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Abstract

Standard survival techniques such as proportional hazards model are suffering from the unobserved heterogeneity. Frailty
models provide an alternative way in order to account for heterogeneity caused by unobservable risk factors. Although
vast studies have been done on estimation procedures, Evolutionary Algorithms (EAs) haven’t received much attention
in frailty studies. In this paper, we investigate the estimation performance of maximum likelihood estimation (MLE) via
Particle Swarm Optimization (PSO) in modelling multivariate survival data with shared gamma frailty. Simulation studies
and real data application are performed in order to assess the performance of MLE via PSO, quasi-Newton and conjugate
gradient method.
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1. Introduction

The general concept of survival models is to investigate the impact of risk factors on individual failure times. However, it’s
impossible to include all important factors into the model. This is due to the lack of information on individual level or the
researcher may not be aware of the importance of the factor, or even the existence of it (Hougaard, 1991). Several authors
studied the consequences of ignoring the existence of unobserved heterogeneity caused by unobservable risk factors such
as Aalen (1988), Lancaster (1979, 1990), Henderson and Oman (1999) and Van den Berg (2001).

In order to account for unobserved heterogeneity, the frailty term was first introduced by (Vaupel, Manton, & Stallard,
1979) for univariate survival data. They indicated that the individual hazard is the product of two terms: an individual
level frailty and a baseline hazard function. The multivariate generalization was then introduced by Clayton (1978). The
proposed model was a random effect model, which is an extension of a proportional hazards (PH) approach. In a shared
frailty model, lifetimes of a group of observations in the same cluster (e.g., individuals in a family) are related to each
other (Aalen, Borgan, & Gjessing, 2008). Each cluster shares the same level of frailty. In other words, the observations in
a cluster share the same unobservable risks such as genetic structures. The variance of this common frailty is a measure
of dependence among lifetimes within a cluster.

There exists a huge amount of literature on estimating parameters according to information of the distributional form of
the baseline hazard function. If a parametric form is not assumed for the baseline hazard, different estimation methods
are proposed for the semi-parametric frailty models (Clayton & Cuzick, 1985; Gill, 1985; Clayton, 1991; McGilchrist &
Aisbett, 1991; Klein, 1992; Nielsen, Gill, Andersen, & Srensen, 1992; McGilchrist, 1993; Rondeau, Commenges, & Joly,
2003; Therneau, Grambsch, & Pankratz, 2003). Also, important works relevant with Bayesian framework were offered
by Sinha and Dey (1997), Ibrahim, Chen and Sinha (2001) and Hanagal and Pandey (2015). On the other hand, when the
baseline hazard is represented parametrically, model parameters can be estimated with MLE via derivative-based methods
such as Newton Raphson, quasi-Newton and conjugate gradient. In spite of having useful properties, these techniques
have some drawbacks. The main drawback is that the starting point should be chosen with a value close to a global
optimum because they can easily get stuck in a local optimum at multiple solution space. The poor choice of an initial
value for any model parameter could lead to finding an estimate that is far away from the optimal solution. When the
number of model parameters is too large, choosing suitable initial values becomes harder and researchers are never sure
whether the resulting solution is a local or global. Also, biased parameter estimates can be obtained due to the heavy
censoring or small sample size.

PSO is a member of stochastic search family inspired by some natural phenomena to solve complicated and high-
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dimensional optimization problems. It is a global search strategy that has properties of being robust, fast converge and
easy implemented for linear/non-linear functions. In contrast with the derivative-based methods, it is less sensitive to
the selection of initial parameter values. Besides, it gives reliable estimates even though the number of parameters be-
ing estimated is oversized. Recently, PSO has become an important estimation technique for censored data (see Wang
& Huang, 2014). However, to the best of our knowledge, there is no work that uses PSO in frailty models. The main
purpose of this study is to present the estimation performance of PSO in modelling multivariate survival data with shared
frailty. Two simulation studies with different parameter settings are conducted to evaluate the performances of MLE via
PSO, quasi-Newton and conjugate gradient methods. It is shown that PSO is an efficient method to obtain maximum
likelihood estimates (MLEs) even though the following data characteristics exist: (i) small number of clusters (ii) large
number of observations in a cluster (iii) large number of censored observations (heavy censored). The remainder of paper
is organized as follows. Section 2 provides a general concept of shared frailty models. Section 3 provides the basic steps
of standard PSO method. Section 4 outlines the MLE via PSO procedure and demonstrates its performance using two
simulation studies. Section 5 provides a real data application to confirm the efficiency of procedure.

2. Shared Frailty Models

Suppose that there are N clusters and each cluster i has ni observations (i = 1, ...,N). ti j is the observed failure time of j th
( j = 1, ..., ni) observation in i th cluster. Under a right censoring scheme, ti j = min(ci j, t∗i j) where t∗i j is the failure time and
ci j is the censoring time. Here, t∗i j and ci j are independent random variables. The observed censoring indicator δi j is equal
to 1 if t∗i j < ci j, and 0 otherwise. Conditional on frailty zi (> 0) and Xi j, the hazard function of i th cluster has the form

h(ti j\Xi j, zi) = zih0(ti j) exp(β′Xi j), (1)

where h0(.) is the baseline hazard function, Xi j is a vector of observed covariates for the j th observation and β is a vector
of regression parameters. It is assumed that survival times (in cluster i) are conditionally independent with respect to
the frailty. This common frailty is the cause of dependence among lifetimes of within a cluster (Wienke, 2011). The
frailties,zi, are i.i.d. variables with the common probability density function g(zi).

Let (ti1, ti2, ..., tini ) denote ni survival times of i th cluster. The conditional survival function in that cluster can be expressed
such as (for a given Zi = zi; ti j > 0 ; j = 1, 2, ..., ni),

S (ti1, ..., tini\zi, Xi) = S (ti1\zi, Xi1)...S (tini\zi, Xini ) = exp

−zi

ni∑
j=1

Λ0(ti j)eβ
′Xi j

 , (2)

where Λ0(.) =
∫ ti j

0 h0(s)ds is the common cumulative baseline hazard. Here, S (.\.) = exp(−ziΛ0(ti j)eβ
′Xi j ) denotes the

survival function of jth observation conditional on frailty. The conditional likelihood function of ith cluster has the form

Li(ψ, β\zi) =
ni∏
j=1

h(ti1, , ..., tini\zi, Xi)δi j S (ti1, ..., tini\zi, Xi), (3)

where ψ and β are the vector of baseline hazard parameters and regression parameters, respectively. Unconditional
likelihood for observed data can be obtained by integrating Eq.(3) with respect to frailty terms ( i = 1, 2, ...,N; j =
1, 2, ..., ni),

L(ψ, θ, β) =
N∏

i=1

∫ ∞

0

ni∏
j=1

(zih0(ti j;ψ)eβ
′Xi j )δi j exp(−ziΛ0(ti j;ψ)eβ

′Xi j )g(zi)dzi (4)

Various studies have been done on the choice of distribution of frailty random variables. While some authors use contin-
uous distributions such as Gamma (Clayton, 1978; Vaupel et al., 1979), inverse Gaussian (Hougaard, 1984; Whitmore &
Lee, 1991; Hanagal & Sharma, 2015), log-normal (McGilchrist & Aisbett, 1991) and positive stable (Hougaard, 1986),
other authors use discrete distributions (Caroni, Crowder, & Kimber, 2010; Ata & Ozel, 2012). However, the Gamma
distribution is the most common and widely used in literature for determining the frailty effect, which acts multiplicatively
on the baseline hazard (Wienke, 2011). Due to its computational convenience, one parameter Gamma distribution (with
mean 1 and variance θ) is used as the frailty distribution. The probability density function of one parameter Gamma
distribution is as follows
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g(z) =
z1/θ−1 exp(−z/θ)
Γ(1/θ) θ1/θ . (5)

The larger value of θ indicates the greater degree of heterogeneity among lifetimes within a cluster. When Gamma
distribution is degenerate at value 1, Eq.(1) reduces to the standard PH model. Hence, we can conclude that θ takes the
value 0 and lifetimes within clusters are independent.

Under the concept of gamma frailty, unconditional survival function for cluster i is obtained by integrating conditional
survival function over the Gamma distribution and can be written as

S (ti1, ..., tini\Xi) =
∫

S (ti1, ..., tini\zi, Xi)g(zi)dzi =

1 + θ ni∑
j=1

Λ0(ti j)eβ
′Xi j

−1/θ

. (6)

The unconditional hazard function of corresponding cluster is,

h(ti1, ..., tini\Xi) =

(
ni∏
j=1

h0(ti j)
)

e

ni∑
j=1
β′Xi j

[
1 + θ

ni∑
j=1
Λ0(ti j)eβ

′Xi j

] . (7)

Once the parametric form of baseline hazard is specified, the unconditional likelihood function can be easily derived
(Wienke, 2011). Taking into account of all clusters and denoting the number of observed events in each cluster as

di =
ni∑
j=1
δi j, one might write the following unconditional likelihood function as (Klein, 1992; Duchateau & Janssen, 2008;

Wienke, 2011),

L(ψ, θ, β) =
n∏

i=1

Γ(Di + 1/θ)
ni∏
j=1

(h0(ti j;ψ)eβ
′Xi j )δi j

θ1/θΓ(1/θ)(1/θ +
ni∑
j=1
Λ0(ti j;ψ)eβ′Xi j )

1/θ+Di
, (8)

where i = 1, ...,N and j = 1, ..., ni. MLEs of model parameters can be obtained by maximizing Eq.(8).

3. Estimation Method: PSO

PSO is a member of Evolutionary Algorithms (EAs) and can be used to overcome some limitations of derivative-based
methods. It was first developed by Kennedy and Eberhart (1995) as a population-based method. It is easy to implement
for complex and high-dimension, linear/non-linear functions. PSO simultaneously searches a global optimum using more
than one candidate solutions in different regions of multiple solution space. Therefore, the problem of being stuck at a
local optimum is almost avoided (Aladag, Yolcu, Egrioglu, & Dalar, 2012). Overall, PSO is not affected by the existence
of large numbers of unknown parameters as much as derivative-based methods. The algorithm has its own parameters:
particle size, inertia weight, acceleration coefficients and velocity vector.

A search in solution space is similar to bird food-finding behavior in a flock. In contrast with the derivative-based methods,
the PSO algorithm starts with many candidate solutions (particles). The population of particles is called a swarm, and
each particle has a location vector Pm and a velocity vector Vm. A particle flies thought the solution space in search for a
better position and adjusts its own position with reference to the values of personel best (Pbest) and neighbors global best
(Gbest). The basic steps standard PSO are given as follows (Egrioglu, Yolcu, Aladag, & Kocak, 2013):

[Step 1]: In d-dimensional search space, stochastically generate a position and a velocity for each particle and then store
as the vectors P⃗m = {pm,1, ..., pm,k, ..., pm,d} and V⃗m = {vm,1, ..., vm,k, ..., vm,d}, respectively. For m = 1, ..., L and k = 1, ..., d;
pm,k denotes the k th position of m th particle and L is the total number of particles in a swarm.

[Step 2]: Let P⃗bestm represents the vector of best position of m th particle, and G⃗best is the particle which has the best
fitness function value, found so far by all particles. According to the fitness function, determine P⃗bestm and G⃗best that
are respectively given by (9) and (10),

P⃗bestm = {pbest
m,1 , ..., pbest

m,k , ..., pbest
m,d } (9)
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G⃗best = {pgbest
g,1 , ..., pgbest

g,k , ..., pgbest
g,d } (10)

[Step 3]: Update velocities and obtain particles by using following formulas given below,

vnew
m,k = ωvm,k + c1r1(pbest

m,k − pm,k) + c2r2(pgbest
g,k − pm,k) (11)

pm,k = pm,k + vnew
m,k (12)

where c1 and c2 are the positive acceleration coefficients (learning factors); ω is an inertia parameter, and r1 and r2 are
uniform random variables which are generated within [0, 1]. Generally, both the values of (c1, c2) are taken fixed at 2 and
ω = 0.5 + rand/2 changes in each iteration (Hu, Eberhart, & Shi, 2004).

[Step 4]: Stop when pre-specified iteration number is met. G⃗best is the vector of optimal solution. Otherwise, return to
Step 2.

The Gelman-Rubin (G-R) statistic, modified by Prasad and Souradeep (2012), is used in order to be sure that pre-specified
iteration number satisfy the convergence for each position related to unknown model parameter. Let T represents the total
iteration number. pm,k is the trajectory of mth particle of kth position. The variances of within particles (W) and between
particles (B) are calculated for position k with the following formulas (13) and (14),

Wk =
1
L

L∑
m=1

σ2
m,k, (13)

where σ2
m,k =

1
T−1

T∑
j=1

(p( j)
m,k − p̄m,k) and p̄m,k =

T∑
j=1

p( j)
m,k.

Bk =
T

L − 1

L∑
m=1

(p̄m,k − ¯̄pk)2, (14)

where ¯̄pk =
1
L

L∑
m=1

p̄m,k.

Using Wk and Bk, the variance of the stationary distribution is calculated as, V̂k = [(Wk(T −1))/T ]+ [Bk/T ]. An estimated
potential scale reduction factor (G-R statistic) R̂k =

√
V̂k/Wk monitors the convergence ability of performed total iteration.

For the value of close to 1 suggests a good convergence achieved for the corresponding parameter k.

4. Simulation Study

In this section, the estimation performance of MLE via PSO is investigated by two scenarios. In the first simulation study,
the performance of PSO is compared with the quasi-Newton method, and then in the second one it is compared with the
conjugate gradient method.

For both of simulation studies, the baseline cumulative hazard function is assumed to be Weibull as Λ0(.) = λtp. In the
first simulation study, Weibull parameters are set to (ψ = λ, p) = (0.2, 1.5) and the frailty variables are taken as Gamma
distributed randoms with variance θ= 1.5. Three observed covariates x(1), x(2) and x(3) are used and randomly generated
from Bernoulli distribution with success probability 0.1, 0.5 and 0.9, respectively. Regression parameters are assumed to
be β1=β2=β3= 1. In the second simulation study, Weibull parameters are set to (ψ = λ, p) = (0.5, 1). The variance of
frailty is taken as θ= 1. Two observed covariates, x(1) and x(2), are randomly generated from Binomial distribution having
the same success probability 0.5 and the number of trials are taken as 2 and 3, respectively. Regression parameters are set
to be β1=β2= 0.5.

The model for the failure times (ti1, ..., tini ) is considered as,

F(ti j\zi, Xi) = 1 − exp

−zi

ni∑
j=1

Λ0(ti j) exp(βXi j)


where βXi j = β1x(1)

i j + β2x(2)
i j + β3x(3)

i j in the first simulation and βXi j = β1x(1)
i j + β2x(2)

i j in the second simulation. Following
the study of Yu (2006), the multivariate survival data are generated as follows:
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(1) frailty variables are generated from Gamma distribution with mean 1 and variance θ. (2) for the j th observation in i th
cluster, uniform random variable is generated as ui j ∼ U(0, 1). Also censoring time ci j is generated from an exponential
distribution exp[κ] with parameter κ to create expected censoring rates.

(3) the failure times are generated by,

t∗i j =

( − log(ui j)
ziλ exp(βXi j)

)1/p

(15)

(4) the observed failure times are ti j = min(ci j, t∗i j). The observed censoring indicator δi j is equal to 1 if t∗i j < ci j, and 0
otherwise.

For both of simulations, different size of clusters (ni = 2, 3, 4) and different number of clusters (N = 20, 30, 40) are taken
into account. Three censoring rates are chosen as 5%, 20% and 40% which represent light, medium and heavy censoring,
respectively. Simulations are repeated 100 times. Mean absolute percentage error (MAPE), bias and standard error (SE)
vectors are computed for all cases. Let η shows the vector of real parameters and η̂ shows the vector of MLEs. In the first
simulation study η̂ = (β̂1, β̂2, β̂3, λ̂, p̂, θ̂), and in the second one η̂ = (β̂1, β̂2, λ̂, p̂, θ̂). To show the results of 54 different cases
less complicated, we report the mean of parameters’ MAPEs (mMAPE), biases (mBias) and SEs (mSE) given below,

mMAPE(η̂) =

1
100

d∑
k=1

100∑
r=1

∣∣∣∣ (η̂r−η)
η

∣∣∣∣(k)

d
, (16)

mS E(η̂) =

d∑
k=1


√

1
99

100∑
r=1

(η̂r − η)2


(k)

d
, (17)

mBias(η̂) =

d∑
k=1

(√
(E(η̂) − η)2

)(k)

d
, (18)

where η̂r is the vector of MLEs obtained in r th repeat and E(η̂) =
100∑
r=1

η̂r/100. Besides these measures, the mean of

log-likelihood values obtained in each repeat are calculated (mLog.Lik.). The steps of MLE via PSO are given as follows:

[Step 1]: PSO parameters are selected as (ω, c1, c2, L) = (0.5+ rand/2, 2, 2, 30). T is taken as 1000. In the first simulation
study the solution space is 6-dimensional and in the second, it is 5-dimensional. Positions of each particle and their
corresponding velocities are generated randomly from uniform distribution in the range of [0,3] and [0,0.5], respectively.
Positions of a particle in the swarm for the first and second simulation are illustrated in Figure 1 and 2, respectively.

Figure 1. Positions of a particle in Simulation 1

52



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 1; 2017

Figure 2. Positions of a particle in Simulation 2

[Step 2]: The unconditional likelihood function given in Eq.(8) is chosen as the fitness function of PSO. For all particles,
use the fitness function to calculate the fitness values. Determine P⃗bestm and G⃗best, then update the velocity and and
position values for each particle using formulas (11) and (12).

[Step 3]: If the termination criteria is met, then stop and go to Step 4. Otherwise return to Step 2.

[Step 4]: If the G-R statistics of all parameter estimations are satisfactory, G⃗best is the vector of MLEs found by using
PSO (it is observed that T=1000 is sufficient for converge). To perform the MLE with either the quasi-Newton or conjugate
gradient methods, randomly choose a particle from the initial swarm and use it as the initial vector.

Table 1. Simulation Results for Model 1
Cases Methods

PSO Quasi-Newton
δ ni N mMAPE mSE mBias mLog.Lik mMAPE mSE mBias mLog.Lik
5% 2 20 0.751 0.816 0.076 -66.645 1.639 0.871 0.256 -131.932

30 0.586 0.506 0.024 -98.473 1.623 0.861 0.250 -209.767
40 0.542 0.421 0.028 -134.224 1.577 0.839 0.250 -289.869

3 20 0.576 0.499 0.046 -94.536 1.755 0.855 0.280 -166.141
30 0.478 0.351 0.013 -143.818 1.703 0.856 0.265 -246.152
40 0.454 0.305 0.020 -190.658 1.593 0.847 0.253 -341.636

4 20 0.507 0.368 0.019 -123.813 1.788 0.875 0.276 -239.448
30 0.460 0.305 0.030 -184.511 1.530 0.866 0.240 -415.138
40 0.424 0.257 0.011 -249.729 1.813 0.855 0.281 -506.310

20% 2 20 0.844 0.964 0.080 -50.705 1.865 0.881 0.304 -131.768
30 0.631 0.599 0.054 -76.061 1.631 0.878 0.250 -206.824
40 0.561 0.485 0.024 -101.141 1.764 0.828 0.275 -206.835

3 20 0.572 0.537 0.024 -73.551 1.681 0.878 0.257 -149.540
30 0.530 0.432 0.025 -112.645 1.637 0.860 0.257 -226.845
40 0.498 0.354 0.017 -149.404 1.737 0.875 0.276 -284.043

4 20 0.552 0.461 0.024 -95.459 1.673 0.849 0.268 -167.023
30 0.501 0.351 0.036 -140.327 1.538 0.848 0.244 -265.062
40 0.444 0.278 0.011 -193.216 1.675 0.873 0.263 -439.114

40% 2 20 0.898 1.041 0.093 -34.374 1.739 0.853 0.269 -97.330
30 0.779 0.814 0.078 -51.931 1.602 0.873 0.252 -126.279
40 0.694 0.669 0.074 -71.023 1.595 0.848 0.257 -168.676

3 20 0.665 0.732 0.059 -49.059 1.817 0.855 0.282 -106.891
30 0.557 0.482 0.023 -76.464 1.747 0.891 0.268 -162.363
40 0.506 0.399 0.022 -104.568 1.621 0.878 0.251 -251.969

4 20 0.566 0.497 0.029 -64.371 1.665 0.858 0.262 -154.974
30 0.516 0.403 0.028 -96.147 1.553 0.868 0.235 -199.620
40 0.471 0.336 0.013 -134.302 1.746 0.863 0.276 -262.420
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Table 2. Simulation Results for Model 2
Cases Methods

PSO Conjugate Gradient
δ ni N mMAPE mSE mBias mLog.Lik mMAPE mSE mBias mLog.Lik
5% 2 20 0.442 0.461 0.038 -43.164 1.643 0.848 0.377 -212.481

30 0.392 0.303 0.023 -66.949 1.644 0.851 0.379 -214.597
40 0.372 0.267 0.021 -90.148 1.609 0.880 0.362 -395.706

3 20 0.384 0.269 0.023 -65.337 1.541 0.849 0.351 -210.397
30 0.366 0.201 0.011 -98.386 1.642 0.841 0.389 -337.160
40 0.347 0.181 0.006 -129.349 1.645 0.842 0.394 -424.842

4 20 0.383 0.253 0.018 -83.467 1.498 0.845 0.339 -242.526
30 0.354 0.176 0.009 -127.168 1.486 0.861 0.333 -307.569
40 0.351 0.148 0.006 -171.539 1.630 0.860 0.374 -518.609

20% 2 20 0.466 0.541 0.040 -31.532 1.657 0.837 0.396 -133.936
30 0.394 0.320 0.038 -46.877 1.714 0.881 0.400 -180.451
40 0.375 0.251 0.017 -62.962 1.578 0.830 0.362 -234.702

3 20 0.396 0.322 0.024 -42.867 1.735 0.861 0.406 -211.654
30 0.364 0.242 0.018 -67.121 1.689 0.891 0.396 -245.108
40 0.371 0.215 0.014 -89.857 1.565 0.843 0.357 -275.511

4 20 0.391 0.285 0.019 -54.476 1.723 0.851 0.414 -173.668
30 0.364 0.206 0.018 -85.803 1.721 0.874 0.404 -287.870
40 0.357 0.178 0.009 -117.091 1.693 0.858 0.402 -370.715

40% 2 20 0.546 0.707 0.062 -16.255 1.614 0.871 0.369 -105.767
30 0.432 0.390 0.045 -26.241 1.631 0.877 0.374 -132.810
40 0.399 0.300 0.032 -37.778 1.647 0.856 0.380 -162.449

3 20 0.433 0.366 0.041 -25.335 1.612 0.875 0.367 -111.564
30 0.382 0.259 0.021 -37.975 1.569 0.874 0.356 -159.544
40 0.367 0.222 0.013 -51.761 1.593 0.828 0.379 -208.918

4 20 0.384 0.294 0.027 -32.055 1.557 0.864 0.350 -144.924
30 0.366 0.213 0.013 -51.601 1.663 0.866 0.389 -198.873
40 0.349 0.174 0.015 -67.963 1.628 0.875 0.373 -256.160

The results are shown in Table 1 and Table 2. As observed in the tables, MLE via PSO has lower mMAPE and mBias
values for all cases. For all cases except two, the values of mSE are lower in the first simulation. In most cases, as the
number of clusters increase, a remarkable reduction in mMAPE, mSE and mBias for PSO is seen. However, the quasi-
Newton or conjugate gradient methods do not provide the same pattern. For the same level of N and δ, when the size of
clusters increase, mMAPE, mSE and mBias decrease in all cases of MLE via PSO except one (in this case, mBias remains
constant). It should also be noted that increasing censoring rate has lower impact on the values of mMAPE, mSE and
mBias in MLE via PSO procedure.

Also, mLog.Lik values of PSO are quite better than mLog.Lik values of other two methods. To illustrate change of
Log.Lik values in each repeat, randomly two cases are chosen among 54 different cases. Figures 3 and 4 show the cases
(ni = 4; N = 40; δ =20%) and (ni = 4; N = 40; δ =5%) from first and second simulation study, respectively. As seen in
figures, PSO takes the higher and more consistent Log.Lik values compared with derivative-based methods.

Figure 3. Change of Log.Lik values for case (ni = 4; N = 40; δ =20%)
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Figure 4. Change of Log.Lik values for case (ni = 4; N = 40; δ =5%)
5. Real Data Application

The kidney infection data (McGilchrist & Aisbett, 1991) has been widely used in frailty studies. The data set consists
of first and second recurrence times of infection for 38 kidney patients using a portable dialysis machine. The event
of interest is the occurrence of an infection at the point of insertion of the catheter. The catheter is removed when the
infection is observed. Then, the infection is cleared up and the catheter is reinserted for the second time. Each lifetime
(ti1, ti2 > 0) represents the time elapsed (in days) from the catheter insertion to infection. Censoring occurs when the
catheter is removed for any reasons except the infection.

We first investigate the goodness of fit of the kidney infection data. Weibull and exponential probability plots (P-P)
are shown in Figures 5 and 6. According to P-P plots, Weibull fits the data better than the exponential distribution.
Kolmogorov-Smirnov (KS) tests suggest that Weibull is an appropriate distribution on the choice of baseline hazard.
Table 3 provides the K-S statistics and associated p-values.

Figure 5. Exponential P-P plot for kidney infection data

Figure 6. Weibull P-P plot for kidney infection data
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Table 3. Kolmogorov-Smirnov statistics and p-values
MLEs K-S p-value

Exponential ψ = (0.009) 0.2239 0.0009
Weibull ψ = (0.011, 0.805) 0.1205 0.2201

Two primary risk factors are included in the model: age and sex of patient (0=male, 1=female). The hazard function of
i th patient conditional on Gamma shared frailty at time ti j > 0 takes the form (i = 1, ..., 38; j = 1, 2),

h(ti j\zi, Xi j) = zi(λpti j
p−1) exp(β1x(age)

i j + β2x(sex)
i j ) (19)

The results of MLE with PSO, quasi-Newton and conjugate gradient are reported in Table 4. Standard errors of parameters
(Se) are obtained from the inverse of observed information matrix I(β, ψ, θ, ) = −H(β, ψ, θ), where H(β, ψ, θ) denotes the
Hessian matrix. As observed in Table, lower standard errors and higher Log.Lik. values are obtained from PSO. Also, the
G-R converge statistics of PSO calculated for 5 parameter estimates are found satisfactory (that is, equal to or less than
1.1).

Table 4. Application results
PSO Q uasi-Newton C onjugate Gradient

Parameter Value Se G-R statistic Value Se Value Se
β1 0.007 0.025 0.999 -0.088 0.042 -0.088 0.039
β2 -2.118 0.577 0.999 0.923 2.066 0.923 1.960
λ 0.011 0.024 1.019 0.281 0.136 0.281 0.128
p 1.293 0.321 1.003 1.146 0.395 1.146 0.375
θ 0.510 0.297 1.030 0.848 0.626 0.846 0.590
Log. Lik. -332.488 -364.718 -364.776

Note: The initials selected randomly for quasi-Newton and conjugate gradient are (0.257,0.929,0.307,1.180,0.098)

5. Conclusion

In this paper, the estimation performance of MLE via PSO is investigated against the estimation performance of MLE via
quasi-Newton and conjugate gradient methods for the shared Gamma frailty model. Based on two different simulation
studies, PSO procedure outperforms the two derivative-based methods for most cases based on all comparison criteria.
Also it is shown that smaller biases are obtained under the situation of heavy censoring. MLE via PSO is also implemented
to a real data set and it is shown that this procedure can be preferred for estimating the parameters of parametric shared
frailty models.
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