3


Subject to

1
n

n∑
i=1

Y i −
n+4∑
j=1

a jφ j(ti)


2

≤ 1
nr

n∑
i=1

σ2
i ,

5
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with σ2
i = 4 for 1 ≤ i ≤ n. The triple integration appearing in the objective function of Problem (6) is computed in

MATLAB using MATLAB functions “triplequad” and “integral3”. Problem (A) is then solved using CVX, developed by
Grant and Boyd (2014).

The MSE of f̂n is calculated by
1
n

n∑
i=1

(
f̂n(ti) − f∗(ti)

)2

and is compared to the MSE of the crude estimator Y1, . . . ,Yn,

1
n

n∑
i=1

(
Y i − f∗(ti)

)2
.

We calculate the 95% confidence intervals of the MSE using 400 iid replications, and report them in Table 1. We also
measure the amounts of time spent while calculating the proposed estimator, and compute their averages using 400 iid
replications. We report these values in Table 1. We observe that the MSEs of the proposed estimator are less than those
of the crude estimator. The MSE of the proposed estimator converges to 0 as n increases. We can thus deduce that the
proposed estimator converges to the true function as n increases to infinity.

Table 1. The 95% confidence intervals of the MSE and the average amount of time spent when
f∗(x1, x2, x3) = x1/2

1 + x1/2
2 + x1/2

3 and r = 1.

n MSE of MSE of Time
the proposed estimator the crude estimator (second)

8 2.0674 ± 0.1376 4.0770 ± 0.1895 0.07
27 0.5789 ± 0.0373 3.9562 ± 0.1021 0.08
64 0.2703 ± 0.0174 4.0012 ± 0.0682 0.09
125 0.1474 ± 0.0102 4.0070 ± 0.0509 0.12
216 0.0884 ± 0.0057 3.9841 ± 0.0364 0.24

We next repeat the above experiment with r = 30 and with the right hand side of the constraint of Problem (6) replaced
by 1

nr
∑n

i=1
∑r

j=1

(
Yi j − Y i

)2
/(r − 1). Table 2 reports the 95% confidence intervals of the MSE and the average amounts of

time spent to compute the proposed estimator, using 400 iid replications.

Table 2. The 95% confidence intervals of the MSE and the average amount of time spent when
f∗(x1, x2, x3) = x1/2

1 + x1/2
2 + x1/2

3 and r = 30.

n MSE of MSE of Time
the proposed estimator the crude estimator (second)

8 0.0694 ± 0.0056 0.1387 ± 0.0078 0.53
27 0.0206 ± 0.0016 0.1334 ± 0.0039 0.55
64 0.0093 ± 0.0007 0.1332 ± 0.0027 0.55
125 0.0052 ± 0.0004 0.1325 ± 0.0020 0.60
216 0.0033 ± 0.0002 0.1333 ± 0.0015 0.71

3.2 Estimation of “Gamma” of a Stock Option

We consider the case where f∗ : [0.5, 1.5]2 → R is given so that f∗(x1, x2) is the average payoff of a stock option that is
contingent on the stock price x1 of Stock 1 and the stock price x2 of Stock 2. The payoff structure of this stock option
is given as follows. The option is active between time 0 and time T = 365. The prices of Stock 1 and Stock 2 at time
t ∈ [0,T ] are denoted by S 1

t and S 2
t , respectively. There are 6 time instances, say d1, . . . , d6, when the option expires early.

In other words, on day di, the option expires and generates a payoff of $ri if both S 1
di
/S 1

0 and S 2
di
/S 2

0 are above a certain
price bi for 1 ≤ i ≤ 6. If the option does not expire before time T = 365, the option expires at time T = 365 as follows. If
the option does not expire before time T = 365, and both S 1

t /S
2
0 and S 2

t /S
2
0 stay above the price b over the entire lifetime

t ∈ [0,T ] of the option, then the option expires at time T = 365 and generates a payoff of $1. If the option does not expire
before time T = 365, and either S 1

t /S
2
0 or S 2

t /S
2
0 drops below b at any time instance t between 0 and T = 365, the option

expires at time T = 365 and generates a payoff equal to the minimum of S 1
T /S

2
0 and S 2

T /S
2
0.

6
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We let
{t1, . . . , tn} =

{(
0.5 + u/n1/2 − 1/

(
2n1/2

)
, 0.5 + v/n1/2 − 1/

(
2n1/2

))
: 1 ≤ u, v ≤ n1/2

}
.

We assume that the current time is 60 days before T = 365. For each ti = (x1(i), x2(i)), we generate two independent
sample paths of a geometric Brownian motion as the trajectories of the prices of Stock 1 and Stock 2 between the current
time and T = 365 with the current stock prices of Stock 1 and Stock 2 equal to x1(i) and x2(i), respectively. We then
compute the corresponding payoff of the stock option. The following parameters are used to compute the payoff of the
stock option: d1 = 61, d2 = 122, d3 = 182, d4 = 243, d5 = 304, d6 = 365, b1 = 0.90, b2 = 0.90, b3 = 0.85, b4 = 0.85, b5 =

0.80, b6 = 0.80, r1 = 1.05, r2 = 1.10, r3 = 1.15, r4 = 1.20, r5 = 1.25, r6 = 1.30, and b = 0.70. The volatility per year is
30% and the risk-free interest rate per year is 5%. The prices of Stock 1 and Stock 2 at time 0 are assumed to be $1.

We set r = 5, so 5 iid replications Yi1, . . . ,Yi5 are generated at each (x1(i), x2(i)) and Y i =
∑r

j=1 Yi j/r is computed for
1 ≤ i ≤ n.

The second derivative, often called the “gamma” of an option price is of particular interest to portfolio managers because
it determines how many shares of the option must be sold or bought to stay in the delta-hedged position. Moreover, it is
often assumed that the gamma is a smooth function of underlying stock prices because a smooth gamma curve suggests
consistent buying or selling strategies over a domain of possible stock price. Hence, it is natural for us to assume that f∗
has the smooth derivative. Since we can compute the smoothness of the second derivative of f∗ using Jd

m with m = 4, our
proposed estimator is computed as

f̂n(x1, x2) = â1φ1(x1, x2) + · · · + â10φ10(x1, x2) +
n∑

i=1

âi+10φi+10(x1, x2)

for (x1, x2) ∈ [0.5, 1.5]2, where

φ1(x1, x2) = 1, φ2(x1, x2) = x1, φ3(x1, x2) = x2, φ4(x1, x2) = x2
1, φ5(x1, x2) = x1x2, φ6(x1, x2) = x2

2,

φ7(x1, x2) = x3
1, φ8(x1, x2) = x2

1x2, φ9(x1, x2) = x1x2
2, φ10(x1, x2) = x3

2,

φi+10(x1, x2) =
(
(x1 − x1(i))2 + (x2 − x2(i))2

)3
ln

(
(x1 − x1(i))2 + (x2 − x2(i))2

)1/2

for 1 ≤ i ≤ n and (x1, x2) ∈ [0.5, 1.5]2, and (â1, . . . , ân+10) is calculated from the following program:

Minimize
n+10∑
i=1

n+10∑
j=1

aia j (7)

×
∫ 1.5

0.5

∫ 1.5

0.5

∂4φi

∂x4
1

∂4φ j

∂x4
1

+
∂4φi

∂x3
1∂x2

∂4φ j

∂x3
1∂x2

+
∂4φi

∂x2
1∂x

2
2

∂4φ j

∂x2
1∂x

2
2

+
∂4φi

∂x1∂x3
2

∂4φ j

∂x1∂x3
2

+
∂4φi

∂x4
2

∂4φ j

∂x4
2

 dx1dx2


Subject to

1
n

n∑
i=1

Y i −
n+10∑
j=1

a jφ j(ti)


2

≤ 1
nr

n∑
i=1

r∑
j=1

(
Yi j − Y i

)2
/(r − 1).

Problem (7) is solved with CVX. The double integration appearing in the objective function Problem (7) is computed
numerically in MATLAB.

The MSE of the proposed estimator f̂n is calculated by

1
n

n∑
i=1

(
f̂n(ti) − f∗(ti)

)2

and is compared to the MSE of the crude estimator Y1, . . . ,Yn

1
n

n∑
i=1

(
Y i − f∗(ti)

)2
.

We calculate the 95% confidence intervals of the MSE using 400 iid replications, and report them in Table 3. We also
measure the amounts of time spent while calculating the proposed estimator, and compute their averages using 400 iid
replications. We report these values in Table 3. We observe that the MSEs of the proposed estimator are less than those
of the crude estimator. The MSE of the proposed estimator converges to 0 as n increases. We can thus deduce that the
proposed estimator converges to the true function as n increases to infinity.
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Table 3. The 95% confidence intervals of the MSE and the average amount of time spent when f∗ is the average payoff of
a stock option contingent on two types of stocks.

n MSE of MSE of Average amount of time spent for
the proposed estimator the crude estimator the computation of the proposed estimator (second)

36 0.0025 ± 0.0001 0.0044 ± 0.0002 0.53
64 0.0022 ± 0.0001 0.0041 ± 0.0001 0.54
100 0.0015 ± 0.0001 0.0042 ± 0.0001 0.56
144 0.0013 ± 0.0001 0.0042 ± 0.0001 0.63
196 0.0010 ± 0.0000 0.0041 ± 0.0001 0.73
256 0.0008 ± 0.0000 0.0042 ± 0.0001 0.81

4. Concluding Remarks

A new formulation for estimating a multivariate smooth function is proposed. The solution to the proposed formulation
can be easily obtained by solving a convex program. It does not rely on any artificially plugged-in parameters and depends
on the observed data set only. Hence, the proposed formulation tackles the computational inefficiency of the existing
methods, which suffer from the dependency on the smoothing parameter and the ill-conditioned numerical settings.

Numerical results show that the proposed method is applied to 2-dimensional and 3-dimensional problems successfully.
They also suggest that the proposed estimator converges to the true function as the number of data points increases to
infinity. Thus, a promising research topic for the future is to prove the consistency of the proposed estimator.
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