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Abstract

We propose and study a new five-parameter continuous distribution in the unit interval through a specific probability in-
tegral transform. The new distribution, under some parameter constraints, is an identified parametric model that includes
as special cases six important models such as the Kumaraswamy and beta distributions. We obtain ordinary and incom-
plete moments, quantile and generating functions, mean deviations, Rényi entropy and moments of order statistics. The
estimation of the model parameters is performed by maximum likelihood, and hypothesis tests are discussed. Addition-
ally, through a simulation study we investigate the behavior of the maximum likelihood estimator, also we investigate the
impact of ignoring identifiability problems. The usefulness of the proposed distribution is illustrated by means of a real
data set.
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1. Introduction

We define and study a new five-parameter distribution called the extended Kumaraswamy (EKw) distribution that includes,
as special models, some well-known distributions such as the Kumaraswamy (Kw, for short) and beta (B) distributions.
The EKw distribution allows us to obtain new three- and four-parameter generalizations of such distributions that can be
used in a variety of problems for modelling real continuous proportional data owing to its flexibility in accommodating
different forms of density functions.

Wahed (2006) and Ferreira and Steel (2006) demonstrated that any parametric family of distributions can be incorporated
into larger families through an application of the probability integral transform. Specifically, let G1(x;ω) be a cumulative
distribution function (cdf) with associated probability density function (pdf) g1(x;ω) and g2(x; τ ) be a pdf having a
support over the standard unit interval. Here, ω and τ represent scalar or vector parameters. We define

F(x;ω, τ ) =
∫ G1(x;ω)

0
g2(t; τ )dt, (1)

where the cdf F(x;ω, τ ) and G1(x;ω) have the same support. The pdf corresponding to (1) is given by

f (x;ω, τ ) = g2(G1(x;ω); τ ) g1(x;ω). (2)

This mechanism for generating distributions from equation (1) is particularly attractive when G1(x;ω) has a closed-form
expression. On the other hand, the beta density is often used in place of g2(x; τ ). However, different choices for G1(x;ω)
have been considered in the literature. Eugene et al. (2002) defined the beta normal distribution by taking G1(x;ω)
as the standard normal cdf and derived some of its first moments. More general expressions for these moments were
obtained by Gupta and Nadarajah (2004b). Nadarajah and Kotz (2004) defined the beta Gumbel distribution by taking
G1(x;ω) to be the Gumbel cdf and provided explicit expressions for the moments and the asymptotic distribution of the
extreme order statistics. Nadarajah and Gupta (2004) introduced the beta Fréchet distribution by taking G1(x;ω) to be the
Fréchet distribution, derived the analytical shapes of its density and hazard rate functions, and obtained the asymptotic
distribution of its extreme order statistics. Further, Nadarajah and Kotz (2006) dealt with the beta exponential distribution
and determined its generating function, the first four cumulants, and the asymptotic distribution of the extreme order
statistics.

The starting point of our proposal is the Kumaraswamy (Kw) distribution Jones (2009); Kumaraswamy (1980) that is
quite similar to the beta distribution. It is also termed the “minimax distribution”. Its closed-form cumulative function is

G1(x;ω) = 1 − (1 − xα)β, 0 < x < 1, (3)
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whereas its pdf is
g1(x;ω) = α β xα−1(1 − xα)β−1, 0 < x < 1, (4)

where ω = (α, β)⊤, α > 0, and β > 0. If X is a random variable with density (4), we write X ∼Kw(α, β). This distribution
was originally conceived to model hydrological phenomena, but it has been used for other purposes(Sundar & Subbiah,
1989; Fletcher & Ponnambalam, 1996; Seifi, et al, 2000; Ganji, et al, 2006; Sanchez, et al, 2007; Courard-Hauri, 2007).

We propose an extension of the Kw distribution by taking G1(x;ω) as the cdf (3) and g2(x; τ ) as the generalized beta
density of the first kind (GB1) Gupta and Nadarajah (2004a); McDonald (1984) defined by

g2(x; τ ) =
λ

B(γ, η)
xλγ−1(1 − xλ)η−1, 0 < x < 1, (5)

where τ = (γ, η, λ)⊤, γ > 0, η > 0, and λ > 0, B(γ, η) = Γ(γ)Γ(η)/Γ(γ + η) is the beta function and Γ(·) is the gamma
function. If X is a random variable with pdf (5), we write X ∼GB1(γ, η, λ). Further, if X ∼GB1(γ, η, 1), then X ∼ B(γ, η),
i.e., X has a beta distribution with parameters γ and η. If X ∼GB1(1, η, λ), then X ∼Kw(η, λ).

Remark 1 A comment on the choices of G1 and G2 seems in order. We consider the Kumaraswamy cdf for G1 because it
has a closed-form and it is a very competitive model for the beta distribution. For the choice of the standard generalized
beta density of the first kind to G2, the motivation has been to consider a distribution which, combined with the Kw
distribution, generates a wider family, including, as special models, several known distributions. In Section 3, we show
that the choice for G2 is very successful in this regard.

The paper is organized as follows. In Section 2, we define the EKw distribution, plot its pdf for selected parameter values,
and provide some of its basic structural properties. In Section 3, we present some special models. In Section 4, we
demonstrate that the EKw density function can be expressed as linear combinations of Kw and power density functions.
In Section 5, we determine explicit expressions for the ordinary and incomplete moments, generating function, mean
deviations, Bonferroni and Lorenz curves. In Section 6, we derive the density function of the order statistics and their
moments. The Rényi entropy is investigated in Section 7. In Section 8, we discuss maximum likelihood estimation and
obtain the observed information matrix. Section 9 is devoted to a simulation study to prove empirically the adequacy of
the maximum likelihood estimators (MLEs). In Section 10, we give an application to a real data set. Section 11 provides
some conclusions.

2. An Extension

We obtain an appropriate extension of the Kw distribution by taking g2(x; τ ) as the GB1 density (5) and G1(x;ω) as the
Kw cdf (3). Following (1), the five-parameter EKw cumulative distribution is defined by

F(x;θ) =
λ

B(γ, η)

∫ 1−(1−xα)β

0
yγλ−1(1 − yλ)η−1dy, (6)

where θ = (α, β, γ, η, λ)⊤ is the parameter vector, θ ∈ R+5. The pdf associated with (6) (for 0 < x < 1) is obtained from
(2) as

f (x;θ) =
λα β

B(γ, η)
xα−1 (1 − xα)β−1[1 − (1 − xα)β]γλ−1{1 − [1 − (1 − xα)β]λ}η−1. (7)

Henceforth, we denote by X ∼EKw(α, β, γ, η, λ) a random variable having the pdf (7).

Remark 2 We can see easily that the EKw distribution in (7) in non-identified when γλ = 1 or βη = 1. Parameter values
sometimes cannot be determined or known perfectly even in the most favorable situation, where the maximum amount of
information is available, i.e. when the true distribution f (x; ·) is known. This problem has been known as identification
problems. A parameter value θ1 is said to be identified if there does not exist another parameter value θ2 of θ such
that f (x; θ1) = f (x; θ2). On the other hand, a parametric distribution is said to be identified if all parameter values are
identified. Usually, imposing constraints on the parameters can solve some identification problems. Such constraints are
said to be identifying. Thereby, to avoid identification problems in (7), we constraints the join product γλ or βη different
from one; γλ , 1 or βη , 1. In addition, we can comment that any model nested in an identified model is also identified.
But a nested model can be identified without that the wider model being identified.

A motivation for (6) comes from the beta construction given by Eugene et al. (2002), in which

F(x;θ) = I[1−(1−xα)β]λ(γ, η), (8)

where Ix(a, b) = [B(a, b)]−1
∫ x

0 ωa−1 (1 − ω)b−1dω denotes the incomplete beta function ratio. Thus, the EKw distribution
can be generated by applying the beta construction (8) to a new exponentiated Kumaraswamy (ExpKw) distribution with
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parameter λ; i.e., G1(x;α, β, λ) = [1 − (1 − xα)β]λ. Therefore, the EKw distribution can also be referred to as the beta
exponentiated Kumaraswamy (BExpKw) distribution. For both γ and η positive integers, the new density becomes the
pdf of the γth order statistic from the ExpKw distribution in a sample of size γ + η − 1. If both γ and η are positive
parameters on the real line, equation (8) can also be described as a simple extension of a collection of order statistics
densities associated with the ExpKw distribution.

By inverting (8), we can immediately generate X having the EKw distribution by X = [1 − (1 − V1/λ)1/β]1/α, where V
is a beta random variable with parameters γ and η. This scheme is useful because of the existence of fast generators
for beta random variables. In Figures 1 and 2, we plot some possible shapes of the density function (7). It can take
various forms-bathtub, J, inverted J, monotonically increasing or decreasing, and upside-down bathtub-depending on the
parameter values. Moreover, the quantile function (qf) QEKw(u) of the EKw distribution can be determined using the beta
qf (say QB(u)), by QEKw(u) = {1 − [1 − QB(u)1/λ]1/β}1/α.

3. Special Models

The EKw distribution is very flexible and includes several important distributions as the following eight special models.

• For α = β = 1, we obtain the McDonald (Mc or GB1) distribution (5) with parameters γ, η, and λ.

• If α = β = λ = 1, the EKw distribution reduces to the beta (B) distribution with parameters γ and η.

• If λ = 1, equation (7) gives

f (x;α, β, γ, η, 1) =
α β

B(γ, η)
xα−1 (1 − xα)βη−1[1 − (1 − xα)β]γ−1.

This distribution can be viewed as a four-parameter extension of the Kw distribution. We refer to it as the beta
Kumaraswamy BKw distribution, since its density function can be obtained from (2) by taking G1(x;ω) as the
Kw(α, β) cdf and g2(x; τ ) as the B(γ, η) density function.

• For γ = 1, (7) reduces to

f (x;α, β, 1, η, λ) = λα β η xα−1 (1 − xα)β−1 [1 − (1 − xα)β]λ−1{1 − [1 − (1 − xα)β]λ}η−1.

This distribution is a four-parameter generalization of the Kw distribution, that we defined as Kumaraswamy-
Kumaraswamy (KwKw) distribution. It can be obtained from (2) by replacing G1(x;ω) by the cdf of the Kw(α, β)
distribution and g2(x; τ ) by the pdf of the Kw(γ, η) distribution. Its cdf has a closed-form given by

F(x;α, β, 1, η, λ) = 1 − {1 − [1 − (1 − xα)β]λ}η.

• If η = 1 and γ = 1, we have exponential Kumaraswamy (ExpKw) distribution, from (7),

f (x;α, β, 1, 1, λ) = λα β xα−1 (1 − xα)β−1 [1 − (1 − xα)β]λ−1.

Its associated cdf is given by
F(x;α, β, 1, 1, λ) = G1(x;α, β)λ,

where G1(x;α, β) is the cdf of the Kw(α, β) distribution. It was defined before as the three-parameter extension of
the Kw distribution. If λ = 1 in the ExpKw distribution, we obtain the identified nested model given by (4).

• For α = 1 and β = 1, (7) reduces to beta power (BP) distribution, with pdf as

f (x; 1, 1, γ, η, λ) =
λ

B(γ, η)
xγλ−1(1 − xλ)η−1.

This density function follows from (2) if G1(x) = xλ and g2(x) has the beta density with parameters γ and η.

Additionally, we provide two properties of the EKw distribution.

1. If X ∼EKw(1, β, γ, η, λ), then Y = X1/α ∼GKw(α, β, γ, η, λ) for α > 0,

2. Let X ∼EKw(α, β, γ, η, λ) and Y = − log(X). The pdf of Y (for y > 0) is given by

f (y;θ) =
λαβ

B(γ, η)
e−αy(1 − e−αy)β−1[1 − (1 − e−αy)β]γλ−1{1 − [1 − (1 − e−αy)β]λ}η−1. (9)
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Figure 1. The EKw density functions. (a) θ⊤ = (α, 3.5, 1.5, 2.5, 0.5)⊤, (b) θ⊤ = (3.5, β, 1.5, 2.5, 0.5)⊤,
(c) θ⊤ = (5.5, 0.3, γ, 2.5, 0.5)⊤, (d) θ⊤ = (1.0, 1.5, 2.5, η, 0.5)⊤,
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Figure 2. The EKw density functions. (a) θ⊤ = (0.5, 0.7, 0.1, 3.0, λ)⊤, (b) θ⊤ = (α, β, 2.5, 1.1, 0.5)⊤,
(c) θ⊤ = (α, 1.5, 2.5, η, 0.5)⊤, (d) θ⊤ = (0.5, 0.7, 0.15, η, λ)⊤.
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We refer to (9) as the log-generalized Kumaraswamy (LEKw) distribution. The LEKw distribution is a new model that
can be suitable for fitting continuous positive lifetime data. It can then be useful in survival analysis and reliability studies.
The LGKw model (9) contains as special models the following two distributions.

• For λ = 1, (9) reduces to beta generalized exponential (BGE) distribution, with pdf by

f (y;α, 1, γ, η, λ) =
α β

B(γ, η)
e−αy (1 − e−αy)βη−1 [1 − (1 − e−αy)β]γ−1, y > 0. (10)

Equation (10) is the BGE density function Barreto-Souza et al. (2010). If γ = 1 and η = 1 in addition to λ = 1, the
LEKw distribution becomes the generalized exponential distribution (Gupta & Kundu,1999). If λ = β = γ = 1 and
η = 1, it coincides with the exponential distribution with mean α−1;

• For β = 1 and λ = 1, (9) reduces to beta exponential (BE) distribution, in which

f (y;α, 1, γ, η, 1) =
α

B(γ, η)
e−αγy(1 − e−αy)η−1, y > 0,

which is the BE density function (Nadarajah & Kotz, 2006).

4. Expansions

We give a simple expansions for the cdf and pdf of the EKw distribution. If |z| < 1 and η > 0 is a non-integer real number,
we have

(1 − z)η−1 =

∞∑
j=0

(−1) j (η) j z j, (11)

where (η) j = [(η − 1)(η − 2) . . . (η − j + 1)]/ j! (for j = 0, 1, . . . ) denotes from now on the descending factorial. Clearly, if
(η) is a positive integer, the power series stops at j = η − 1. Expanding the binomial in (6) as in equation (11), and if η is
a non-integer real number, we obtain

F(x;θ) =
λ

B(γ, η)

∫ G1(x;α,β)

0
yγλ−1

∞∑
j=0

(−1) j (η) j yλ jdy.

By simple integration, we obtain

F(x;θ) =
∞∑
j=0

ω j G1(x;α, β)λ(γ+ j), (12)

where ω j = [(−1) j (η) j]/[(γ+ j) B(γ, η)] and G1(x;α, β) follows (3). If η is a positive integer, the above sum stops at j = η.
By differentiating (12), the pdf of X follows as

f (x;θ) =
∞∑
j=0

ω j λ (γ + j) g1(x;α, β) G1(x;α, β)λ(γ+ j)−1.

Replacing G1(x;α, β) by (3) and using (4), we have

f (x;θ) =
∞∑

k=0

pk g1(x;α, (k + 1)β), (13)

here, pk =
∑∞

j=0 ω j t j,k, t j,k = (−1)k λ (γ+ j) (ϕ j)k/(k+1), ϕ j = (γ+ j)λ−1, and g1(x;α, (k+1)β) denotes the Kw(α, (k+1)β)
density function with parameters α and (k + 1)β. Further, we can express (13) as a linear combination of power density
functions, since the Kw density function (4) can also be written as a linear combination of power densities. Then, we
obtain

f (x;θ) =
∞∑

i=0

vi x(i+1)α−1, (14)

where

vi = (−1)i α β

∞∑
k=0

(k + 1) ((k + 1)β − 1)i pk.
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Equations (13) and (14) are the main results of this section. We can obtain some mathematical properties of the EKw
distribution from those of the Kw and power distributions.

5. Moments and Generating Function

First, we obtain an infinite linear representation for the rth ordinary moment of X, say µ′r = E(Xr), from (13) as

µ′r =
∞∑

k=0

pk τr(k), (15)

where τr(k) =
∫ 1

0 xrg1(x;α, (k + 1)β)dx is the rth moment of the Kw(α, (k + 1)β) distribution that exists for all r > −α. By
a result of (Jones, 2009, Section 3), we have

τr(k) = (k + 1) β B(1 + rα−1, (k + 1)β). (16)

Hence, the moments of X are obtained directly from (15) and (16). The central moments (µr) and cumulants (κr) of X
come from the ordinary moments as

µr =

r∑
k=0

(−1)k
(
r
k

)
µ′r1 µ

′
r−k and κr = µ

′
r −

r−1∑
k=1

(
r − 1
k − 1

)
κk µ

′
r−k,

respectively, where κ1 = µ
′
1. So, κ2 = µ

′
2 − µ′21 , κ3 = µ

′
3 − 3µ′2µ

′
1 + 2µ′31 , etc.

The rth incomplete moment of X given by Jr(a;θ) =
∫ a

0 xr f (x;θ)dx is determined from the density expansion (14) as

Jr(a;θ) =
∞∑

i=0

vi a(i+1)α+r

(i + 1)α + r
. (17)

The main applications of the first incomplete moment of X refer to the mean deviations, Bonferroni and Lorenz curves. We
obtain the mean deviations about the mean µ′1 = E(X) and about the median M = QEKw(0.5) of X from the relationships

δ1 = 2
[
µ′1F(µ′1;θ) − J1(µ′1;θ)

]
and δ2 = µ

′
1 − 2J1(M;θ),

respectively. The solution of the nonlinear equation I[1−(1−Mα)β]λ (γ, η) = 1/2 from (8) gives the median M. Here, J1(a;θ)
follows from (17) with r = 1.

The Bonferroni and Lorenz curves are defined by B(π;θ) = J(q;θ)/(π µ′1) and L(π;θ) = J1(q;θ)/µ′1, respectively, where
q = QGKw(π) is computed for a given probability π. The curves L(π) and B(π) for the new distribution as functions of
π are readily calculated from J(q;θ). Additionally, the moment generating function (mgf) of the EKw distribution, say
M(t), follows from (14) by changing variables

M(t) =
∞∑

i=0

vi t−(i+1)α
∫ t

0
u(i+1)α−1 exp (−u)du.

Hence, M(t) reduces to the linear combination

M(t) =
∞∑

i=0

vi t−(i+1)α γ((i + 1)α, t),

where γ(a, x) =
∫ a

0 ua−1 e−udu denotes the incomplete gamma function.

6. Moments of Order Statistics

The density function of the ith order statistic Xi:n, say fi:n(x;θ) (for i = 1, · · · , n), in a random sample of size n from the
EKw distribution, follows from the binomial expansion and integration of (14) as

fi:n(x;θ) =
1

B(i, n − i + 1)

 ∞∑
t=0

vt x(t+1)α−1

 n−1∑
j=0

(
n − 1

j

)
(−1) j

 ∞∑
s=0

v⋆s x(s+1)α

i+ j−1

,
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where v⋆s = [(s + 1)α]−1 vs. Consider the expansion for a power series raised to a positive integer power p (Gradshteyn
and Ryzhik, 2000, Section 0.314). ( ∞∑

j=0

w j x j
)p
=

∞∑
j=0

c j,p x j, (18)

where c0,p = wp
0 and cs,p = (s w0)−1 ∑s

j=1( j p − s + j) w j cs− j,p for all s ≥ 1. Using equation (18), we can write

fi:n(x;θ) =
1

B(i, n − i + 1)

n−1∑
j=0

(
n − 1

j

)
(−1) j

∞∑
s,t=0

vt es,i+ j−1 x(s+t+i+ j)α−1,

where e0,i+ j−1 = v⋆(i+ j−1)
0 and (for s ≥ 1)

es,i+ j−1 = (s v⋆0 )−1
s∑

m=1

[m (i + j − 1) − s + m] v⋆m es−m,i+ j−1.

The rth moment of the ith order statistic can be reduced to

E(Xr
i:n) =

1
α B(i, n − i + 1)

n−1∑
j=0

(−1) j
(
n − 1

j

) ∞∑
s,t=0

vt es,i+ j−1

(r + s + t + i + j)
.

Further, we obtain another explicit expression for the moments of the EKw order statistics from a general result given by
Barakat and Abdelkader (2004) applied to the independent and identically distributed case. For a distribution with pdf
f (x;θ) and cdf F(x;θ), we can write

E(Xr
i:n) = r

n∑
m=n−i+1

(−1)m−n+i−1
(
m − 1
n − i

) (
n
m

)
Im(r),

where Im(r) =
∫ 1

0 xr−1{1 − F(x;θ)}mdx. For a positive integer m, we have

Im(r) =
∫ 1

0
xr−1

m∑
p=0

(−1)p
(
m
p

)
F(x;θ)pdx.

By replacing (12) in the above equation, we can write

Im(r) =
m∑

p=0

(−1)p
(
m
p

) ∫ 1

0
xr−1

( ∞∑
j=0

ω j G1(x;α, β)λ(γ+ j)
)p

dx. (19)

Equations (18) and (19) give

Im(r) =
m∑

p=0

(−1)p
(
m
p

) ∫ 1

0
xr−1

∞∑
j=0

c j,p G1(x;α, β)λ(γ+ j)dx.

By replacing G1(x;α, β) by (3) and using (11), we obtain

Im(r) =
m∑

p=0

(−1)p
(
m
p

) ∞∑
j,s=0

(−1)s c j,p (ψ j)s

∫ 1

0
xr−1 (1 − xα)sβdx,

where ψ j = λ(γ + j). Since B(a/b, c) = b
∫ 1

0 wa−1(1 − wb)c−1dw for a, b, c > 0, we have

Im(r) =
m∑

p=0

∞∑
j,s=0

sp, j,s B(rα−1, s β + 1),

where

sp, j,s =
(−1)p+s m!
α (m − p)! p!

c j,p (ψ j)s.
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Finally, E(Xr
i:n) reduces to

E(Xr
i:n) = r

n∑
m=n−i+1

{
(−1)m−n+i−1

(
m − 1
n − i

) (
n
m

) m∑
p=0

∞∑
j,s=0

sp, j,s B(r α−1, s β + 1)
}
.

7. Rényi Entropy

The entropy of a random variable X with a density function f (x) is a measure of the variation of uncertainty. One of the
popular entropy measures is the Rényi entropy, given by

JR(ρ) =
1

1 − ρ log
[ ∫

f ρ(x)dx
]
, ρ > 0, ρ , 1.

From (14), we can write

f (x;θ)ρ =

 ∞∑
i=0

vi x(i+1)α−1

ρ .
Since f (x;θ) belongs to the unit interval, we have (for ρ > 0)

f (x;θ)ρ =
∞∑
j=0

j∑
r=0

(−1) j+r
(
ρ

j

) (
j
r

)
x(α−1)r

 ∞∑
i=0

vi xiα

r

.

Using equation (18), we obtain

f (x;θ)ρ =
∞∑

i, j=0

j∑
r=0

(−1) j+r
(
ρ

j

)(
j
r

)
di,r x(i+r)α−r,

where d0,r = vr
0 and ds,r = (s v0)−1 ∑s

m=1(m r − s + m) vm ds−m,r (for s ≥ 1). Hence,

JR(ρ) =
1

1 − ρ log
[ ∞∑

i, j=0

j∑
r=0

(−1) j+r
(
ρ
j

) (
j
r

)
di,r

(i + r)α − r + 1

]
.

8. Estimation

A simple method for estimating the parameters of a distribution based on a random sample is the method of moments.
However, it does not work for the EKw distribution, since its moments can only be expressed in terms of the parameters as
infinite sums; see Section 5. We then focus on maximum likelihood estimation. Let x1, . . . , xn be a random sample from
the EKw(θ) distribution, where θ = (α, β, γ, η, λ)⊤ is the model parameter vector. From (7), the log-likelihood function
reduces to

ℓ(θ) = n log(λ) + n log(α) + n log(β) − n log[B(γ, η)] + (α − 1)
n∑

i=1

log(xi) + (β − 1)
n∑

i=1

log(1 − xαi )+

(γλ − 1)
n∑

i=1

log[1 − (1 − xαi )β] + (η − 1)
n∑

i=1

log[1 − {1 − (1 − xαi )β}λ]. (20)

The maximum likelihood estimate (MLE) θ̂ of θ can be obtained by maximizing (20) directly by using the SAS (PROC
NLMIXED), R (optim or MaxLik functions) and Ox program (sub-routine MaxBFGS). Alternatively, we can solve the non-
linear equations obtained by setting the components of the score vector U(θ) = (Uα,Uβ,Uγ,Uη,Uλ) to zero. These
components are given by

Uα(θ) =
n
α
+

n∑
i=1

[1 − (β − 1)zi] log(xi) + (γλ − 1)
n∑

i=1

ẏi(α)

yi
− (η − 1)λ

n∑
i=1

vi ẏi(α),

Uβ(θ) =
n
β
+

n∑
i=1

log(1 − xαi ) + (γλ − 1)
n∑

i=1

ẏi(β)

yi
− λ(η − 1)

n∑
i=1

vi ẏi(β),
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Uγ(θ) = −n[ψ(γ) − ψ(γ + η)] + λ
n∑

i=1

log(yi),

Uη(θ) = −n[ψ(η) − ψ(γ + η)] +
n∑

i=1

log(1 − yλi ), and

Uλ(θ) =
n
λ
+

n∑
i=1

(γ − (η − 1) yivi) log(yi),

where ψ(·) is the digamma function, yi = 1 − (1 − xαi )β, vi = yλ−1
i (1 − y−λi )−1, zi = xαi (1 − xαi )−1, ẏi(α) = ∂yi/∂α =

−βxαi (1 − xαi )β−1 log(xi), and ẏi(β) = ∂yi/∂β = −(1 − xαi )β log(1 − xαi ). For interval estimation and hypothesis tests on the
model parameters, the observed information matrix J = J(θ) is required. Its elements are given in the Appendix.

Under standard regularity conditions, the approximate distribution of (θ̂ − θ) is the multivariate normal N5(0, I−1(θ))
distribution, where I(θ) is the expected information matrix. The multivariate normal N5(0, J−1(θ̂)) distribution, where I(θ)
is replaced by the estimated observed information matrix J(θ̂), is commonly used to construct approximate confidence
regions. The likelihood ratio (LR) statistic can be used for testing hypotheses on the model parameters in the usual way.
In particular, this statistic is useful to check if the fitted EKw distribution is statistically superior to the fitted BKw and
ExpKw distributions for a given data set. For example, the test of H0: λ = 1 versus H1: λ , 1 is equivalent to compare
the BKw and EKw distributions and the LR statistic reduces to w = 2[ℓ(α̂, β̂, γ̂, η̂, λ̂) − ℓ(α̃, β̃, γ̃, η̃, 1)], where θ̂ and θ̃ are
the unrestricted and restricted estimates of θ, respectively. Under the null hypothesis, w is asymptotically distributed as
χ2

1. For a given level ζ, the LR test rejects H0 if w exceeds the (1 − ζ) upper quantile of the χ2
1 distribution.

9. Monte Carlo Study

We discuss the results of a Monte Carlo simulation study conducted to assess the finite sample behavior of the MLEs.
The results are obtained from 10, 000 Monte Carlo simulations carried out using the subroutine BFGS implemented in
the R software. For each replication, a random sample of size n is drawn from the EKw(α, β, γ, η, λ) distribution and
the parameters are estimated by maximum likelihood. Tables 1 and 2 list the mean estimates (MEAN) of the model
parameters, the corresponding biases (BIAS), the root mean squared errors (RMSE) and sample proportions delete that
does not satisfy the convergence criteria (c(%)) for sample sizes n = 50, 100, 200 and 300. We consider two scenarios.
First, we assume true parameter values (α, β, γ, η, λ)⊤ = (3.5, 50.0, 45.0, 33.0, 50.0)⊤ such that the EKw distribution is an
identifiable model. Second, we assume a non-identifiable model such that the true parameters values are (α, β, γ, η, λ)⊤ =
(3.5, 2.0, 1.0, 0.5, 1.0)⊤, i.e., βη = 1 and γλ = 1. The figures in Table 1 indicate that the biases of the MLEs become
smaller for large sample size. Also, the biases, RMSEs and sample proportions deleted decrease when the sample size
increases, as expected. Although, in the figures of Table 2, we can note a similar behavior, i.e. the biases, MLEs and
c(%) decrease when the sample size increases; the estimators can be inconsistent, specially when samples size are small.
In short, we can observed which the impact of a non-identified model can lead wrongs interpretation, given that the
estimators are inconsistent.

Table 1. Simulation results for the MLEs of the EKw distributions. Identifiable model

n Measure α β γ δ λ c(%)
MEAN 3.646 59.323 48.225 39.676 52.533

50 BIAS 0.146 9.323 3.225 6.676 2.533 2.14
RMSE 0.560 37.232 31.018 39.114 23.900
MEAN 3.594 55.926 47.297 35.645 51.673

100 BIAS 0.094 5.926 2.297 2.645 1.673 1.43
RMSE 0.441 26.758 28.544 22.349 17.0340
MEAN 3.537 52.316 45.366 33.751 50.182

200 BIAS 0.037 2.316 0.366 0.7509 0.182 1.13
RMSE 0.281 13.853 9.847 9.195 7.498
MEAN 3.524 51.548 45.137 33.555 50.034

300 BIAS 0.024 1.548 0.137 0.554 0.034 1.10
RMSE 0.248 10.913 7.596 7.121 5.911
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Table 2. Simulation results for the MLEs of the EKw distributions. Non-identifiable model
n Measure α β γ δ λ c(%)

MEAN 6.117 4.404 2.899 0.621 3.410
50 BIAS 2.617 2.404 1.899 0.121 2.410 116.7

RMSE 7.301 3.999 3.708 2.583 5.293
MEAN 5.708 3.755 2.571 0.404 2.322

100 BIAS 2.208 1.755 1.571 -0.096 1.322 89.96
RMSE 6.196 2.850 2.998 0.451 3.247
MEAN 5.538 3.339 2.375 0.410 1.722

200 BIAS 2.038 1.339 1.375 -0.090 0.722 66.69
RMSE 5.359 2.235 2.688 0.229 2.118
MEAN 5.368 3.143 2.280 0.417 1.466

300 BIAS 1.868 1.143 1.280 -0.083 0.466 54.82
RMSE 4.808 1.913 2.576 0.215 1.662

10. Application

We present an application of the EKw distribution to the observed percentages of children living in households with a per
capita income of less than R$ 75.50 in 1991 in 5507 Brazilian municipal districts. The data set was extracted from the
Atlas of Brazil Human Development available at http://www.pnud.org.br/. The EKw distribution includes some important
sub-models (as described in Section 3 that allow their evaluation relative to it. Table 3 lists the MLEs and their standard
errors for some fitted models to the current data. The histogram of these data and the estimated densities of the fitted
models are displayed in Figure 3. It is clear from these plots that the EKw distribution gives the best fit to these data.

Table 4 gives the values of the following statistics for some models: ℓ(θ̂), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) and a corrected criterion (AICc). The figures in this table indicate that the EKw distribution
is a better model for the current data. Further, we determine the maximum values of the unrestricted and restricted log-
likelihoods to obtain LR statistics for testing some sub-models of the new distribution. The computations are carried out
using the optim function implemented in the R software. For testing H0:(α, β, λ) = (1, 1, 1) versus H1: H0 is not true, i.e.,
for comparing the EKw and beta models, w = 2(1514.262 − 1271.561) = 485.402 (p-value < 0.001). This indicates that
the EKw model gives a better representation for the data than the beta distribution. Also, the LR statistic for comparing
the EKw and BKw models, i.e., for testing H0: λ = 1 versus H1: λ , 1, is w = 2(1514.262 − 1383.464) = 261.596
(p-value < 0.001). It also yields a favorable indication for the EKw model. The maximized log-likelihoods in Table 4
give evidence that the LR statistics for comparing the EKw distribution with any sub-model support the wider distribution
as a better model for the current data.

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

EKw

BKw

KwKw

PB

Beta

Figure 3. Histogram and estimated densities for the percentage of children living in households with a per capita income
of less than R$ 75.50 (1991) in 5507 Brazilian municipal districts.
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Table 3. MLEs of the model parameters for the percentage of children living in households with a per capita income of
less than R$ 75.50 (1991) in 5507 brazilian municipal districts.

Distribution α β γ δ λ

EKw 3.616 0.573 0.072 22.953 7.944
(0.808) (0.072) (0.008) (5.746) (1.917)

BKw 0.047 0.063 18.689 61.113 -
(0.012) (0.010) (2.349) (11.390)

KwKw 0.138 0.386 - 8.010 6.970
(0.076) (0.054) (1.749) (2.580)

BP - - 0.032 11.101 71.635
(0.003) (2.169) (6.667)

Beta - - 2.568 1.301 -
(0.048) (0.023)

Table 4. The measures ℓ(θ̂), AIC, BIC and CAIC for the the percentage of children living in households with a per capita
income of less than R$ 75.50 (1991) in 5507 brazilian municipal districts.

Distribution ℓ(θ̂) AIC BIC AICc

EKw 1514.262 -3018.524 -3018.524 -3018.513
BKw 1383.464 -2758.928 -2758.928 -2758.921

KwKw 1385.272 -2762.544 -2762.544 -2762.537
BP 1484.568 -2963.136 -2943.295 -2963.129

Beta 1271.561 -2539.122 -2525.894 -2539.118
11. Conclusions

We propose a new five-parameter continuous distribution on the standard unit interval that generalizes the beta, Ku-
maraswamy (Kumaraswamy, 1980), and McDonald (McDonald, 1984) distributions and includes, as special models,
other distributions discussed in the literature. We refer to the new model as the extended Kumaraswamy (EKw) distribu-
tion and study some of its structural properties. We assume some constraints such that EKw distribution is an identified
model. We demonstrate that the EKw density function can be expressed as linear combinations of Kumaraswamy and
power density functions. We provide explicit expressions for ordinary and incomplete moments, generating and quantile
functions, mean deviations, Bonferroni and Lorenz curves, and Rényi’s entropy. The density of the order statistics can
also be expressed as a linear combination of power densities. We obtain explicit expressions for their moments. Parameter
estimation is approached by maximum likelihood, and the performance of the estimates and the impact of identifiability
problems are evaluated through a simulation study. The usefulness of the new distribution is illustrated by means of a
real data set. We hope that the proposed extended model may attract wider applications in the analysis of continuous
proportions data.
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Appendix

The elements of the observed information matrix J(θ) for (α, β, γ, η, λ) are given by

Jαα = −
n
α2 − (β − 1)

n∑
i=1

żi(α) log(xi) + (γλ − 1)
n∑

i=1

[ ÿi(α)

yi
−

( ẏi(α)

yi

)2]
− (η − 1)λ

n∑
i=1

[v̇i(α)ẏi(α) + viÿi(α)],

Jαβ = −
n∑

i=1

zi log(xi) + (γλ − 1)
n∑

i=1

[ ÿi(αβ)

yi
−

ẏi(α)ẏi(β)

y2
i

]
− (η − 1)λ

n∑
i=1

[v̇i(β)ẏi(α) + viÿi(αβ)],

Jαγ = λ
n∑

i=1

ẏi(α)

yi
,

Jαη = −λ
n∑

i=1

viẏi(α), Jαλ =
n∑

i=1

[γ/yi − (η − 1)vi]ẏi(α),

Jββ = −
n
β2 + (γλ − 1)

n∑
i=1

[ ÿi(β)

yi
−

( ẏi(β)

yi

)2]
− (η − 1)λ

n∑
i=1

(v̇i(β)ẏi(β) + viÿi(β)),

Jβγ = λ
n∑

i=1

ẏi(β)

yi
, Jβη = −λ

n∑
i=1

viẏi(β), Jβλ = γ
n∑

i=1

ẏi(β)

yi
− (η − 1)

n∑
i=1

viẏi(β),

Jγγ = −n{ψ′(γ) − ψ′(γ + η)}, Jγη = nψ
′
(γ + η), Jγλ =

n∑
i=1

log(yi),
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Jηη = −n{ψ′ (η) − ψ′ (γ + η)}, Jηλ = −
n∑

i=1

yivi log(yi), and

Jλλ = −
n
λ2 − (η − 1)

n∑
i=1

yiv̇i(λ) log(yi),

where żi(α) = ∂zi/∂α = (1 + zi)zi log(xi), ÿi(α) = ∂
2yi/∂α

2 = [1 − (β − 1)zi]ẏi(α) log(xi), ÿi(β) = ∂
2yi/∂β

2 = ẏi(β) log(1 − xαi ),
ÿi(αβ) = ∂

2yi/∂α∂β = [1/β+log(1+xαi )]ẏi(α), v̇i(α) = ∂vi/∂α = [(λ−1)/yi+λvi]vi ẏi(α), v̇i(β) = ∂vi/∂β = [(λ−1)/yi+λvi]viẏi(β),
v̇i(λ) = ∂vi/∂λ = (1 + yivi)vi log(yi), and ψ

′
(·) is the first derivative of the digamma function.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

74


