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Abstract 

In this work, the multivariate analogue to the univariate Wold’s theorem for a purely non-deterministic stable vector time 

series process was presented and justified using the method of undetermined coefficients. By this method, a finite vector 

autoregressive process of order 𝑝 [VAR(𝑝)] was represented as an infinite vector moving average (VEMA) process 

which was found to be the same as the Wold’s representation. Thus, obtaining the properties of a VAR(𝑝) process is 

equivalent to obtaining the properties of an infinite VEMA process. The proof of the unbiasedness of forecasts 

followed immediately based on the fact that a stable VAR process can be represented as an infinite VEMA process. 

Keywords: VAR model, VEMA model, stable VAR process, univariate wold’s theorem, multivariate wold’s theorem 

and white noise process 

1. Introduction 

World’s theorem is widely embraced in theoretical time series frame work because of its seemingly special 

representation and simplicity. The simple representation of the Wold’s theorem is very remarkable and is a special case 

of the moving average process (Kenneth, 2014). The most advantageous part of the Wold’s theorem is that it allows a 

dynamic evolution of a process to be approximated by a linear model and because of this feature; many researches 

consider the Wold’s theorem as an existence theorem. Wold’s theorem is sometimes referred to as Wold’s decomposition 

theorem and is mostly applied in time series analysis. According to Borghers and Wessa (Borghers & Wessa, 2015), the 

fundamental justification for time series analysis is due to Wold’s decomposition theorem.  

Kalliianpur (Kalliianpur, 1979) presented a method for constructing the Wold’s decomposition for multivariate 

stationary stochastic processes. The method was based on orthogonal decompositions obtained by forming orthogonal 

projections onto its component processes. However, it was discovered that the method does not give a complete solution 

to the Wold decomposition problem. 

Papoulis (Papoulis, 1985) examined the concepts of predictability and band-limitedness in the Wold’s decomposition 

theorem. He considered a real discrete time wide sense stationary process with autocorrelation and power spectrum. An 

extreme case of a bilinear process whose spectrum consists of lines only was also considered. It was shown that the 

values of a bilinear process were linearly dependents. This result was used to proof the wold’s decomposition theorem 

in the context of mean-square estimation. 

Jaydeb (Jaydeb, 2015) obtained a complete description of the class of n-tuples of doubly commuting isometrics. In 

particular, he presented a several variables analogue of the Wold’s decomposition for isometrics on Hilbert spaces. The 

main result obtained was the generalization of the Slocinski’s Wold-type decomposition of a pair of doubly commuting 

isometrics.  

De Nicolao and Ferrari-Trecate (De Nicolao & Ferrari-Trecate, 2015) considered the Wold’s decomposition of 

discrete-time cyclostationary (CS) process into regular and predictable component. The main result showed that 

predictable CS processes are linear combination of sine waves. The frequency of the sinusoids was found to be 

associated with the location on the unit circle of the zeros of the periodic error filter. From a spectral view point, it was 

discovered that an mth order predictable CS process exhibited a sequence of spectral lines. In practical prediction, De 

Nicolao and Ferrari-Trecate (De Nicolao & Ferrari-Trecate, 2015) found that the detection of spectral lines can then be 

used to separate the regular and predictable parts of a CS process, in analogy with deseasoning techniques used in the 

analysis of stationary time series. 
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Ansley (Ansley, et al, 1976) used Hilbert space methods to develop a rigorous proof that the sum of two uncorrelated 

moving average processes of order 𝑞1 and 𝑞2 is an MA process of order 𝑞1 ≤ max⁡(𝑞1, 𝑞2). The methods established 

the existence of suitable random shocks for the summed process, they illuminate relationships between the coefficients 

of such processes and their random shocks, and they provided means for proving that the random shocks of the summed 

processes are normal when the shocks of the underlying processes are normal. The Wold’s decomposition was examined 

in terms of multiple representations of an MA process. 

Caines and Gerencser (Caines & Gerencser, 1991) showed that the transform 𝑍(𝑧), 𝑧 ∈ 𝐶, of the coefficient sequence 

of the Wold’s decomposition of any full rank wide sense stationary purely non-deterministic stochastic process satisfies 

the condition that  𝑍(𝑧) ∈ 𝐻2(𝐷) and 𝑍−1(𝑧) ∈ 𝐻(𝐷). It was further shown that all spectral factors satisfying the two 

conditions are equal up to right multiplication by orthogonal matrices, and that among these, the normalized (𝑍(0) =
1) spectral factors are equal to the transform of the Wold’s decomposition. An elementary proof of Youla’s theorem 

was then given together with a simple proof that the rows of a Cholesky factor of a banded block Toeplitz matrix 

converge to the coefficients of a stable matrix polynomial. 

Olofsson (Olofsson, 2004) presented a Wold’s decomposition of a two-isometric operator on a general Hilbert space. A 

pure two isometry was shown to be unitarily equivalent to a shift operator on a Dirichlet space corresponding to a 

positive operator measure on the unit circle. The result contained a previous result by Ritcher (Ritcher, 1998) as well as 

the result of von Neumann- Wold’s decomposition of an isometry. 

Katsoulis and Kribs (Katsoulis & Kribs, 2005) applied the Wold’s decomposition to the study of row contractions 

associated with directed graphs. The work extended several fundamental theorems from the case of single vertex graphs 

to the general case of countable directed graphs with no sinks. The Szego-type factorization theorem for 

Countz-Krieger-Teoplitz families was proved which led to information on the structure of the unit ball in a free 

semi-group algebra. This showed that the joint similarity implied joint unitary equivalence for such families. For each 

group, Katsoulis and Kribs (Katsoulis & Kribs, 2005) proved a generalization of von Neumann’s inequality which 

applied to row contractions of operators on Hilbert space which are related to the graph in conventional way. The results 

yielded a functional calculus determined by quiver algebras and free semi-group algebras. 

As noted in the review, many researchers have proved and applied the Wold’s theorem in different frame works. In this 

work, however, the intention is to proof the unbiasedness of forecasts of a stable VAR process based on the fact that a 

finite VAR(𝑝) is shown to have the same representation as the Wold’s theorem. 

2. Methodology 

In this work, the underlined letters are used to represent vectors and matrices. 

2.1 Stationarity 

A time series is said to be stationary if the statistical property e.g. the mean and variance are constant through time. For a 

multivariate process, stationarity of a time series 𝑦𝑡 is achieved if 𝐸 [𝑦𝑡] = 𝜇; a vector of constants. 

𝑦𝑡 = 𝑌𝑡 − 𝜇 .                                        (1) 

2.2 Backward shift Operator 

The Backward shift Operator 𝐵 is defined by 

𝐵𝑘⁡𝑦𝑡 = 𝑦𝑡−𝑘                                       (2) 

2.3 White Noise Process 

A white noise process 𝜀𝑡 = (𝜀1𝑡 , … , 𝜀𝑘𝑡)
′ is a continuous random vector satisfying 𝐸 (𝜀𝑡) = 0,⁡⁡⁡𝐸(𝜀𝑡⁡𝜀

′) = ⁡Σ𝜀 and 

𝐸(𝜀𝑡𝜀𝑠
′) = 0 for 𝑠 ≠ 𝑡. 

where Σ𝜀 ⁡ is covariance matrix which is assume to be non singular.  

2.4 Vector Autoregressive (VAR) Model 

Several multivariate time series model are in existence. However, the most commonly used model is the Vector 

Autoregressive (VAR) Model. VAR model is an independent reduced form dynamic model which involves constructing 

an equation that makes each endogenous variable a function of its own past values and past values of all other endogenous 

variables. A stable 𝑝-lagged vector autoregressive [VAR(𝑝)] model has the form: 

𝑦𝑡 = 𝜙1⁡⁡𝑦𝑡−1 + 𝜙2⁡⁡𝑦𝑡−2 +⋯+ 𝜙𝑝⁡⁡𝑦𝑡−𝑝 + 𝜀𝑡⁡⁡⁡⁡; ⁡𝑡 = 0,±1,±2,…⁡                      (3) 
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Where 𝑦𝑡 = (𝑦1𝑡 , … , 𝑦𝑘𝑡)
′ is a (𝑘 × 1) vector of time series variable, 𝜙𝑗 ⁡⁡are fixed (𝑘 × 𝑘) coefficient matrices, 

𝜀𝑡 = (𝜀1𝑡 , … , 𝜀𝑘𝑡)
′ is a (𝑘 × 1) vector white noise process or innovation process. 

The model (3) can be written explicitly in matrix form as: 

(

 
 

𝑦1𝑡
𝑦2𝑡
.
.
𝑦𝑘𝑡)

 
 
= 

(

 
 

𝜙11
1

𝜙21
1

.

.
𝜙𝑘1
1

⁡⁡⁡⁡⁡

𝜙12
1

𝜙22
1

.

.
𝜙𝑘2
1

⁡⁡⁡⁡⁡⁡⁡⁡⁡

.

.

.

.

.

⁡⁡⁡⁡⁡⁡

.

.

.

.

.

⁡⁡⁡⁡

𝜙1𝑘
1

𝜙2𝑘
1

.

.
𝜙𝑘𝑘
1

⁡⁡

)

 
 

(

 
 

𝑦1𝑡−1
𝑦2𝑡−1
.
.

𝑦𝑘𝑡−1)

 
 
⁡+

(

 
 

𝜙11
2

𝜙21
2

.

.
𝜙𝑘1
2

⁡⁡⁡⁡⁡

𝜙12
2

𝜙22
2

.

.
𝜙𝑘2
2

⁡⁡⁡⁡⁡⁡⁡⁡⁡

.

.

.

.

.

⁡⁡⁡⁡⁡⁡

.

.

.

.

.

⁡⁡⁡⁡

𝜙1𝑘
2

𝜙2𝑘
2

.

.
𝜙𝑘𝑘
2

⁡⁡

)

 
 

(

 
 

𝑦1𝑡−2
𝑦2𝑡−2
.
.

𝑦𝑘𝑡−2)

 
 

 

+⋯+

(

  
 

𝜙11
𝑝

𝜙21
𝑝

.

.
𝜙𝑘1
𝑝

⁡⁡⁡⁡⁡

𝜙12
𝑝

𝜙22
𝑝

.

.
𝜙𝑘2
𝑝

⁡⁡⁡⁡⁡⁡⁡⁡⁡

.

.

.

.

.

⁡⁡⁡⁡⁡⁡

.

.

.

.

.

⁡⁡⁡⁡

𝜙1𝑘
𝑝

𝜙2𝑘
𝑝

.

.
𝜙𝑘𝑘
𝑝

⁡⁡

)

  
 

(

 
 

𝑦1𝑡−𝑝
𝑦2𝑡−𝑝
.
.

𝑦𝑘𝑡−𝑝)

 
 
+

(

 
 

𝜀1𝑡
𝜀2𝑡
.
.
𝜀𝑘𝑡)

 
 

                      (4) 

2.5 Stable VAR (𝒑) Processes 

The process (3) is stable if its reverse characteristic polynomial of the VAR(𝑝) has no roots in and on the complex 

unit⁡circle.⁡⁡Formally⁡yt⁡is⁡stable⁡if⁡⁡ 

det (𝐼𝑘 − 𝜙1𝑧 −⋯− 𝜙𝑝𝑧
𝑝) ≠ 0⁡⁡for │𝑧│ ≤ 1.                       (5) 

A stable VAR(𝑝) process 𝑦𝑡 , 𝑡 = 0,±1,±2,…, is also said to be stationary. 

2.6 The Wold’s Decomposition Theorem for a Univariate Time Series 

The Wold’s decomposition theorem for a univariate time series states that any zero-mean discrete stationary process 

{𝑌𝑡} can be expressed as the sum of two uncorrelated components (processes): 

𝑦𝑡 = ∑ 𝜓𝑗𝜀𝑡−𝑗 + 𝑣𝑡
∞
𝑗=0                                   (6) 

 

Where 𝑦𝑡 = 𝑌𝑡 − 𝜇, 𝜓0 = 1, ∑ 𝜓𝑗
2∞

𝑗=0 < ∞, {𝜀𝑡}~𝑁(0, 𝜎𝜀
2), 𝐶𝑜𝑣(𝜀𝑡 , 𝜀𝑠) = 0⁡, ∀⁡𝑠, 𝑡 ∈ ℤ and {𝑣𝑡} is deterministic. 

The sequence {𝜀𝑡}, {𝜓𝑗} and {𝑣𝑡} are unique. Thus, we can express 

𝑣𝑡 = 𝑦𝑡 −∑𝜓𝑗𝜀𝑡−𝑗

∞

𝑗=0

 

In most cases, 𝑣𝑡 = 0, ∀⁡𝑡 and 𝑦𝑡 becomes purely non-deterministic. The Wold decomposition consists of two parts: 

the purely deterministic and purely non-deterministic. Since the process is zero-mean stationary,  

𝑦𝑡 = 𝑌𝑡 − 𝜇𝑡 ; 

so that (6) can equivalently be presented as: 

𝑌𝑡 − 𝜇𝑡 = ∑ 𝜓𝑗𝜀𝑡−𝑗
∞
𝑗=0 ; 

𝜓0 = 1 ,  ∑ 𝜓𝑗
2∞

𝑗=0 < ∞                                (7) 

Also, since 𝜀𝑡 is a pure random process, 

                           𝐸[𝜀𝑡] = 0                                        (8) 

and  

                        𝐸[𝜀𝑡𝜀𝑠] = {
𝜎2⁡⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡⁡𝑡 = 𝑠⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0⁡⁡⁡⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡

                             (9) 
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From (7), we obtain the mean, 

𝐸[𝑌𝑡 − 𝜇𝑡] = 𝐸 [∑𝜓𝑗𝜀𝑡−𝑗

∞

𝑗=0

] 

=∑𝜓𝑗𝐸[𝜀𝑡−𝑗]

∞

𝑗=0

 

= 0 

⟹ 𝐸[𝑌𝑡] = 𝜇𝑡. 

For the variance, we have 

𝑉[𝑋𝑡] = 𝐸[(𝑌𝑡 − 𝜇𝑡)
2] = 𝐸 [(∑𝜓𝑗𝜀𝑡−𝑗

∞

𝑗=0

)

2

] 

= 𝐸[(𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯)
2] 

But 

𝐸[𝜀𝑡𝜀𝑡−𝑗] = 0⁡⁡, ∀⁡⁡𝑗 ≠ 0 

⟹ 𝑉[𝑌𝑡] = 𝐸[𝜀𝑡
2] + 𝜓1

2𝐸[𝜀𝑡−1
2 ] + 𝜓2

2𝐸[𝜀𝑡−2
2 ] + ⋯ 

From (9), we have 

𝑉[𝑌𝑡] = 𝜎𝜀
2∑𝜓𝑗

2

∞

𝑗=0

 

Thus, the variance is finite and not time dependent. 

For the autocovariances, we have 

𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡+𝑘) = 𝛾𝑘 = 𝐸[(𝑌𝑡 − 𝜇𝑡)(𝑌𝑡+𝑘 − 𝜇𝑡+𝑘)] 

= 𝐸 [(∑𝜓𝑗𝜀𝑡−𝑗

∞

𝑗=0

)(∑𝜓𝑗𝜀𝑡+𝑘−𝑗

∞

𝑗=0

)] 

= 𝐸[(𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯)(𝜀𝑡+𝑘 + 𝜓1𝜀𝑡+𝑘−1 + 𝜓2𝜀𝑡+𝑘−2 +⋯)] 

= 𝜎𝜀
2(𝜓𝑘 + 𝜓1𝜓𝑘+1 + 𝜓2𝜓𝑘+2 +⋯) 

= 𝜎𝜀
2 ∑ 𝜓𝑗𝜓𝑘+𝑗 = 𝛾(𝑘) < ∞

∞
𝑗=0  . 

Thus, the autocovariances are only functions of the lag 𝑘 and the process is covariance stationary. 

The autocorrelation function at lag 𝑘 is given as 

⁡𝜌𝑘 =
𝛾𝑘

𝛾0
=
∑ 𝜓𝑗𝜓𝑘+𝑗
∞
𝑗=0

∑ 𝜓𝑗
2∞

𝑗=0

 ; 𝑘 = 1, 2, 3, … 

According to the Wold decomposition theorem, any discrete stationary model (especially ARMA) can be 

represented on the basis of this decomposition. 
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2.7  Wold’s Theorem for the Multivariate Model 

The multivariate analogue to the univariate Wold’s theorem is that if {𝑌𝑡} is a purely non-deterministic stationary 

process with mean vector 𝜇; then 𝑌𝑡 − 𝜇 can be represented as a linear combination of weighted lagged vector white 

noise processes. That is, 

𝑌𝑡 − 𝜇 = 𝜀𝑡 + 𝜓1⁡⁡𝜀𝑡−1 + 𝜓2⁡⁡𝜀𝑡−2 +⋯                          (10) 

= ∑ 𝜓1⁡⁡𝜀𝑡−1
∞
𝑗=0 ; where 𝜓0 ⁡= 𝐼 

Let 𝑦𝑡 = 𝑌𝑡 − 𝜇; then 

𝑦𝑡 = ∑ 𝜓𝑗⁡⁡𝜀𝑡−𝑗
∞
𝑗=0 = 𝜓(𝐵)⁡⁡𝜀𝑡                               (11) 

where 𝜓(𝐵) = ∑ 𝜓𝑗 ⁡⁡𝐵
𝑗∞

𝑗=0  is a (𝑘 × 𝑘) matrix such that 𝐵𝑗 ⁡𝜀𝑡 = 𝜀𝑡−𝑗; 

𝑦𝑡 is a (𝑘 × 1) random vector; 

𝜓𝑗’s are fixed (𝑘 × 𝑘) coefficient matrices; 

𝜀𝑡−𝑗 is a (𝑘 × 1) vector of white noise process at lag 𝑗; 

𝜀𝑡 is a 𝑘 − dimensional white noise or innovation process such that  

𝐸 [𝜀𝑡] = 0, 𝐸 [𝜀𝑡⁡, 𝜀𝑡
′] = Σ𝜀 and 𝐸 [𝜀𝑡⁡, 𝜀𝑠

′] = 0 for 𝑠 ≠ 𝑡. The covariance matrix Σ𝜀 is assumed to be non-singular. 

3. Justification of the Wold’s Expression (11) 

To justify the Wold’s theorem, there is need to define some stationary processes that will lead to the results. 

3.1 Vector Moving Average Model of Order 𝑞    

A vector time series process {𝑦𝑡} is said to be a vector moving average model of order 𝑞 denoted as 𝑉𝐸𝑀𝐴(𝑞) if it 

can be represented as 

                    𝑦𝑡 = 𝜀𝑡 + 𝜓1⁡⁡𝜀𝑡−1 +⋯+ 𝜓𝑞⁡⁡𝜀𝑡−𝑞                             (12) 

where 𝜀𝑡 is a vector of white noise processes. It should be noted here that the expressions (10) and (12) seems to be the 

same; except that the 𝑉𝐸𝑀𝐴(𝑞) model is finite while the Wold’s model is infinite. 

Equation (12) can be compressed as: 

𝑦𝑡 = ∑ 𝜓𝑗⁡⁡𝜀𝑡−𝑗
𝑝
𝑗=0 ; 𝜓0 = 1 

⟹ 𝑦𝑡 = (1 + 𝜓1⁡𝐵 + 𝜙2⁡𝐵
2 +⋯+ 𝜙𝑞⁡𝐵

𝑞) 𝜀𝑡 

⟹ 𝑦𝑡 = 𝜓⁡(𝐵)𝜀𝑡                                    (13) 

where, 

               𝜓⁡(𝐵) = (1 + 𝜓1⁡𝐵 + 𝜙2⁡𝐵
2 +⋯+ 𝜙𝑞⁡𝐵

𝑞) = ∑ 𝜓𝑗⁡𝐵
𝑗𝑞

𝑗=1 ; 𝜓0 = 1         (14) 

and 𝐵𝑘⁡𝜀𝑡 = 𝜀𝑡−𝑘. 

3.2 Vector Autoregressive Model of Order 𝑝    

We earlier noted that a stationary 𝑉𝐴𝑅(𝑝) can be represented as 

𝑦𝑡 = 𝜙1⁡⁡𝑦𝑡−1 + 𝜙2⁡⁡𝑦𝑡−2 +⋯+ 𝜙𝑝⁡⁡𝑦𝑡−𝑝 + 𝜀𝑡                     (15) 

= ∑ 𝜙𝑗⁡⁡𝑦𝑡−𝑗
𝑝
𝑗=0 ; 𝜙0 = 1 

⟹ 𝑦𝑡 − 𝜙1⁡⁡𝑦𝑡−1 − 𝜙2⁡⁡𝑦𝑡−2 −⋯− 𝜙𝑝⁡⁡𝑦𝑡−𝑝 = 𝜀𝑡 

⟹ (1 − 𝜙1⁡𝐵 − 𝜙2⁡𝐵
2 −⋯− 𝜙𝑝⁡𝐵

𝑝) 𝑦𝑡 = 𝜀𝑡 
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⟹ 𝜙⁡(𝐵)⁡𝑦𝑡 = 𝜀𝑡                                   (16) 

⟹⁡𝑦𝑡 = 𝜙
−1(𝐵)𝜀𝑡⁡                                 (17) 

where, 

⁡⁡⁡𝜙⁡(𝐵) = (1 − 𝜙1⁡𝐵 − 𝜙2⁡𝐵
2 −⋯− 𝜙𝑝⁡𝐵

𝑝) and 𝐵𝑘⁡𝑦𝑡 = 𝑦𝑡−𝑘 

Expression (17) simply shows that a 𝑉𝐴𝑅(𝑝) process can be represented as an infinite 𝑉𝐸𝑀𝐴(𝑞) process. 

The Wold’s theorem emphasizes that any stationary process can be represented as a linear combination of weighted 

lagged vector white noise processes. 

Now, we have a stationary 𝑉𝐴𝑅(𝑝) process represented as (15) which result in equation (16). 

From equation (16), we can write 

                               𝜀𝑡 = 𝜙⁡(𝐵)⁡𝑦𝑡                                   (18) 

Substituting equation (13) in (18) gives 

𝜀𝑡 = 𝜙⁡(𝐵)⁡𝑦𝑡 = 𝜙⁡(𝐵)⁡𝜓⁡(𝐵)𝜀𝑡 

Dividing by 𝜀𝑡   

⟹𝜙⁡(𝐵)⁡𝜓⁡(𝐵) = 1 

But  

𝜓⁡(𝐵) = ∑ 𝜓𝑗 ⁡𝐵
𝑗𝑞

𝑗=1  [from (14)] 

⟹𝜙⁡(𝐵)⁡∑𝜓𝑗⁡𝐵
𝑗

𝑞

𝑗=1

= 1 

On expansion, 

⟹ (1 − 𝜙1⁡𝐵 − 𝜙2⁡𝐵
2 −⋯− 𝜙𝑝⁡𝐵

𝑝)∑ 𝜓𝑗⁡𝐵
𝑗𝑞

𝑗=1 = 1                   (19) 

Thus given a 𝑉𝐴𝑅(𝑝) process, the 𝜓𝑗 s (𝑗 = 0,1,3, … ) can easily be obtained by equating the coefficients of like 

powers of 𝐵s on both sides of (19). Since the 𝜙𝑗 ⁡s are the coefficient matrix of the given 𝑉𝐴𝑅(𝑝) multivariate model, 

the 𝜓𝑗 s can easily be obtained by the method of undetermined coefficients. These 𝜓𝑗 s are the coefficients of an 

infinite VEMA process represented as: 

                                  𝑦𝑡 = 𝜀𝑡 + 𝜓1⁡⁡𝜀𝑡−1 + 𝜓2⁡⁡𝜀𝑡−2 +⋯                       (20) 

This simply means that a 𝑉𝐴𝑅(𝑝) process can be converted to an infinite VEMA process which is nothing else but the 

Wold’s representation (10) or (11). 

It further implies that obtaining the properties of a 𝑉𝐴𝑅(𝑝) process is equivalent to obtaining the properties of an 

infinite VEMA process or the Wold’s representation (10). 

The proof of unbiasedness of forecast shall be based on this fact that a stationary VAR process can be represented as an 

infinite VEMA process. 

4. Proof of the Unbiasedness of Forecasts 

Let the forecast origin be 𝑡 and the lead time be 𝑙. The major concern is to forecast a vector 𝑦𝑡+𝑙 (𝑙 ≥ 1) when we 

are currently at time 𝑡.  

From (20), the future value can be expressed as 𝑦𝑡+𝑙  

                     𝑦𝑡+𝑙 = 𝜀𝑡+𝑙 + 𝜓1⁡⁡𝜀𝑡+𝑙−1 + 𝜓2⁡⁡𝜀𝑡+𝑙−2 +⋯                     (21) 

Since 𝜀𝑡 is a white noise vector process and 𝐸 [𝜀𝑡] = 0; then  

𝐸 [𝜀𝑡+ℎ⁡⁡|⁡⁡𝑦𝑡⁡, 𝑦𝑡−1⁡, … ] = 0⁡⁡⁡⁡⁡⁡; ⁡⁡⁡⁡∀⁡⁡ℎ > 0. 

Thus, the best predictor of 𝑦𝑡+𝑙 is  
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   𝑦𝑡̂(𝑙) = 𝐸 [𝜀𝑡+ℎ⁡⁡|⁡⁡𝑦𝑡⁡, 𝑦𝑡−1⁡, … ] = 𝜓𝑙
∗⁡⁡𝜀𝑡 + 𝜓𝑙+1

∗ ⁡⁡𝜀𝑡−1 + 𝜓𝑙+2
∗ ⁡⁡𝜀𝑡−2 +⋯            (22) 

⟹ 𝑦𝑡̂(𝑙) =∑𝜓𝑗
∗⁡⁡𝜀𝑡+𝑙−𝑗

∞

𝑗=𝑙

 

Since 𝑦𝑡+𝑙 and 𝑦𝑡̂(𝑙) are linear combinations of the 𝜀𝑡’s; the forecast error 𝜖𝑡(𝑙) for lead time 𝑙 will also be a linear 

combination of the 𝜀𝑡’s. That is, 

      𝜖𝑡(𝑙) = 𝜀𝑡+𝑙 + 𝜓1⁡⁡𝜀𝑡+𝑙−1 + 𝜓2⁡⁡𝜀𝑡+𝑙−2 +⋯+ 𝜓𝑙−1⁡⁡𝜀𝑡+1                 (23) 

From (21) and (22), the mean square error of forecast is 

𝐸 [(𝑦𝑡+𝑙 − 𝑦𝑡̂(𝑙)) (𝑦𝑡+𝑙 − 𝑦𝑡̂(𝑙))
′

] = Σ𝜀 + 𝜓1⁡Σ𝜀⁡𝜓1
′ + 𝜓2⁡Σ𝜀⁡𝜓2

′ +⋯+𝜓𝑙−1⁡Σ𝜀⁡𝜓𝑙−1
′  

+∑[(𝜓𝑙+𝑗 − 𝜓𝑙+𝑗
∗ )⁡Σ𝜀 ⁡(𝜓𝑙+𝑗 − 𝜓𝑙+𝑗

∗ )
′
]

∞

𝑗=0

 

= ∑ 𝜓𝑗⁡Σ𝜀⁡𝜓𝑗
′𝑙−1

𝑗=0 + ∑ [(𝜓𝑙+𝑗 − 𝜓𝑙+𝑗
∗ )⁡Σ𝜀 ⁡(𝜓𝑙+𝑗 − 𝜓𝑙+𝑗

∗ )
′
]∞

𝑗=0                 (24) 

which is minimised by setting 𝜓𝑙+𝑗 − 𝜓𝑙+𝑗
∗ . Since the variance of the error forecast has attained minimum; then for lead 

time 𝑙, 

𝑦𝑡+𝑙 = 𝜀𝑡+𝑙 + 𝜓1⁡⁡𝜀𝑡+𝑙−1 + 𝜓2⁡⁡𝜀𝑡+𝑙−2 +⋯+𝜓𝑙−1⁡⁡𝜀𝑡+1 + 𝜓𝑙
∗⁡⁡𝜀𝑡 + 𝜓𝑙+1

∗ ⁡⁡𝜀𝑡−1 + 𝜓𝑙+2
∗ ⁡⁡𝜀𝑡−2 +⋯ 

⟹ 𝑦𝑡+𝑙 = 𝜖𝑡(𝑙) + 𝑦𝑡̂(𝑙) 

Since [𝜖𝑡(𝑙)] = 0; the forecast is unbiased. 

5. Discussion and Conclusion 

Since it has been shown in this work that a finite VAR(𝑝) can have an equivalent Wold’s representation; it means 

obtaining the properties of the Wold’s process is equivalent to obtaining the properties of the VAR(𝑝) process that 

gives rise to the Wold’s process. To be more scientific, it can be said here that the underlying linear structure in the time 

domain that generate the VAR process in general is the Wold’s process. This idea is specific for linear processes only. 

However, the presence of non linear structure in most time varying quantities cannot be completely ruled out.  
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