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Abstract

Receiver operating characteristic (ROC) curves are a frequent tool to study the discriminating ability of a certain charac-
teristic. The area under the ROC curve (AUC) is a widely used measure of statistical accuracy of continuous markers for
diagnostic tests, and has the advantage of providing a single summary index of overall performance of the test. Recent
studies have shown some critical issues related to traditional point and interval estimates for the AUC, especially for small
samples, more complex models, unbalanced samples or values near the boundary of the parameter space, i.e., when the
AUC approaches the values 0.5 or 1. Parametric models for the AUC have shown to be powerful when the underlying
distributional assumptions are not misspecified. However, in the above circumstances parametric inference may be not
accurate, sometimes yielding misleading conclusions. The objective of the paper is to propose an alternative inferential
approach based on modified profile likelihoods, which provides more accurate statistical results in any parametric set-
tings, including the above circumstances. The proposed method is illustrated for the binormal model, but can potentially
be used in any other complex model and for any other parametric distribution. We report simulation studies to show the
improved performance of the proposed approach, when compared to classical first-order likelihood theory. An application
to real-life data in a small sample setting is also discussed, to provide practical guidelines.

Keywords: area under the ROC curve, binormal model, continuous diagnostic marker, modified profile likelihood, ROC
curve, stress-strength model.

1. Introduction

Receiver operating characteristic (ROC) curves are frequently used to study the ability of a certain characteristic in dis-
criminating and classifying units under study. One of the most popular summary measures based on the ROC curve is
the area under the curve (AUC) (Krzanowski & Hand, 2009), which was originally developed in radar signal detection
(Bamber, 1975), and later it has been used in a broad range of applied contexts such as radiology, psychiatry, reliability
theory and industrial inspection systems, earthquake resistance.

The AUC is also widely applied in medicine as a measure of statistical accuracy of continuous markers for diagnostic tests
(Faraggi & Reiser, 2002; Pepe, 2003; Zhou, McClish, & Obuchowski, 2009). A diagnostic test based on a continuous
marker provides usually a response about the possible clinical status of subjects, identifying them as diseased (test positive)
or non-diseased (test negative) patients. Such test requires that a certain cut-off point t is chosen. The probabilities that
the test correctly classifies subjects as diseased and non-diseased, are called, respectively, the sensitivity and specificity of
the test associated with t.

To formalize the problem more generally, denote with D̄ and D, respectively, the true negative and true positive status of
units in the population of interest (e.g., real condition of being non-diseased or diseased). Let us define two continuous
random variables Y and X that describe a continuous characteristic of interest in the two distinct groups D̄ and D, re-
spectively. Let FY (·) and FX(·) be the corresponding cumulative distribution functions, and fY (t) and fX(t) the associated
probability density functions. Consider a classification rule based on a certain cut-off point t (e.g., a diagnostic test that
classifies subjects as ‘non-diseased’ if the observed value of the characteristic is below t, and as ‘diseased’ if the observed
value is above t). The probability that a unit with true status D̄ is correctly classified by the diagnostic test (test negative)
is called ‘specificity’ and defined as p(t) = FY (t), while the probability that a unit with true status D is correctly classified
by the test (test positive) is called ‘sensitivity’ and defined as q(t) = 1 − FX(t). Sensitivity and specificity vary when
different choices of t are made over the continuous scale of the characteristic. The ROC curve is then obtained by plotting
p(t) versus 1 − q(t) for all possible values of t.

The AUC has the advantage of providing a single index that summarizes the overall performance of the test (or rule) based
on the continuous characteristic, rather than an entire curve, and it is particularly useful for comparisons under different
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populations or different tests. The aim is often to minimize the error 1 − q(t) committed by the test, and simultaneously
increase the efficacy in discovering units from the D population. Therefore, values of the AUC close to 1 indicate very
high accuracy of the test, while very low accuracy corresponds to values closer to 0.5. Bamber (1975) showed that the
AUC based on continuous distributions is a probabilistic measure that is equal to

A = P(Y ≤ X) =
∫ ∞
−∞

FY (t) dFX(t) =
∫ 1

0
q ◦ p̄−1(z) dz, (1)

where p̄(t) = 1 − p(t). The quantity A can also be interpreted as the probability that, in a randomly selected pair of D̄
and D subjects, the test value is higher for a subject from the D population. In more general contexts, the AUC is used
as a measure of difference between distributions (Wolfe & Hogg, 1971). It is often used in engineering and reliability
theory with the name of stress-strength model (Johnson, 1988; Kotz, Lumelskii, & Pensky, 2003). When X represents the
strength of a certain component and Y is the applied stress, then A measures the probability that a component would not
fail if it is put under a systematic stress.

Inference for the AUC has been studied under different modeling assumptions, following mainly a nonparametric, a
parametric or a Bayesian approach. In practical applications, it has been suggested that all these approaches are useful
and the comparison of their results may provide additional information on the consistency among them. Moreover, the
AUC has been also investigated under various relevant settings, such as presence of explanatory variables, measurement
errors and clustered data (Pardo-Fernández, Rodrı́guez-Álvarez, Van Keilegom, et al., 2013; Reiser, 2000; Zou, Carlsson,
& Yu, 2012).

Recently, a special attention has been devoted to interval estimation of A and some related critical issues have been widely
discussed in the literature (Feng, Cortese, & Baumgartner, 2015). Some of these issues concern a bad performance of
confidence intervals for the AUC especially for small samples, more complex models, unbalanced samples or values near
the boundary of the parameter space (i.e, A approaching 0.5 or 1). In particular, classical parametric approaches have the
general problem that the smaller the sample size and the higher the number of parameters, less accurate they are in the
interval and point estimation. On the other hand, nonparametric methods tend also to perform poorly when the sample size
is small. Moreover, in general the parametric methods seem to outperform the nonparametric ones when the underlying
distributional assumptions are not misspecified, and in presence of samples that show a nearly perfect separation between
subjects in the two groups D̄ and D (Obuchowski & Lieber, 2002).

In the current papers we restrict our attention to the parametric framework for inference on the AUC. For the binormal
model, where Y and X are assumed to follow normal distribution with different means and variances, Reiser and Guttman
(1986) and Reiser and Faraggi (1997) proposed a method for the construction of confidence intervals based on a standard
approximate t of Student solution. Although their procedure appears to work well also for unbalanced or small samples,
it is not extendible to different parametric models for Y and X, such as Weibull, Gamma or any other more general
parametric distributions not in the location-scale family, or to e.g. mixture model in presence of bimodal distributions.
Moreover, it is not clear how to handle presence of explanatory variables or clustered data. Classical asymptotic methods
based on parametric likelihood theory can easily be applied for constructing confidence intervals or test of hypothesis for
the AUC for any type of assumed parametric model. However, it is well known from the general likelihood theory that
the resulting Wald type statistic and likelihood ratio statistic do not show a good performance in all situations, especially
in the coverage probability of 95% confidence intervals (Severini, 2000). A recent parametric approach was based on
higher-order asymptotic likelihood theory (Cortese & Ventura, 2013). However, it has been shown that such method has
some limitations: it may easily fail in presence of very small or unbalanced samples or when the samples produce a nearly
perfect observed discrimination, it is computationally unstable near the maximum likelihood estimate of A. Some of these
problems have been underlined in Feng et al. (2015).

To overcome these drawbacks, the current paper addresses the problem of inaccurate parametric inference in case of small
or unbalanced sample sizes, with special attention to confidence intervals and test of hypothesis for the AUC. Also the
problem of correct inference near the limit values 0.5 and 1, which represent the situations of, respectively, lowest and
maximal accuracy of the continuous characteristic under study, is investigated. In regard of these objectives, we present
inference for the AUC based on a modified version of the profile likelihood function, denoted in the literature as ‘modified
profile likelihood’ (Cox & Reid, 1992). In this setting, the parameter identifying the AUC is treated as parameter of
interest, whereas the remaining parameters related to the underling parametric distributions of Y and X are treated as
nuisance parameter. The proposed approach is very general, applicable to any type of parametric distribution assumptions
and to any data setting, such as clustered data or additional data on explanatory variables (Sartori, 2003).

It has been widely studied that standard likelihood inference for a parameter of interest could be misleading in presence
of relatively many nuisance parameters, with respect to the sample size, or for small samples. The classical approach for
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making inference on a parameter of interest in presence of nuisance parameters is based on profile likelihoods. The profile
likelihood function is the likelihood in which the nuisance parameters are maximized out, for every fixed value of the pa-
rameter of interest. This likelihood is not a proper likelihood and therefore, the derived score function is biased (Severini,
2000). Consequently, this bias may increase with the dimension of the nuisance parameter and produce inaccurate esti-
mation. The modified profile likelihoods are an interesting alternative to the profile likelihoods, since they correct for the
presence of nuisance parameters (Cox & Barndorff-Nielsen, 1994; Cox & Reid, 1992) showing an improved performance.

The scope of the paper is to investigate the performance of modified profile likelihoods for inference on the AUC based
on a general parametric model. The inferential procedure is presented in the general setting. Then, the methodological
aspects are illustrated for the binormal model. In order to show how to obtain point estimates, confidence intervals and
test of hypothesis based on the modified profile likelihood, we consider an application to real data in a setting of small
samples.

The paper is organized as follows. Section 2 provides the general notation and introduces the inferential problem in para-
metric models for the AUC. Here the classical approach and the proposed approach based on modified profile likelihoods
are described. In Section 3, the theory is applied to the specific case of a binormal model and computations are illustrated.
Section 4 reports simulation studies comparing the different methods and Section 5 shows the application to real-life data
on imaging for detecting brain tumor. Finally, conclusions and future directions are given in Section 6.

2. Notation and the Inferential Problem

In this section we consider a generic parametric model for the AUC, where the Y and X components are assumed to
follow the parametric distributions FY (t; θY ) and FX(t; θX), identified by the finite-dimensional parameter vectors θY and
θX , respectively. Let us define θ = (θY , θX) be the entire parameter vector of the model of dimension p, with θ ∈ Θ ⊆ Rp.
The AUC is then obtained as

A =
∫ ∞
−∞

FY (t; θY ) dFX(t; θX) ≡ g(FY (t; θY ), FX(t; θX)), (2)

where the functional relation between A and (FY (·), FX(·)) is defined with g(·), for ease of notation.

With the scope of making inference on the AUC, let y = (y1, . . . , yn1 ) be a random sample of size n1 of i.i.d. observations
drawn from Y , and x = (x1, . . . , xn2 ) be a random sample of size n2 of i.i.d. observations drawn from X. Assume also
that Y and X are independent. Let fY (y; θY ) and fX(x; θX) be the probability density functions associated to Y and X,
respectively. The log-likelihood function for θ is defined as ℓ(θ) = ℓ(θ; y, x) =

∑n1
i=1 log fY (yi; θY )+

∑n2
i=1 log fX(xi; θX), and

under broad conditions, θ̂ is the maximum likelihood estimator (MLE) obtained as unique solution to the score equation
ℓθ(θ) = ∂ℓ(θ)/∂θ = 0. The MLE of the AUC can be directly obtained as Â = g(θ̂), due to the likelihood invariance
property.

In the proposed approach, we intend to treat the parameter A as a scalar parameter of interest, while the remaining
parameters that identify the parametric distributions of Y and X are considered as nuisance parameter. Then, the original
model needs to be reparameterized so that ψ = ψ(θ) = A is the parameter of interest, as defined in (2), and λ = λ(θ) is a
nuisance parameter vector of length (p − 1), obtained by a transformation of the original parameter θ. Therefore, we can
write the likelihood function for the new parameters (ψ, λ) as

ℓ(ψ, λ) =
n1∑
i=1

log fY (yi;ψ, λ) +
n2∑
i=1

log fX(xi;ψ, λ) .

The MLEs Â = ψ̂ and λ̂ are the unique solutions to, respectively, the score equations ℓψ(ψ, λ) = ∂ℓ(ψ, λ)/∂ψ = 0 and
ℓλ(ψ, λ) = ∂ℓ(ψ, λ)/∂λ = 0.

2.1 Inference Based on the Profile Likelihood

From ℓ(ψ, λ), classical likelihood inference for the parameter of interest ψ = A in presence of nuisance parameters, can
be based on profile likelihood procedures, which require to eliminate the nuisance parameter λ by replacing it by the
constrained MLE, λ̂ψ, obtained by maximizing ℓ(ψ, λ) with respect to λ for fixed ψ. This method is based on the profile
log-likelihood ℓp(ψ) = ℓ(ψ, λ̂ψ), which can then be easily maximized to get the estimated AUC, ψ̂ = Â. The related
standard error can be computed as (Jp(ψ̂))−1/2, where Jp(ψ) = −∂2ℓp(ψ)/∂ψ2 is the corresponding profile observed Fisher
information.

Confidence intervals and test of hypothesis can rely on first-order approximations. Specifically, inference on A can be
based on the Wald statistic

Wp(ψ) = Jp(ψ̂)1/2(ψ̂ − ψ) , (3)
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or on the signed log-likelihood ratio statistic

Rp(ψ) = sign(ψ̂ − ψ)
(
2(ℓp(ψ̂) − ℓp(ψ))

)1/2
, (4)

which have asymptotic standard normal distributions.

A 100(1−α)% confidence interval for ψ based on the Wald statistic is given as [ψ̂−z1−α/2 jp(ψ̂)−1/2, ψ̂+z1−α/2 jp(ψ̂)−1/2] ,
where z1−α is the (1 − α)-quantile of the standard normal distribution. Alternatively, a 100(1 − α)% confidence interval
for ψ can be constructed from the Rp(ψ) statistic, and can be written as {ψ : |Rp(ψ)| ≤ z1−α/2}. The Wald-type confidence
interval is often preferred because it is very simple and immediate to be computed, as compared to the likelihood ratio
confidence interval, which typically requires a numerical solution. However, it is well-known that in general inferential
procedures based on the Wald statistics have a general poor performance and are less accurate than the procedures based
on the signed log-likelihood ratio statistic, especially at the boundaries of the parameter space (Severini, 2000).

2.2 Inference Based on the Modified Profile Likelihood

The profile likelihood is a standard method for inference in large-sample situations, and does not always perform well
in small-sample problems. When the focus of the inferential interest is a parameter ψ, while the remaining parameters
are not of central concern (nuisance), an interesting alternative approach is based on the modified profile likelihoods.
With the scope to improve inferences, these likelihoods consist of an adjustment to the classical profile likelihoods by the
inclusion of a penalization term for the possible presence of nuisance parameters. The amount of the penalization depends
on the information available for λ, and increases when this information is large. Modified profile likelihoods have also the
appealing property of being invariant to interest-preserving reparametrizations. This last property means that inferential
results obtained for (ψ, λ) are also valid for (η(ψ), ξ(ψ, λ)), where η and ξ are one-to-one transformations.

The general expression for a modified profile log-likelihood (Severini, 2000) is

ℓmp(ψ) = ℓp(ψ) + M(ψ), (5)

where ℓp(ψ) is the profile log-likelihood and M(ψ) is the modification term. For this term, a high degree of accuracy is
obtained when it has the expression

M(ψ) =

∣∣∣Jλλ(ψ, λ̂ψ)
∣∣∣1/2∣∣∣ℓλ;λ̂(ψ, λ̂ψ; ψ̂, λ̂)
∣∣∣ , (6)

where
Jλλ(ψ, λ) = −ℓλλ(ψ, λ) = −∂2ℓ(ψ, λ)/∂λ∂λT , ℓλ;λ̂(ψ, λ; ψ̂, λ̂) = −∂2ℓ(ψ, λ; ψ̂, λ̂)/∂λ∂λ̂T .

In practice, the first term Jλλ(ψ, λ̂ψ) is easily computed numerically or analytically by differentiation of ℓλλ(ψ, λ). When the
log-likelihood can be written in terms of the MLE, ψ̂ and λ̂, and an ancillary statistic a, i.e., as ℓ(ψ, λ; y, x) = ℓ(ψ, λ; ψ̂, λ̂, a),
computation of the term ℓλ;λ̂(ψ, λ; ψ̂, λ̂) is also straightforward. When differentiating with respect to λ̂, the quantities ψ, ψ̂
and a need to be held fixed. However, we have here omitted the conditioning to the ancillary a because it is not needed
explicitly for computations and, in our context of parametric models for the AUC, in most of the cases the modification
term in (6) can be obtained without specifying a.

Inference for ψ can be easily performed by treating (5) as a standard log-likelihood for ψ, without the burden of dealing
with nuisance parameters. The solution to the maximization of ℓmp(ψ) provides a maximum modified profile likelihood
estimate (MMLE), defined as ψ̂mp. In particular, the standard error associated to ψ̂mp is computed as (Jmp(ψ̂mp))−1/2,
where Jmp(ψ) = −∂2ℓmp(ψ)/∂ψ2. Therefore, using the normal approximation, it is possible to use a Wald-type confidence
interval, e.g., [ψ̂mp − z1−α/2 Jmp(ψ̂mp)−1/2, ψ̂mp + z1−α/2 Jp(ψ̂mp)−1/2].

Moreover, the resulting signed modified log-likelihood ratio statistic, defined as

Rmp(ψ) = sign(ψ̂mp − ψ)
(
2(ℓmp(ψ̂mp) − ℓmp(ψ))

)1/2
, (7)

has asymptotic standard normal distribution, and has properties that are superior to those of the usual signed likelihood
ratio statistic (Sartori, 2003). The statistic Rmp(ψ) is then preferred, with respect to the Wald-type statistic, for construction
of confidence intervals and test of hypothesis. In practice, a 100(1 − α)% confidence interval based on Rmp(ψ) is given
as {ψ : |Rmp(ψ)| ≤ z1−α/2}. A one-sided statistical test with null hypothesis H0 : ψ = ψ0 can be performed using the
test-statistic Rmp(ψ0).
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3. An Important Example: the Binormal Model

The main example about possible applications of the theory described in Subsections 2.2, is given for the popular bi-
normal model, where Y and X are normally distributed with different means and variances, e.g., Y ∼ N(µY , σ

2
Y ) and

X ∼ N(µX , σ
2
X). Under this assumption, it is known (Kotz et al., 2003) that the AUC can be written as

A = Φ (δ) = Φ

 µX − µY√
σ2

X + σ
2
Y

 , (8)

whereΦ(·) is the cumulative probability function of the standard normal distribution. Denote with δ = (µX−µY )/
√
σ2

X + σ
2
Y

the quantile of the standard normal which provide an area equal to A. Here, there are two possible interesting choices for
the parameter of interest ψ. We may have either ψ = A or ψ = δ. These two choices are equivalent in terms of infer-
ential results because both the profile likelihood and the modified profile likelihood are invariant for interest-preserving
reparameterizations, and thus for the transformation A = Ψ(δ). In the current paper, for practical reasons, we illustrate
the procedures for the second choice ψ = δ, since this case is relatively simpler to implement. Moreover, in this case,
convergence in the corresponding parameter space Ψ = R is always obtained, whereas the choice ψ = A with parameter
space Ψ = [0, 1] may yield computational problems on the boundaries.

We study the parameter of interest ψ = δ, while the nuisance parameter can be chosen to be, e.g., λ = (λ1, λ2, λ3), with

λ1 = µY , λ2 =

√
σ2

Y , and λ3 =

√
σ2

Y + σ
2
X . Other choices are also possible, where the parameter space is Ψ × Λ, and thus

the range of λ is independent of the range of ψ.

Given the MLE θ̂ computed from the original likelihood ℓ(θ), by the invariance property, the MLE for the AUC is

Â = Φ
(
δ̂
)
= Φ

 µ̂X − µ̂Y√
σ̂2

Y + σ̂
2
X

 ,
where µ̂Y =

∑
i yi/n1, µ̂X =

∑
i xi/n2 and σ̂2

Y =
∑

i(yi − µ̂Y )2/n1, σ̂2
X =
∑

i(xi − µ̂X)2/n2.

Consider now the likelihood function for the new parameters (ψ, λ),

ℓ(ψ, λ) = −1
2

[
n1 log λ2

2 + n2 log(λ2
3 − λ2

2)
]
−

n1

[
λ̂2

2 + (λ̂1 − λ1)2
]

2λ2
2

−
n2

[
λ̂2

3 − λ̂2
2 + (λ̂1 + ψ̂λ̂3 − λ1 − ψλ3)2

]
2(λ2

3 − λ2
2)

, (9)

and observe that it is a function only of the unknown parameters and the minimal sufficient statistic (ψ̂, λ̂), where ψ̂ = δ̂,

and λ̂1 = µ̂Y , λ̂2 =

√
σ̂2

Y and λ̂3 =

√
σ̂2

Y + σ̂
2
X , and thus, depends on the data only through the MLEs.

The constrained MLE λ̂ψ = (λ̂1ψ, λ̂2ψ, λ̂3ψ) for fixed ψ is found by numerical procedures as solution to the system of score
equations ℓλi (ψ, λ) = ∂ℓ(ψ, λ)/∂λi = 0, for i = 1, 2, 3. Their analytic expressions is given in the Appendix. The profile
log-likelihood ℓp(ψ, λ̂ψ) is then obtained by replacing λ with λ̂ψ in (9).

For the binormal model, computation of the signed log-likelihood ratio statistic Rp(ψ) given in (4) is then straightforward.
The Wald statistic Wp(ψ) in (3) requires to find the observed information Jp(ψ̂), which can be computed analytically or
by a numerical procedure, for example by using the function hessian of package numDeriv in the R software.

The key parameter of interest is the AUC, therefore we can easily obtain inferential conclusions on A from those obtained
from ψ. For example, the Delta method can be applied to find the standard error of Â = Φ(ψ̂), which is then equal to
ŝA = Φ

′(ψ̂)(Jp(ψ̂))−1/2 = fZ((ψ̂)(Jp(ψ̂))−1/2, with fZ(·) being the p.d.f. of the standard normal. Therefore, a Wald-type
confidence interval for A is given as [Â − z1−α/2 ŝA, Â + z1−α/2 ŝA], and a hypothesis testing concerning A can be based on
the test-statistic (Â − A0)/ŝA.

In addition, to specify the modified profile log-likelihood in (5) and (6), we need to compute the modification term M(ψ).
In doing so, the block of the observed information matrix, Jλλ(ψ, λ̂ψ) is equal to minus the Hessian matrix, which can
be easily obtained by numerical procedures in the R software, as above. The analytic expressions of the sample space
derivatives ℓλ;λ̂(ψ, λ; ψ̂, λ̂) for the binormal model are provided in the Appendix. The signed modified log-likelihood ratio
statistic Rmp(ψ) given in (7) can then be constructed to solve test of hypothesis concerning key values of the AUC, such
as e.g. A = 0.5 or A = 1. For example, the one-sided test with hypotheses H0 : ψ = ψ0 = 0 versus H0 : ψ > 0
is equivalent to testing whether the AUC is significantly higher than 0.5, and can be performed using the test-statistic
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Rmp(ψ0) = sign(ψ̂0
mp − ψ0)

(
2(ℓmp(ψ̂0

mp) − ℓmp(ψ0))
)1/2

, where ψ̂0
mp denotes the maximum modified likelihood estimate of

ψ in the parameter space Ψ0 = {ψ ∈ Ψ : ψ > ψ0}.
4. Simulation Studies

The performance of the proposed method for constructing confidence intervals and point estimates for A is illustrated
through a simulation study, based on 5000 Monte Carlo trials. We considered different values of ψ (ψ = 0.6, 0.8, 0.95, 0.99)
and many different combinations of sample sizes (n1, n2) = (5, 5), (10, 10), (20, 20), (30, 30), (15, 5), (5, 15), (30, 5),
(5, 30), (80, 10), (10, 80). Note that the case of very unbalanced samples is also taken into account.

First, the simulation studies investigated the coverage probabilities of 95% confidence intervals based on the signed profile
log-likelihood ratio statistic Rp(ψ), the signed modified profile log-likelihood ratio statistic Rmp(ψ), and the Wald statistic
Wp(ψ). All these statistics are asymptotically distributed as standard normal, and the approximation is often more accurate
for Rmp(ψ). Results in Table 1 show that Rmp(ψ) is more accurate than Rp(ψ) and Wp(ψ), in terms of both central coverage
probability and symmetry of the error rates, for all the considered AUC values and sample sizes. Of course, for all
methods, we observe a less accurate coverage when the sample sizes are very small ((n1, n2) = (5, 5), (10, 10)), which
then increases for higher sample sizes. However, the Rmp(ψ) coverage is observed to reach nearly the 95% nominal level,
being slightly affected by low values of sample sizes (see, e.g., for A = 0.95, 0.99), in contrast to the Wp(ψ) and Rp(ψ) that
provide seriously poor performance for small samples. Very interestingly, this poor performance becomes even worse for
higher values of the AUC, such as A = 0.95, 0.99. On the contrary, the good performance of the Rmp(ψ) seems to be very
stable for all values of the AUC.

An important result is observed for unbalanced samples: Wp(ψ) and Rp(ψ) seem to be negatively affected by the sample
unbalance, since their coverage decreases even more with respect to the nominal level, whereas, the Rmp(ψ) coverage
keeps stable and enough accurate in all the unbalanced settings. In particular, we note that the coverages are lower for
samples with high n1 and low n2 (e.g., (n1, n2) = (30, 5), (80, 10)) as compared to the inverse case of low n1 and high n2.
This fact may depend on the reparameterization chosen for the nuisance parameters λ, since we have that the MLEs λ̂2
and λ̂3 are both affected by the small sample size n2 and then would be poorly estimated.

The very poor performance shown by the Wald statistic for high values of the AUC is expected. It is well known that
when the profile log-likelihood is not quadratic around the MLE, as it happens in our AUC study (see Figure 1 of data
example in Section 5), the Wald statistic may lead to very asymmetric confidence intervals. In fact, in Table 1 we observe
a nearly null empirical lower error and a higher empirical upper error than expected. Asymmetric errors are also seen for
the Rp(ψ) statistic, although the discrepancy from the expected errors is negligible.

Simulation studies were also used to evaluate the properties of the Rmp(ψ)-based estimator of A, in comparison with the
MLE ψ̂. The two estimators are compared in terms of median bias and results are shown in Table 2, where estimated
standard errors and simulations-based (empirical) median absolute deviation (MAD) are also reported. The choice of a
median-bias criteria is due to the median unbiasedness property of the ψ̂mp-based estimator, and it is more robust under
model misspecification. It can be noted that the estimator based on modified likelihood, ψ̂mp, is preferable to the MLE
in terms of the considered criteria, since it is less median-biased than the MLE, in particular for small sample sizes and
unbalanced samples. Estimates seem to be more biased for unbalanced samples with high n1 and low n2. However, this
problem is attenuated when the AUC value increases, and the bias of ψ̂mp reduces to about the half of the bias of the
MLEs.

5. A Worked Data Example

In this section, an application of the inferential approaches discussed in the current paper to real-life data is presented. We
consider data from imaging studies used for brain tumor grading. The data have been originally collected in Tsuchida,
Takeuchi, Okazawa, Tsujikawa, and Fujibayashi (2008), and were also discussed in the paper by Feng et al. (2015).
This data are also available in the R package auRoc (Feng, 2015). The objective of the study was to evaluate the clinical
significance of 1-11C-acetate (ACE) positron emission tomography (PET) in 10 patients with brain glioma, in comparison
with 18F-fluorodeoxyglucose (FDG) PET. FDG and ACE are two different imaging techniques for detecting brain glioma.
The aim of this section is to examine again the diagnostic accuracy of both techniques in discriminating between patients
with low grade (grades I or II) and patients with high grade (grades III and IV). Patients grading was previously determined
by magnetic resonance imaging, a gold-standard method used to classify patients with brain glioma in low and high grade
classes. Five patients were characterized as low grade and the other five patients as high grade. All patients underwent
FDG and ACE diagnostic measurements and the standard uptake value (SUV) was calculated for the same regions of
interest in the brain. These SUV values were compared between low grade and high grade patients. The diagnostic
accuracy of FDG and ACE was investigated by estimating the area under the ROC curve. Point estimates, confidence
intervals and test of hypothesis were performed following the three approached presented in the paper.
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Table 1. Two-sided empirical coverage of confidence intervals with 95% nominal levels for A based on the Wald statistic
Wp(ψ), the profile log-likelihood ratio statistic Rp(ψ) and the modified profile log-likelihood ratio statistic Rmp(ψ), under
the binormal model. The central coverage probabilities and the non-coverage probabilities on the left and right tails, which
represent, respectively, the lower and upper errors, are reported.

Wp(ψ) Rp(ψ) Rmp(ψ)
A (n1, n2) coverage lower upper coverage lower upper coverage lower upper

(5, 5) 0.841 0.049 0.110 0.920 0.032 0.049 0.940 0.027 0.033
(10, 10) 0.894 0.030 0.075 0.933 0.026 0.041 0.942 0.024 0.034
(20, 20) 0.920 0.032 0.048 0.938 0.031 0.031 0.942 0.031 0.027
(30, 30) 0.936 0.023 0.040 0.947 0.024 0.029 0.950 0.023 0.027

0.6 (15, 5) 0.830 0.057 0.114 0.908 0.038 0.054 0.938 0.029 0.033
(5, 15) 0.890 0.037 0.073 0.926 0.031 0.042 0.946 0.025 0.029
(30, 5) 0.826 0.057 0.116 0.908 0.040 0.052 0.938 0.031 0.030
(5, 30) 0.882 0.047 0.071 0.919 0.040 0.041 0.946 0.028 0.026
(80, 10) 0.891 0.040 0.069 0.928 0.034 0.038 0.943 0.029 0.028
(10, 80) 0.920 0.031 0.050 0.939 0.028 0.033 0.953 0.022 0.025
(5, 5) 0.776 0.018 0.206 0.912 0.026 0.062 0.935 0.026 0.039
(10, 10) 0.863 0.011 0.127 0.934 0.021 0.045 0.944 0.022 0.034
(20, 20) 0.905 0.011 0.084 0.945 0.020 0.036 0.948 0.022 0.030
(30, 30) 0.912 0.011 0.077 0.944 0.020 0.036 0.947 0.022 0.031

0.8 (15, 5) 0.765 0.013 0.221 0.910 0.023 0.068 0.938 0.023 0.039
(5, 15) 0.881 0.013 0.106 0.934 0.023 0.042 0.948 0.023 0.028
(30, 5) 0.771 0.022 0.207 0.896 0.031 0.072 0.931 0.028 0.041
(5, 30) 0.907 0.014 0.079 0.939 0.024 0.037 0.949 0.023 0.027
(80, 10) 0.863 0.014 0.123 0.928 0.027 0.046 0.938 0.027 0.035
(10, 80) 0.935 0.014 0.051 0.951 0.021 0.029 0.956 0.020 0.023
(5, 5) 0.648 0.001 0.351 0.905 0.013 0.082 0.941 0.017 0.042
(10, 10) 0.764 0.002 0.235 0.924 0.017 0.059 0.942 0.021 0.037
(20, 20) 0.840 0.001 0.159 0.939 0.019 0.042 0.946 0.023 0.032
(30, 30) 0.874 0.002 0.124 0.945 0.021 0.034 0.950 0.024 0.026

0.95 (15, 5) 0.656 0.001 0.343 0.896 0.018 0.086 0.936 0.021 0.043
(5, 15) 0.809 0.001 0.190 0.939 0.015 0.046 0.954 0.019 0.027
(30, 5) 0.653 0.002 0.345 0.896 0.016 0.088 0.936 0.018 0.046
(5, 30) 0.857 0.002 0.141 0.939 0.020 0.040 0.958 0.018 0.024
(80, 10) 0.770 0.001 0.229 0.926 0.015 0.059 0.942 0.018 0.040
(10, 80) 0.908 0.006 0.086 0.944 0.023 0.033 0.949 0.025 0.026
(5, 5) 0.562 0.000 0.438 0.898 0.011 0.091 0.944 0.017 0.038
(10, 10) 0.687 0.000 0.313 0.922 0.014 0.064 0.940 0.019 0.041
(20, 20) 0.774 0.000 0.226 0.939 0.017 0.044 0.947 0.021 0.032
(30, 30) 0.824 0.000 0.176 0.945 0.020 0.035 0.953 0.023 0.024

0.99 (15, 5) 0.749 0.000 0.251 0.937 0.015 0.048 0.948 0.018 0.034
(5, 15) 0.562 0.000 0.438 0.898 0.011 0.091 0.947 0.015 0.039
(30, 5) 0.817 0.000 0.183 0.942 0.016 0.042 0.946 0.021 0.032
(5, 30) 0.563 0.000 0.437 0.898 0.010 0.092 0.948 0.014 0.038
(80, 10) 0.890 0.001 0.109 0.942 0.022 0.037 0.944 0.024 0.032
(10, 80) 0.674 0.000 0.326 0.922 0.014 0.064 0.941 0.019 0.040
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Table 2. Empirical median biases (Bias), median absolute deviations (MAD) and estimated standard errors (SE) of
the estimators for the AUC obtained from the profile likelihood (Â = Φ(ψ̂)) and from the modified profile likelihood
(Âmp = Φ(ψ̂mp)), in the binormal model.

Â = Φ(ψ̂) Âmp = Φ(ψ̂mp)
A (n1, n2) Bias MAD SE Bias MAD SE

(5, 5) 0.0170 0.1938 0.1561 0.0099 0.1811 0.1574
(10, 10) 0.0121 0.1323 0.1173 0.0083 0.1281 0.1178
(20, 20) 0.0029 0.0903 0.0853 0.0010 0.0890 0.0854
(30, 30) 0.0014 0.0720 0.0702 0.0002 0.0713 0.0703

0.6 (15, 5) 0.0131 0.1757 0.1400 0.0082 0.1672 0.1437
(5, 15) 0.0115 0.1314 0.1144 0.0075 0.1267 0.1165
(30, 5) 0.0131 0.1763 0.1343 0.0094 0.1693 0.1404
(5, 30) 0.0060 0.1131 0.0969 0.0039 0.1103 0.1018
(80, 10) 0.0078 0.1140 0.1023 0.0058 0.1122 0.1046
(10, 80) 0.0019 0.0728 0.0684 0.0007 0.0722 0.0709
(5, 5) 0.0378 0.1450 0.1177 0.0203 0.1432 0.1234
(10, 10) 0.0193 0.1017 0.0917 0.0112 0.1001 0.0941
(20, 20) 0.0090 0.0725 0.0682 0.0050 0.0721 0.0690
(30, 30) 0.0075 0.0572 0.0565 0.0048 0.0570 0.0569

0.8 (15, 5) 0.0374 0.1444 0.0812 0.0222 0.1433 0.1201
(5, 15) 0.0132 0.0873 0.1130 0.0040 0.0861 0.0829
(30, 5) 0.0390 0.1401 0.1125 0.0249 0.1391 0.1191
(5, 30) 0.0071 0.0682 0.0631 -0.0034 0.0687 0.0643
(80, 10) 0.0140 0.1004 0.0895 0.0072 0.0992 0.0922
(10, 80) 0.0025 0.0416 0.0414 -0.0002 0.0417 0.0420
(5, 5) 0.0263 0.0340 0.0511 0.0152 0.0469 0.0610
(10, 10) 0.0119 0.0399 0.0416 0.0055 0.0436 0.0458
(20, 20) 0.0063 0.0321 0.0315 0.0030 0.0333 0.0331
(30, 30) 0.0049 0.0257 0.0263 0.0027 0.0262 0.0272

0.95 (15, 5) 0.0242 0.0367 0.0514 0.0138 0.0487 0.0610
(5, 15) 0.0085 0.0362 0.0368 0.0019 0.0407 0.0398
(30, 5) 0.0239 0.0373 0.0515 0.0136 0.0494 0.0609
(5, 30) 0.0052 0.0283 0.0282 0.0008 0.0295 0.0299
(80, 10) 0.0116 0.0396 0.0410 0.0059 0.0431 0.0449
(10, 80) 0.0019 0.0192 0.0186 0.0004 0.0195 0.0192
(5, 5) 0.0075 0.0037 0.0197 0.0045 0.0082 0.0272
(10, 10) 0.0043 0.0078 0.0150 0.0022 0.0104 0.0181
(20, 20) 0.0025 0.0081 0.0108 0.0013 0.0091 0.0120
(30, 30) 0.0016 0.0074 0.0089 0.0008 0.0079 0.0095

0.99 (15, 5) 0.0030 0.0083 0.0124 0.0014 0.0098 0.0142
(5, 15) 0.0076 0.0036 0.0198 0.0047 0.0078 0.0277
(30, 5) 0.0014 0.0077 0.0089 0.0006 0.0082 0.0096
(5, 30) 0.0074 0.0038 0.0200 0.0045 0.0082 0.0282
(80, 10) 0.0006 0.0050 0.0054 0.0003 0.0051 0.0056
(10, 80) 0.0047 0.0074 0.0148 0.0027 0.0099 0.0179
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Table 3. Point estimates (estimated A) and 95% confidence intervals (95% CI) based on the Wald, profile log-likelihood
and modified profile log-likelihood statistics, for the FDG and ACE imaging techniques.

FDG ACE
Method Estimated A SE 95% CI Estimated A SE 95% CI
Wald 0.726 0.160 (0.413, 1) 0.897 0.096 (0.709,1)
Profile lik. 0.726 0.160 (0.368, 0,939) 0.897 0.096 (0.585,0.990)
Modified profile lik. 0.714 0.163 (0.355, 0.934) 0.879 0.107 (0.548,0.986)

0.5 0.6 0.7 0.8 0.9 1.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0
.0

A

R
e
l.
 l
o
g
-l
ik

e
lih

o
o
d

0.0 0.5 1.0 1.5 2.0 2.5

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0
.0

psi

R
e
l.
 l
o
g
-l
ik

e
lih

o
o
d

Figure 1. Plot of rp (thick solid line) and r∗p (thick dashed line) for a range of values of the parameter R. Vertical lines are
drawn to identify confidence intervals for R based on rp (thin solid line) and r∗p (thin dashed line)

Assumption of normality in the distributions of SUVs from FDG and ACE in the low-grade and high-grade patients has
been shown not to be violated (Feng et al., 2015). For FDG, the average SUV values in the low and high groups were,
respectively, 4.714 and 7.124, while for ACE, the average SUV values in the low and high groups were, respectively, 1.850
and 2.626. Lower SUV values are associated to the low grade patients. Therefore, here the random variable Y represents
the FDG SUV values in the low grade population, while the random variable X represents the FDG SUV values in the
high grade population.

Table 3 summaries the main inferential results for the AUC computed, separately, for the FDG SUV values and the ACE
SUV values. For the FDG, the different statistical methods gave very similar estimates of the area under the ROC curve,
equal to ∼0.7, showing that the FDG has poor discrimination accuracy between the low and high grade populations.
The standard errors are also very similar, whereas the Wald confidence interval equal to (0.413, 1) is right-shifted as
compared to the confidence intervals based on the Rp(ψ) and Rmp(ψ) statistics, which are virtually identical. In addition,
we performed a test for the null hypothesis H0 : A = 0.5 versus the alternative H1 : A > 0.5, and found that the Rp(ψ) and
Rmp(ψ) statistics produce similar non significant p-values (p = 0.105 and p = 0.119, respectively), then suggesting that
there is no evidence of any discriminatory power in the FDG technique.

From Table 3, we observe that also for the ACE, the different statistical methods gave similar estimates of the area under
the ROC curve, equal to ∼0.9. Thus, it was found that the ACE is much more accurate at discriminating. The Wald
confidence interval equal to (0.709, 1) is extremely and erroneously right-shifted, and thus it deviates from the other
confidence intervals based on the Rp(ψ) and Rmp(ψ) statistics. These latter two differ in particular at the lower limit, as
also illustrated in Figure 1. This fact is due to the skewed shape of the profile log-likelihood. In the case of ACE, the
test of hypothesis with null H0 : A = 0.5 gave significant results, which differ between the two Rp(ψ)- and Rmp(ψ)-based
approaches (p = 0.009 and p = 0.015, respectively). This result indicates that the ACE technique has the ability to
discriminate. When testing the null H0 : A = 0.6, the resulting p-values (p = 0.030 and p = 0.043, respectively) provide
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evidence of a discrimination accuracy above 0.6, but the more correct Rmp(ψ)-based approach gives less evidence for this
conclusion. Note that here the power of the tests is low due to very small sample sizes.

Figure 1 reports the relative log-likelihoods, defined as ℓ(θ) − ℓ(θ̂), for both the parameters A and ψ. It is noted that
relative modified profile log-likelihoods are shifted to the left with respect to the relative profile log-likelihoods, due the
adjustment term M(ψ). Moreover, we observe that the Φ(·) reparameterization on the parameter of interest has the natural
effect to make the quadratic functions for ψ = δ become skewed to the left.

6. Discussion

The paper has presented the performance of a new inferential approach in parametric models for the AUC, which was
shown to be useful and easy to implement. The proposed method was applied to make inference for the binormal model,
and can immediately be adapted to any other parametric distribution. Alternatively, when the normality assumption is
violated, a Box-Cox type power transformation to the original data can also be applied (Box & Cox, 1964; Faraggi &
Reiser, 2002). The additional unknown parameters concerning the Box-Cox transformation may be either treated within
the entire model as nuisance parameters, or one may, first, apply the appropriate transformation to the original data,
and then use inference for the normal theory presented in this paper. We note that the presence of additional nuisance
parameters to the model is not expected to affect the accuracy of the inferential results when a modified profile likelihood
approach is adopted.

Profile likelihoods have a biased score function of order O(1), which does not typically disappear asymptotically. Modified
profile likelihoods have properties very similar to those of usual full likelihoods, and their adjustment term reduces the bias
to order O(n−1). Consequently, the signed likelihood ratio statistic based on the modified profile likelihood has properties
that are superior to those of the usual signed likelihood ratio statistic (Cox & Barndorff-Nielsen, 1994).

The results from simulation studies show that inference based on the modified profile log-likelihood approach has superior
performance compared to the classical profile log-likelihood approach, in terms of central coverage probability, symmetry
of error rates, and median bias. Wald statistics can lead to seriously misleading inferential conclusions for small or
unbalanced samples, especially at the boundaries of the parameter space (Molenberghs & Verbeke, 2007). Moreover,
Wald-type tests of hypothesis may lead to erroneous significant results. For example, in the real data application for the
ACE technique, it was found that A0 = 0.7 falls outside the Wald confidence interval, and a test of hypothesis of the null
H0 : A = 0.7 yields a significant p-value of 0.02, in contrast to the profile likelihood approach that shows no evidence for
a discrimination ability above 0.7.

The proposed approach has the potential to be applicable to any general parametric setting, for example, in settings where
Y and X follow two different parametric distributions, or in models with mixture distributions, which are often used when
the empirical distribution shows a bimodal behaviour. Moreover, future developments concerning the modified likelihood
approach could be very relevant in the context of AUC estimation, especially when the data are stratified, or the interest
of the inquiry is on modeling different stratum-specific AUC, for example by including stratum-specific fixed effects as
nuisance parameters. Another important case of application of the proposed approach may be when the two random
variables X and Y depend on covariates, or in general when the AUC models rely on many nuisance parameters (Sartori,
2003).
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Pardo-Fernández, J. C., Rodrı́guez-Álvarez, M. X., Van Keilegom, I., et al. (2013). A review on ROC curves in the
presence of covariates (Tech. Rep.). UCL.

Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford University Press,
USA.

Reiser, B. (2000). Measuring the effectiveness of diagnostic markers in the presence of measurement error through the
use of ROC curves. Statistics in Medicine, 19(16), 2115–2129.

Reiser, B., & Faraggi, D. (1997). Confidence intervals for the generalized ROC criterion. Biometrics, 644–652. http-
s:/doi.org/10.2307/2533964

Reiser, B., & Guttman, I. (1986). Statistical inference for Pr(Y < X): the normal case. Technometrics, 28(3), 253–257.

Sartori, N. (2003). Modified profile likelihoods in models with stratum nuisance parameters. Biometrika, 90(3), 533–549.
https:/doi.org/10.1093/biomet/90.3.533

Severini, T. A. (2000). Likelihood methods in statistics. Oxford University Press.

Tsuchida, T., Takeuchi, H., Okazawa, H., Tsujikawa, T., & Fujibayashi, Y. (2008). Grading of brain glioma with
1-11 C-acetate PET: comparison with 18 F-FDG PET. Nuclear Medicine and Biology, 35(2), 171–176. http-
s:/doi.org/10.1016/j.nucmedbio.2007.11.004

Wolfe, D. A., & Hogg, R. V. (1971). On constructing statistics and reporting data. The American Statistician, 25(4),
27–30.

Zhou, X.-H., McClish, D. K., & Obuchowski, N. A. (2009). Statistical methods in diagnostic medicine (Vol. 569). John
Wiley & Sons.

Zou, K. H., Carlsson, M. O., & Yu, C.-R. (2012). Comparison of adjustment methods for stratified two-sample tests in
the context of ROC analysis. Biometrical Journal, 54(2), 249–263. https:/doi.org/10.1002/bimj.201000251

Appendix

The analytic expressions of the partial derivatives of ℓ(ψ, λ) with respect to the nuisance parameters for the binormal
model are given hereafter:

ℓλ1 (ψ, λ) =
n1(λ̂1 − λ1)

λ2
2

+
n2(λ̂1 + ψ̂λ̂3 − λ1 − ψλ3)

λ2
3 − λ2

2
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−
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[
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]
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[
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ℓλ3 (ψ, λ) = − n2λ3
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2 + (λ̂1 + ψ̂λ̂3 − λ1 − ψλ3)2

]
(λ2
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+
n2ψ(λ̂1 + ψ̂λ̂3 − λ1 − ψλ3)
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2

11



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 1; 2017

The analytic expressions of the sample space derivatives ℓλ;λ̂(ψ, λ) for the binormal model follow hereafter:

ℓλ1;λ̂1
(ψ, λ) =
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λ2
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+
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