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Abstract

We construct and characterize bivariate extreme value distributions with exponential marginals generated by the stochastic
representation (X1, X2) = (min(T1,T3),min(T2,T3)) where the random variable T3 is independent of random variables T1
and T2 which are assumed to be dependent. A building procedure is suggested when the joint distribution of (T1,T2) is
absolutely continuous and Ti’s are not necessarily exponentially distributed, i = 1, 2, 3. The Pickands representation of
the vector (X1, X2) is computed. We illustrate the general relations by examples.

Keywords: bivariate extreme value distribution, extended Marshall-Olkin model, Pickands measure and dependence
function.

1. Introduction

Let us consider the fatal shock model defined by the stochastic representation

(X1, X2) = (min(T1,T3),min(T2,T3)) , (1)

where non-negative continuous random variables T1 and T2 identify the occurrence of independent “individual shocks”
affecting two devices and T3 is their “common shock”. The random vector (X1, X2) presents the joint distribution of both
lifetimes.

Denote by S X1,X2 (x1, x2) = P(X1 > x1, X2 > x2) the joint survival function of the vector (X1, X2) for all x1, x2 ≥ 0. If the
shocks are governed by independent homogeneous Poisson processes, then Ti’s in (1) are exponentially distributed with
parameters λi > 0, i = 1, 2, 3, and we obtain the classical Marshall-Olkin’s (MO) bivariate exponential distribution

S X1,X2 (x1, x2) = exp{−λ1x1 − λ2x2 − λ3 max(x1, x2)}, x1, x2 ≥ 0, (2)

see Marshall and Olkin (1967).

To give a probability interpretation of model (1), consider a system composed by two items, to be denoted by 1 and 2. We
associate with each item j, j = 1, 2, a Bernoulli random variable Z j, indicating whether the item is operational (Z j = 1) or
failed (Z j = 0). The bivariate Bernoulli random vector (Z1, Z2) represents the state of the system. It is specified in terms
of MO construction (1). The vector (X1, X2) exhibits the latent state of the system, since the MO model (2) is defined in
terms of vector (T1, T2,T3) of latent variables that identify independent exponential shock times. Each shock takes down
a given subset of items ({1}, {2} or {both 1 and 2}) and occurs at an exponential time with constant rates λ1, λ2 and λ3,
respectively.

The stochastic relation (1) is widely used in literature. For example, Li and Pellerey (2011) launched the Generalized
MO (GMO) model considering non exponential independent random variables Ti in (1), i = 1, 2, 3. The corresponding
joint distributions do not possess bivariate lack of memory property, i.e., are “aging”. As a further step, Pinto and Kolev
(2015) introduced the Extended MO (EMO) model assuming dependence between latent variables T1 and T2, but keeping
T3 independent of them. The motivation is that the individual shocks might be dependent if the items share a common
environment. In this case however, the EMO distributions can be “aging” or “non-aging” depending on the parameters of
joint distribution of (T1, T2) and the distribution of T3.

We will assume further that T1 and T2 are no more independent, but defined by their joint survival function S T1,T2 (x1, x2) =
P(T1 > x1,T2 > x2) and the random variable T3 is independent of T1 and T2. Let S Ti (x) = P(Ti > x) be the survival
functions of Ti, i = 1, 2, 3 for x ≥ 0. Thus, the joint survival function of EMO model generated by (1) can be written as

S X1,X2 (x1, x2) = S T1,T2 (x1, x2)S T3 (max{x1, x2}). (3)
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In Section 2 we establish the extreme value representation and characterizations of a subclass of EMO distributions de-
fined by (3) whose marginals X1 and X2 are exponentially distributed, see Theorem 1 and the most general Theorem 3. We
suggest a procedure to construct EMO distributions with exponential marginals even if Ti’s in (1) are not exponentially
distributed under the corresponding additional restriction, e.g., Theorem 2. We obtain in Section 3 the Pickands depen-
dence function and Pickands measure corresponding to (3) if the joint distribution of (T1,T2) is absolutely continuous. We
illustrate the general relationships with two examples. As a particular case one can find the corresponding representations
associated to the MO’s bivariate exponential distribution (2) obtained by Mai and Scherer (2010). We finish the article
with a short discussion.

2. Extreme Value EMO Distributions

There is a number of mathematical results characterizing multivariate extreme value distributions and extreme value
copulas, see Chapter 6 in Joe (1997) for example. The marginals of any multivariate extreme value distribution must be
members of the class of univariate generalized extreme value distributions, i.e., location-scale families of distributions
based on Weibull, Fréchet and Gumbel distributions, see Theorem 2.4.1 in Galambos (1978).

Without loss of generality, we will assume hereafter marginal exponential distributions in (3), i.e., Xi ∼ Exp(λXi ), i = 1, 2.
Such a choice does not have influence on the corresponding survival copula to be obtained, being invariant on strict
monotone transformations. It is also well known that these transformations can be used to move from one member to the
other in the class of univariate generalized extreme value distributions, see Galambos (1978) and Beirlant et al. (2005) for
a related discussion.

The joint survival function of the EMO distributions specified by (3) can be equivalently represented by

S X1,X2 (x1, x2) = S T1,T2 (x1, x2) min{S T3 (x1), S T3 (x2)}. (4)

Note that the right hand side in (4) is a product of two bivariate distributions. The first one is defined by S T1,T2 (x1, x2), and
the second one refers to a bivariate random vector with comonotonic components sharing the same marginal distribution
as T3. Such a product construction technique in terms of copula has been discussed by Genest et al. (1998), see their
Proposition 2. Consult Liebscher (2008) for a general power function based approach as well.

Starting from the latent random vector (T1, T2) we “modify” it via (4) to get (X1, X2), which can be interpreted as fol-
lows: the “modified” joint distribution (X1, X2) can be used to model a complementary amount of bivariate asymmetry
induced by (T1,T2). Note that, in general, this additional asymmetry does not necessarily imply an increase of upper tail
dependence (if exists) governed by (T1,T2), see supporting comments in Joe (2015), page 184.

The simplest way to ensure exponentially distributed marginals X1 and X2 in (4) is to advocate that Ti ∼ Exp(λi), i =
1, 2, 3. This distributional choice has nice properties and will be justified in Theorem 1.

Other distributional possibilities for Ti, i = 1, 2, 3, do exist in order to construct EMO model with exponentially distributed
marginals X j with parameter λX j , j = 1, 2. To believe, denote by rTi (x) = d

dx [− ln S Ti (x)] the failure rates of Ti, i = 1, 2, 3.
Note that the marginal survival functions in (4) are given by S Xi (xi) = S Ti (xi)S T3 (xi) and the only condition in terms of
failure rate functions to get exponential marginals in (4) is rTi (xi) + rT3 (xi) = λXi for all xi ≥ 0, i = 1, 2. For example,
consider rT1 (x) = rT2 (x) = 2 + sin(x) and rT3 (x) = 1 − sin(x) for x ≥ 0, to obtain λXi = 3, i = 1, 2.

Denote by BEVE the set of bivariate extreme value distributions with exponential marginals and let BEVE − EMO be a
subclass of BEVE satisfying (4), where (T1, T2) ⊂ BEVE and T3 ∼ Exp(λ3). This means that the following functional
equation is fulfilled

S T1,T2 (tx1, tx2) = [S T1,T2 (x1, x2)]t for all t > 0. (5)

Joe (1997) observed that when multivariate copulas take on univariate generalized extreme value distributions one obtains
multivariate extreme value distributions for maxima, but when the copulas take on generalized extreme value survival
margins for minima, multivariate extreme value survival functions for minima results, see page 176. A general related
discussion in terms of functional equations involving joint survival functions can be found in Marshall and Olkin (1991)
as well.

Relation (5) implies that the survival copula CT1,T2 (u, v) associated to S T1,T2 (x1, x2) is also an extreme value copula for all
t > 0, i.e.,

CT1,T2 (ut, vt) = [CT1,T2 (u, v)]t, u, v ∈ [0, 1). (6)

It follows our first characterization statement.

Theorem 1 Let T3 ∼ Exp(λ3) in (4). Then (X1, X2) ⊂ BEVE − EMO if and only if (T1,T2) ⊂ BEVE .
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Proof. Let (X1, X2) ⊂ BEVE − EMO. Taking into account that Xi and T3 are exponentially distributed and relations
S Xi (xi) = S Ti (xi)S T3 (xi), we conclude that Ti are exponentially distributed, i = 1, 2. Since S X1,X2 (x1, x2) is an extreme
value survival function with exponential marginals, then S X1,X2 (tx1, tx2) = [S X1,X2 (x1, x2)]t and applying representation (3)
we get

S X1,X2 (tx1, tx2) = S T1,T2 (tx1, tx2)S T3 (max{tx1, tx2})
= [S T1,T2 (x1, x2)S T3 (max{x1, x2})]t.

But T3 is exponentially distributed, so that [S T3 (max{x1, x2})]t = S T3 (max{tx1, tx2}) and we arrive to (5).

Now assume that (T1,T2) ⊂ BEVE and T3 ∼ Exp(λ3) in (4). Since the comonotonic copula M(u, v) = min(u, v) is an
extreme value copula, applying Sklar’s theorem in (4) and taking into account (6) we obtain

S X1,X2 (tx1, tx2) = CT1,T2 (exp(−λ1tx1), exp(−λ2tx2)) min{exp(−λ3tx1), exp(−λ3tx2)}
= {CT1,T2 [exp(−λ1x1), exp(−λ2x2)]}t[min{exp(−λ3x1), exp(−λ3x2)}]t

= [S X1,X2 (x1, x2)]t.

Thus, the functional equation (5) for the vector (X1, X2) is satisfied and (X1, X2) belongs to the class BEVE − EMO.

Obviously, if both (T1,T2) ⊂ BEVE and (X1, X2) ⊂ BEVE − EMO in (4) then T3 ∼ Exp(λ3).

To proceed, we will need to recall that any bivariate survival function S T1,T2 (x1, x2) can be represented as

S T1,T2 (x1, x2) = exp{−HT1 (x1) − HT2 (x2) + DT1,T2 (x1, x2)}, (7)

where HTi (xi) = − ln[S Ti (xi)] are the cumulative hazard functions of random variables Ti, i = 1, 2, and DT1,T2 (x1, x2) =

ln
[

S T1 ,T2 (x1,x2)
S T1 (x1)S T2 (x2)

]
is the dependence function introduced by Sibuya (1960), to be referred as Sibuya’s dependence function.

It exhibits interesting relationships with dependence phenomena, see Kolev (2016) or Pinto and Kolev (2015a) for a deep
discussion.

With an additional assumption of absolute continuity of the joint distribution of (T1,T2),we justify in the next Lemma 1 the
choice of exponential Ti’s in order to get a member of BEVE −EMO via (4), i = 1, 2, 3. Let us denote by BEVE −EMOAC

this subclass.

Lemma 1 If (X1, X2) ⊂ BEVE − EMOAC in (4) and S T1,T2 (x1, x2) is absolutely continuous, then (T1,T2) ⊂ BEVE and
T3 ∼ Exp(λ3).

Proof. Suppose x1 > x2 ≥ 0 and t > 0. Since S X1,X2 (x1, x2) is an extreme value survival function we have S X1,X2 (tx1, tx2) =
[S X1,X2 (x1, x2)]t. Applying the exponential representation for bivariate survival functions (7) in (3) we obtain

exp{−HT1 (tx1) − HT3 (tx1) − HT2 (tx2) + DT1,T2 (tx1, tx2)}
= exp{−tHT1 (x1) − tHT3 (x1) − tHT2 (x2) + tDT1,T2 (x1, x2)}.

Taking logarithms in both sides of former equation and calculating the mixed partial derivatives, we get

t
∂2

∂x1∂x2
DT1,T2 (tx1, tx2) =

∂2

∂x1∂x2
DT1,T2 (x1, x2).

Integrating we have ∫ x1

0

∫ x2

0
t
∂2

∂u∂v
DT1,T2 (tu, tv)dvdu =

∫ x1

0

∫ x2

0

∂2

∂u∂v
DT1,T2 (u, v)dvdu.

The boundary conditions DT1,T2 (x1, 0) = DT1,T2 (0, x2) = 0 imply equalities

∂

∂x1
DT1,T2 (x1, 0) =

∂

∂x2
DT1,T2 (0, x2) = 0.

Thus, we arrive to the functional equation

DT1,T2 (tx1, tx2) = tDT1,T2 (x1, x2) for all t > 0. (8)
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Since S X1,X2 (x1, x2) is an extreme value survival function with exponential marginals, we deduce that[
S X1,X2 (x1, x2)

S X1 (x1)S X2 (x2)

]t

=
S X1,X2 (tx1, tx2)

S X1 (tx1)S X2 (tx2)
. (9)

Applying the exponential representation (7) in (9) and taking into account (8), we obtain the homogeneous of order 1
functional equation HT3 (tx2) = tHT3 (x2), for all x2, t > 0, where HT3 (x2) is the cumulative hazard of T3. Substitute
λ3 = HT3 (1) to get the general solution HT3 (x2) = λ3x2 with λ3 > 0, since HT3 (x2) is nonnegative for all x2 ≥ 0, see Aczel
(1966) as well.

The conclusion is the same when x2 ≥ x1 ≥ 0. Thus, T3 ∼ Exp(λ3). Applying the “only if” branch of Theorem 1 we finish
the proof.

Linking Theorem 1 and Lemma 1 we obtain the following characterization.

Theorem 2 Let the joint distribution of (T1,T2) be absolutely continuous. Then (X1, X2) ⊂ BEVE − EMOAC if and only if
(T1,T2) ⊂ BEVE and T3 ∼ Exp(λ3).

The absolute continuity assumption for (T1, T2) in Theorem 2 is an important condition. In the next we suggest a building
procedure showing that it is possible to construct a member of BEVE − EMO class where the random variables Ti in
(3) are not necessarily exponentially distributed, i = 1, 2, 3, but as a compensation we have to relax the assumption of
absolutely continuity of the survival function S T1,T2 (x1, x2).

Example 1 (Building procedure). Let us consider three nonnegative absolutely continuous and independent random
variables defined by S Y1 (x) = S Y2 (x) = exp{−x} and S Y3 (x) = exp{−bx + f (x) − a}, where a, b ≥ 0 and the continuous
function f (x) is such that a − bx < f (x) < a + bx for all x > 0 with f (0) = a.

The following two-step procedure generates a vector (X1, X2) ⊂ BEVE − EMO with non-exponentially distributed Ti’s:

1. Construct a GMO distribution (T1, T2) = (min(Y1,Y3),min(Y2,Y3)). Its joint survival function is S T1,T2 (x1, x2) =
exp{−x1 − x2 − HY3 (max(x1, x2))};

2. Select a random variable T3, independent of (T1,T2), with a survival function S T3 (x) = exp{−bx − f (x) + a}.
Apply (3) to get the corresponding EMO survival function S X1,X2 (x1, x2) = exp{−x1 − x2 − 2b max(x1, x2)} with
exponentially distributed marginals.

Notice that S T1,T2 (x1, x2) obtained in the first procedure step is neither an extreme value survival function nor absolutely
continuous, since has a singular component with support on the set {(x1, x2) ∈ [0,∞)2 | x1 = x2 = x}. In addition, T3
defined in the second step is not exponentially distributed. Finally, inequalities a − bx < f (x) < a + bx and f (0) = a
guarantee that S Y3 (x) and S T3 (x) are proper survival functions.

Now observe that the functional equation (8) involving Sibuya’s dependence function DT1,T2 (x1, x2) is homogeneous of
order 1 for all x1, x2 ≥ 0 and t > 0. As a consequence of Theorem 6.2 in Joe (1997), equation (8) can serve as a
characterization of bivariate extreme value survival functions S T1,T2 (x1, x2) with exponential marginals even when absolute
continuity for (T1,T2) does not hold true. Hence, we deduce the following characterization.

Lemma 2 A bivariate distribution is BEVE if an only if its Sibuya’s dependence function is homogeneous of order 1.

To characterize distributions belonging to the subclass BEVE − EMO when the joint distribution of (T1,T2) is not abso-
lutely continuous, we will need an additional assumption since BEVE − EMO ⊂ BEVE . It is given below.

Theorem 3 (X1, X2) ⊂ BEVE − EMO if and only if the functional equation

DT1,T2 (tx1, tx2) + HT3 (t min(x1, x2)) = tDT1,T2 (x1, x2) + tHT3 (min(x1, x2))

is satisfied for all x1, x2 ≥ 0 and t > 0.

Proof. Under conditions in the theorem, the Sibuya’s dependence function for the EMO model (3) is given by

DX1,X2 (x1, x2) = DT1,T2 (x1, x2) + HT3 (min(x1, x2)).

To finalize the proof, just apply Lemma 2.

Example 2 (BEVE−EMO distributions when (T1,T2) is not absolutely continuous). The Marshall-Olkin survival function

S X1,X2 (x1, x2) = exp{−x1 − x2 − 2 max(x1, x2)}
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is of EMO-type, being an example of extreme value survival function as well. We use relation (4) and the two step
procedure from Example 1: first selecting random variables (T1,T2) with survival function S T1,T2 (x1, x2) = exp{−x1 −
x2 − HY3 (max(x1, x2))}, where HY3 (x) = x − cos(x) + 1, and second, choosing T3 independent of (T1, T2) with cumulative
failure rate HT3 (x) = x + cos(x) − 1. Notice that S T1,T2 (x1, x2) is neither an extreme value survival function nor absolutely
continuous, as well as T3 is not exponentially distributed. In this case we have DT1,T2 (x1, x2) = HY3 (min(x1, x2)), so that
the functional equation given in Theorem 3 is satisfied.

3. Pickands Representation and Examples

Given the characterization established in Theorem 2, in the sequel we assume absolutely continuous distributions for
(T1,T2) to ensure uniqueness in our construction of extreme value EMO distributions. In the next theorem we obtain the
general form of the corresponding survival function and related copula. We will need to remind basic facts related to
Pickands measure involved first.

Pickands (1981) proves that each multivariate extreme value distribution is uniquely characterized by a finite measure sat-
isfying boundary conditions and related dependence function. In the bivariate case, the bivariate extreme value (survival)
copulas can be completely characterized by the relation

C(u, v) = exp
{

(ln uv)A
(

ln u
ln uv

)}
, (10)

whereA(w) =
∫ 1

0 max((1− x)w, x(1−w))dH(x), for a positive finite measure H on [0, 1], denominated Pickands measure,
see Joe (1997).

The so-called Pickands dependence function A(w) : [0, 1] → [ 1
2 , 1] must be convex and should satisfy max(w, 1 − w) ≤

A(w) ≤ 1. The lower bound of A(w) corresponds to the comonotonic copula and related Pickands measure puts mass 2
at w = 1

2 ; the upper bound of A(w) is associated to the independence copula with Pickands measure assigning mass 1 to
both w = 0 and w = 1.

The Pickands dependence function can be recovered from the copula C by setting

A(w) = − ln C(exp(−w), exp(−(1 − w))), w ∈ [0, 1] (11)

and is uniquely related to the measure H via equation

H([0,w]) =

1 + d
dwA(w), if w ∈ [0, 1),

2, if w = 1,
(12)

where d
dwA(w) is the right-hand derivative of A(w), see Theorem 3.1 in Pickands (1981) and section 8.5.3 in Beirlant et

al. (2005). Moreover, the point masses of H at 0 and 1 are given by

H({0}) = 1 +
d

dw
A(0) and H({1}) = 1 − d

dw
A(1),

where d
dwA(1) = sup0≤w<1

d
dwA(w).

Theorem 4 Suppose (X1, X2) ∈ BEVE − EMOAC . Then, the survival function of (X1, X2) has the form

S X1,X2 (x1, x2) = exp
{
−(λ1x1 + λ2x2)AT1,T2

(
λ1x1

λ1x1 + λ2x2

)
− λ3 max(x1, x2)

}
, (13)

whereAT1,T2 (w) is the Pickands dependence function corresponding to CT1,T2 (u, v) and λi > 0, i = 1, 2, 3.

The associated survival copula writes as

CX1,X2 (u, v) =
= exp

{
(ln uv)

[
(Λ1(w) + Λ2(w))AT1,T2

(
Λ1(w)

Λ1(w)+Λ2(w)

)
+max (Λ1(w),Λ2(w))

]}
,

(14)

where u, v ∈ [0, 1), w = ln u
ln uv , Λ1(w) = λ1w

λ1+λ3
and Λ2(w) = λ2(1−w)

λ2+λ3
.

The Pickands measure H is given by

H([0,w]) =



1 +
(
λ1
λ1+λ3

− λ2
λ2+λ3

)
AT1,T2

(
Λ1(w)

Λ1(w)+Λ2(w)

)
+

(
λ1w
λ1+λ3

+
λ2(1−w)
λ2+λ3

)
d

dwAT1,T2

(
Λ1(w)

Λ1(w)+Λ2(w)

)
− λ3
λ2+λ3
, if 0 ≤ w < λ1+λ3

λ1+λ2+2λ3
,

1 +
(
λ1
λ1+λ3

− λ2
λ2+λ3

)
AT1,T2

(
Λ1(w)

Λ1(w)+Λ2(w)

)
+

(
λ1w
λ1+λ3

+
λ2(1−w)
λ2+λ3

)
d

dwAT1,T2

(
Λ1(w)

Λ1(w)+Λ2(w)

)
+

λ3
λ1+λ3
, if λ1+λ3

λ1+λ2+2λ3
≤ w < 1,

2 if w = 1,

(15)
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where d
dwAT1,T2 (.) refers to the right-hand derivative.

Proof. Since (X1, X2) ⊂ BEVE − EMOAC , according to Lemma 1 we have (T1,T2) ⊂ BEVE and T3 ∼ Exp(λ3). From
Sklar’s theorem and the expression for bivariate copulas written in terms of Pickands dependence function (11) we have

S T1,T2 (x1, x2) = CT1,T2 (S T1 (x1), S T2 (x2)) = CT1,T2 (exp{−λ1x1}, exp{−λ2x2})

= exp
{
−(λ1x1 + λ2x2)AT1,T2

(
λ1x1

λ1x1 + λ2x2

)}
.

Considering the expression of EMO survival functions (3) we obtain relation (13), i.e., the survival function of (X1, X2).

Let u = S X1 (x1) = exp{−(λ1 + λ3)x1} and v = S X2 (x2) = exp{−(λ2 + λ3)x2}. From Sklar’s theorem, CX1,X2 (u, v) =
S X1,X2 ( − ln u

λ1+λ3
, − ln v
λ2+λ3

). Applying (11) we have AX1,X2 (w) = − ln S X1,X2

(
w
λ1+λ3
, 1−w
λ2+λ3

)
. Substituting S X1,X2 (x1, x2) by its ex-

pression given by (13) we obtain

AX1,X2 (w) = (Λ1(w) + Λ2(w))AT1,T2

(
Λ1(w)

Λ1(w) + Λ2(w)

)
+max (Λ1(w),Λ2(w)) . (16)

Considering again expression (11) and relation (16) we get (14), i.e., the survival copula of the bivariate extreme value
EMO distribution. By its turn, from the expression of Pickands measure in terms of the derivative of Pickands dependence
function (12) and from (16) we obtain (15), the Pickands measure H.

Whenever the derivative ofAT1,T2 (w) is continuous from (15) we obtain

H
({

λ1 + λ3

λ1 + λ2 + 2λ3

})
=

λ3

λ1 + λ3
+
λ3

λ2 + λ3
. (17)

We will apply relations established in Theorem 4 in the next two examples.

Example 3 (MO bivariate exponential distribution). Consider the MO distribution (2). In this case T1 and T2 are indepen-
dent and hence CT1,T2 (u, v) = uv. Therefore,AT1,T2 (w) = 1 when w ∈ [0, 1]. Substituting w = ln u

ln uv for u, v ∈ [0, 1) in (16),
the Pickands dependence functionAX1,X2 (w) can be presented as

AX1,X2 (u, v) =

 1 − λ3
λ1+λ3

ln u
ln uv , if 1 > u

λ3
λ1+λ3 > v

λ3
λ2+λ3 > 0,

λ2
λ2+λ3

+
λ3
λ2+λ3

ln u
ln uv , if 0 < u

λ3
λ1+λ3 ≤ v

λ3
λ2+λ3 < 1.

Applying (15) one can get the corresponding Pickands measure, confirming the representation obtained by Mai and
Scherer (2010).

Example 4 (EMO extreme value distribution where the dependence structure of (T1,T2) is represented by Gumbel-
Hougaard survival copula). Let Ti be exponentially distributed with parameter λi, i = 1, 2 and consider the Gumbel’s
Type III bivariate exponential survival function for (T1,T2) given by

S T1,T2 (x1, x2) = exp{−[(λ1x1)m + (λ2x2)m]
1
m }, m > 0,

see Gumbel (1960). The corresponding survival copula is

C(u, v) = exp{−[(− ln u)m + (− ln v)m]
1
m },

being an example of bivariate extreme value copula. Select T3 exponentially distributed with parameter λ3, independent
of (T1,T2) and consider EMO survival function (3). We obtain the following bivariate extreme value EMO distribution

S X1,X2 (x1, x2) = exp{−[(λ1x1)m + (λ2x2)m]
1
m } exp{−λ3 max(x1, x2)}.

From (11), the Pickands dependence function for (T1,T2) is

AT1,T2 (w) =
[
wm + (1 − w)m] 1

m ,

and from (16) we get the Pickands dependence function

AX1,X2 (w) =
[(
λ1w
λ1 + λ3

)m

+

(
λ2(1 − w)
λ2 + λ3

)m] 1
m

+max
(
λ3w
λ1 + λ3

,
λ3(1 − w)
λ2 + λ3

)
.
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Applying relation (15), we obtain the Pickands measure

H([0,w]) =



1 − λ3
λ2+λ3

+
[(
λ1w
λ1+λ3

)m
+

(
λ2(1−w)
λ2+λ3

)m] 1
m−1

×
[(
λ1
λ1+λ3

)m
wm−1 −

(
λ2
λ2+λ3

)m
(1 − w)m−1

]
, if 0 ≤ w < λ1+λ3

λ1+λ2+2λ3
,

1 + λ3
λ1+λ3

+
[(
λ1w
λ1+λ3

)m
+

(
λ2(1−w)
λ2+λ3

)m] 1
m−1

×
[(
λ1
λ1+λ3

)m
wm−1 −

(
λ2
λ2+λ3

)m
(1 − w)m−1

]
, if λ1+λ3

λ1+λ2+2λ3
≤ w < 1,

2, if w = 1.

Finally, using (17) we get

H
({

λ1 + λ3

λ1 + λ2 + 2λ3

})
=

λ3

λ1 + λ3
+
λ3

λ2 + λ3
.

Notice that when m = 1, the Gumbel-Hougaard survival copula becomes the independence copula and we repeat the
results of Example 3.

For 1 < m < ∞, the remaining mass 2 −
(
λ3
λ1+λ3

+
λ3
λ2+λ3

)
is spread over the interval [0, λ1+λ3

λ1+λ2+2λ3
)
∪

( λ1+λ3
λ1+λ2+2λ3

, 1] and, in
particular, H({0}) = H({1}) = 0.

4. Conclusions

In this note, we found representation of extreme value EMO distributions with exponential marginals. We characterize
it when the vector (T1,T2) in (3) is absolutely continuous or not, see Theorem 2 and Theorem 3, respectively. The
corresponding Pickands representation is obtained in Theorem 4, having as a particular case earlier conclusions of Mai
and Scherer (2010) regarding the MO’s bivariate exponential distribution (2).

We would like to call attention that Theorem 2 shows the way to generate extreme value EMO distributions with exponen-
tial marginals when the vector (T1,T2) in (3) is absolutely continuous, see the Example 2. If (T1,T2) in (3) has a singular
component, one may follow a procedure given after Theorem 2 by using GMO models as a first step. The only restriction
in the choice of the failure rate of T3 in the second step is that rTi (xi)+rT3 (xi) = λXi , i = 1, 2, being the constant failure rates
of the marginals of extreme value EMO distribution of (X1, X2). Another general option is to select dependence function
HT1,T2 (x1, x2) and cumulative hazard HT3 (x), satisfying the functional equation in Theorem 3, since it is valid even when
the joint distribution of (T1,T2) is not absolutely continuous and Ti’ in (3) do not need to be exponentially distributed.
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