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Abstract

Next-generation sequencing has been routinely applied to cancer biology, making it possible for researchers to elucidate
the molecular mechanisms underlying cancer initiation and progression. However, how to identify oncomarkers from
massive complex genomic data poses a great challenge for both modeling and computing. In this paper, we propose
a novel computational pipeline to identify genes related to the overall survival of ovarian cancer patients from the rich
Cancer Genome Atlas data. Different from the existing studies, we incorporate dependence structure among genes and
pathway information into the variable selection. Firstly, the dimensionality of the ovarian cancer data is reduced by a novel
stepwise feature screening which mimics the hierarchy of the underlying causal network. The second step of the pipeline
is to divide genes into clusters with distinct cellular functions by k-means, x-means and PAMSAM learning algorithms.
In the final step, we fit a cox proportional hazard model with a sparse group lasso penalty for further variable selection. Of
the 115 genes in the final list, many were reported to be associated with cancer initiation or progression in the literature.
In addition, we find several gene families including the NEK family and RNF family, which are closely associated with
the survival of ovarian cancer patients.

Keywords: The Cancer Genome Atlas, ovarian cancer, k-means clustering, stepwise feature selection, sparse group lasso.

1. Introduction

Ovarian cancer is one of the most malignant gynecologic cancers, ranking fifth as the cause of cancer-related deaths
among women in the United States. According to American Cancer Society, about 22, 280 women will receive a new
diagnosis of ovarian cancer and about 14, 240 women will die from this disease in 2016. The latest data shows that about
70% of deaths occur in patients with high-grade serous epithelial ovarian cancer. The standard treatment for these patients
is usually debulking surgery, followed by platinum-taxane chemotherapy. Platinum resistant cancer recurs within six
months in about 25% of patients and the overall five-year survival rate is about 31%. Approximately 13% of high-grade
serous ovarian cancer can be attributed to germline mutations in BRCA1 and BRCA2 and a smaller percentage can be
accounted for by other germline mutations (The Cancer Genome Atlas Research Network, 2011).

With the rapid advances in high-throughput sequencing technology, it is now possible to investigate a large number of
genetic and epigenetic features simultaneously (The Cancer Genome Atlas Research Network, 2011; Zhang, Burdette,
& Wang, 2014; Zhang & Wang, 2016; Zhang, 2015; Kumar, Breen, & Ranganathan, 2013; Konstantinopoulos, Spent-
zos, & Cannistra, 2008; Popovic et al., 2014). The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) project
provides the most comprehensive genomic data resource for more than 20 cancer types and subtypes including ovarian
serous cystadenocarcinoma (OV), breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM), lung adenocarci-
noma (LUAD) and lung squamous cell carcinoma (LUSC). For instance, TCGA ovarian cancer data contains both clinical
information and molecular profile of 568 tumor samples. The clinical information includes records on age, race, survival,
outcome of debulking surgery, and treatment resistance etc. The molecular profile includes copy number variation (CNV),
DNA methylation, exon expression, gene expression (both microarray and RNA-seq), genotype (SNP), MicroRNA ex-
pression (microarray), protein expression, and somatic mutation. These massive complex datasets have driven enthusiasm
to elucidate molecular mechanisms of cancer through computational approaches (Zhang et al., 2014; Chen et al., 2012;
Xu et al., 2012; Xi et al., 2014; Matveeva et al., 2016).

In this paper, we aim to identify prognostic genes which play crucial roles in the survival of the ovarian cancer patients.
Relevant works include but are not limited to McLaughlin et al. (McLaughlin et al., 2013), Nagle, Chenevixtrench, Webb,
& Spurdle (Nagle, Chenevixtrench, Webb, & Spurdle, 2007), and Konstantinopoulos et al. (Konstantinopoulos et al.,
2008). However, the methods used in current studies tend to be over simplistic and inaccurate, mostly the single-round
independent screening based on the t test or proportional hazard model. As pointed out by many researchers, these naive
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methods might result in poor selection of important features by overlooking the complex dependence structure among
them. For instance, the independent test may suffer from spurious correlations in high dimensional data and fail to
identify important features presented in the underlying causal network. Due to several major difficulties, the association
between cancer survival and different signaling pathways has been much less studied and numerous questions remain
unanswered in this field. To fill this gap, we develop an efficient and general pipeline which achieves higher accuracy in
the biomarker/pathway identification. The advantage of the proposed methods is twofold. First, the feature selection is
conducted in account of the dependence structure among genes, resulting in a more accurate selection of biomarkers that
may directly or indirectly affect cancer survival. Second, the sparse group lasso method offers a further refinement for
the candidate set of biomarkers, by encouraging genes in the same pathway to be selected and balancing gene-wise and
group-wise selection in the meanwhile.

The rest of paper is organized as follows. In Section 2, we briefly summarize the TCGA ovarian cancer data and elaborate
the three steps in the computational pipeline: (1) stepwise feature selection for initial screening; (2) k-means clustering
along with a ”elbow method” to determine the number of clusters; (3) Cox proportional hazards model with sparse group
lasso penalty for further variable selection. We present and discuss the main results from the analysis in Section 3, and
conclude the article in Section 4.

2. Material and Method

2.1 Data Integration and Preprocessing

Using ”data matrix” tool on the TCGA website, we extracted the level-3 microarray data containing the expression level
of 17, 814 genes in 568 tumor samples, as well as the clinical information. Table 1 summarizes our data set. The overall
survival time of each patient is defined as the time between diagnosis and death. The censoring indicator was set to be 1
if death event occurred and 0 otherwise. Throughout this study, we assume that censoring mechanism is independent of
survival mechanism.

Table 1. Data types, platforms and sample size in the analysis

Data type Platform Cases
Gene expression Agilent 244K 572 (8 organ-specific controls)
Clinical information N/A 583

The gene expression data were normalized using a quantile normalization method by Balstad et al. (Balstad et al., 2002)
to correct the bias due to non-biological causes. We applied an existing method by Hsu et al. (Hsu et al., 2012) to remove
age and batch effects (three age groups are defined as < 40 y.o., [40, 70] y.o., and > 70 y.o.). This method is based on
a median-matching and variance-matching strategy. For example, the batch-effect-adjusted gene expression value can be
obtained as follows:

g∗i jk = Mi + (gi jk − Mi j)
σ̂gi

σ̂gi j

,

where gi jk represents the gene expression value for gene i from batch j and sample k, Mi j refers to the median of gi j =

(gi j1, ..., gi jn), Mi refers to the median of gi = (gi1, ..., giJ), σ̂gi and σ̂gi j are the sample standard deviation of gi and gi j,
respectively.

2.2 Stepwise Feature Selection

A necessary and crucial step for genome-wide association study is feature screening, i.e., to filter out irrelevant or redun-
dant features. A refined variable set helps improve computing efficiency and estimation accuracy (Zhang et al., 2014).
Existing feature selection methods can be classified into either wrapper approach (Kohavi & John, 1997; Leng, Valli,
& Armstrong, 2010) or filter approach (Haindl, Somol, Ververidis, & Kotropoulos, 1999; Jouve & Nicoloyannis, 2010).
The filter approach using independent test for two conditions is more commonly used due to its efficiency and simplicity.
However, it tends to filter out many related features in high-dimensional settings. To this end, Zhang et al. (Zhang et
al., 2014) proposed a novel stepwise correlation-based selector (SCBS) to select features from TCGA data for further
Bayesian network inference. Assume there is a causal chain X→Y→cancer. Though X to Y or Y to cancer has directed
association, the association between X and cancer could greatly decay so that it cannot be detected by independent test.
The SCBS procedure starts with detection of features strongly correlated with the phenotype and then progressively se-
lects features that correlate with features selected in previous step. This procedure is a natural mimic of sparse network
structure and is capable of identifying nodes that are indirectly associated with the phenotype. In practice, the method can
be implemented as follows:

• Step 1: Calculate the Spearman’s correlation coefficients between the current variable Xi and all the other variables,
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denoted by ρi j, j , i. Keep k most correlated variables with Xi based on ρi j for further filtering.

• Step 2: Calculate the p-value of correlation coefficient for each of the k variables from step 1, select the variable if
the p-value is significant under Benjamini-Hochberg (BH) procedure with FDR≤ 0.05.

• Step 3: Repeat step 1 and 2 until p variables are selected.

In practice, the total number of selected variables p is subject to the scale of the model to build. For the TCGA data,
we run the SCBS for 4 rounds, in order to select more than 500 but less than 1000 genes. The computing time of SCBS
is sublinear to p. The choice of k is essential for SCBS which partially depends on the network density. Based on an
extensive simulation study, a k of 4 or 5 is recommended by Zhang et al. (Zhang et al., 2014) to attain moderate complexity
or sparsity of the model. We set k = 4 in our analysis and obtained a set of 603 genes.

2.3 K-means Clustering

The unsupervised k-means clustering is applied to cluster the 603 selected genes based on a correlation metric defined as
follows:

||gi, g j||ρ = 1 − |ρrgi,rg j
|,

where gi and g j represent expression level of gene i and gene j, i, j = 1, 2, ..., p, gi is n-dimensional vector where n
is number of samples. The Spearman’s correlation between gene i and gene j is denoted by ρrgi,rg j

, where rgi and rg j
represent the ranks of gi and g j. An immediate consequence by this definition is 0 ≤ ||gi, g j||ρ ≤ 1, where the two
equalities hold when ρrgi,rg j

= 0 and |ρrgi,rg j
| = 1, respectively. The k-means clustering algorithm aims to partition p

variables into K clusters C = (C1,C2, ...,CK), where K is a predefined number of clusters. Its objective is to find:

arg min
C

K∑
k=1

∑
g∈Ck

||g − µµµk ||ρ.

An ”elbow method” was used for the choice of optimal number of clusters. Figure 1a shows the percentage of variance
explained by the clusters against the number of clusters. At K=4 or 5, the marginal gain began to drop substantially, giving
an angle in the graph. The number of clusters was chosen at the ”elbow” K=4. The multi-dimensional Scaling (MDS)
plot is shown in Figure 1b where clusters were highlighted by different colors. The x-means clustering (Pelleg & Moore,
2000), an alternative and variation of k-means, and PAMSAM algorithm were also applied to our data set. However, in
terms of clustering, three methods did not give a significant difference.

a b

Figure 1. Four gene clusters. (a) The proportion of variance that can be explained by clustering (y-axis) against the
number of clusters (x-axis) based on different values of k (k=1,2,...,15) by k-means clustering method. From this plot,
the most likely number of clusters is four. (b) Multidimensional scaling (MDS) plots based on correlation dissimilarity
metric among 603 genes, where genes in different clusters were highlighted by different colors.

2.4 Cox Proportional Hazard Model with Sparse Group Lasso Penalty

The last step of the pipeline conducts pathway level selection of prognostic genes. A natural way is to fit a regression
model with group lasso penalty where each group represents a pathway. The group lasso, however, only works for large
number of groups and gives a sparse set of groups. We therefore turned to a sparse group lasso (SGL), which generates
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a solution balancing both between-group and within-group sparsity. A Cox proportional hazards model and sparse group
lasso regularization were then pieced together for further variable selection.

Let p be the number of genes, X = (X1,X2, ...,Xn)T be the n × p data matrix, where Xi = (Xi1, Xi2, ..., Xip)T . Let
Y = (Y1,Y2, ..., Yn)T denote an n-dimensional vector which corresponds to failure/censor times. Let βββ = (β1, β2, ..., βp)T

be the vector of coefficients, and δδδ = (δ1, δ2, ..., δn) be the censoring indices, where δi = 1 indicates event (death) occurred
for subject i and δi = 0 indicates censoring. The Cox proportional hazards model can be written as follows:

log
λ(t|Xi)
λ0(t)

= XT
i βββ.

where λ0(t) stands for the baseline hazard function. The loglikelihood can be written as follows:

ℓ(βββ) =
1
n
{log(

∑
i:δi=1

(
∑

j:Y j≥Yi

exp(XT
j βββ) − XT

j βββ))}

With the assumption of sparsity, the parameters βββ can be estimated through a SGL penalized likelihood:

β̂ββ = arg min
βββ

1
n
{log(

∑
i:δi=1

(
∑

j:Y j≥Yi

exp(XT
j βββ) − XT

j βββ))} + (1 − α)λ
K∑

k=1

√
pk ||βββk ||2 + αλ||βββ||1,

where || · ||1 and || · ||2 denote ℓ1-norm and ℓ2-norm respectively, and pk represents the size of group k and βββk represents
the coefficients of genes in group k. The SGL fit is simply a combination of the lasso and group lasso penalties (α = 0
gives the group lasso fit, α = 1 gives the lasso fit). In practice, one should choose α before the parameter estimation. In
our problem, we expect a strong overall sparsity but encourage grouping, therefore a α = 0.8 was used. Here the choice
of α is different from the choice of λ, which can be determined by data-driven method. In practice, the mixing rate α need
to be predefined depending on the expected overall sparsity and group sparsity. Given two tuning parameters α and λ, a
routine blockwise coordinate descent (BCD) approach can solve the optimization problem and we implemented the BCD
algorithm using R package SGL (Simon, Friedman, Hastie, & Tibshirani, 2013). A sequence of ten candidate λ’s with
λmin = 0.05λmax in the regularization path was used, as suggested by R package SGL.

In the lasso-type problems, the common method for selecting the tuning parameter λ is cross-validation. However, it
tends to yields a large number of false positives in the sparse network problem, as pointed out by Fu and Zhou in their
seminal paper (Fu & Zhou, 2013). Fu and Zhou proposed an ”elbow method” that outperforms the cross-validation
method, where the optimal tuning parameter corresponds to the change point at which an increase of λ does not yield a
substantial decrease of log-likelihood. In our Cox model with SGL regularization, the optimal lambda selected by this
rule is λ = 0.000492 as shown in Figure 2 and 115 genes were identified in the final list.
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Figure 2. Selection of tuning parameter for the penalty term is sparse group lasso regression. The log-likelihood (y-axis)
against tuning parameter (x-axis) for the sparse group lasso penalty, where the optimal λ is circled.

3. Results and Discussion

3.1 Gene Clusters

Using the k-means approach, the set of 603 genes from initial screening were further clustered into four subgroups.
Gene functions in each cluster were investigated. Interestingly, we found that genes within the same cluster tend to have
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similar/related cellular functions. For instance, cluster 1 (black dots in Figure 1b), the core cluster containing 407 genes
including CENPJ and CDK5RAP2, is functionally related to cell cycle, spindle formation, and mitosis etc. Cluster 2 (blue
dots in Figure 1b) contains 48 genes including MYOG and CDK5R2, mostly related to protein binding and transmembrane
activity etc. Cluster 3 (green dots in Figure 1b), containing 85 genes including COL5A2 and COL8A2, corresponds to the
pathways related to collagen biosynthesis and enzymes modification etc. Cluster 4 (red dots in Figure 1b), containing 63
genes including CD48 and CD53, is related to immune response and T-cell and B-cell development. This finding indicates
that certain cellular pathways/functions may play crucial roles in the progression of the serous ovarian cancer, which may
provide new clues for the cancer prevention and treatment.

Table 2. List of 115 identified prognostic genes and corresponding coefficients in the Cox model.

Gene Group β̂ Gene Group β̂ Gene Group β̂

ADCK1 1 -0.150 LOC389458 1 -0.139 TIPRL 1 0.118
ADH4 1 0.139 MAP9 1 0.255 TOP2B 1 0.162

ADORA2A 1 0.107 MBL2 1 -0.096 TTBK2 1 -0.094
ARHGEF12 1 -0.134 MGC27348 1 0.140 VAMP4 1 0.201

ATP4B 1 -0.188 MRGPRX4 1 -0.227 VPS29 1 0.094
BOLA3 1 0.111 MRPS22 1 0.199 WDFY3 1 0.120
C1orf75 1 0.107 NARF 1 0.204 WTAP 1 -0.213
C4orf27 1 0.127 NDUFB4 1 -0.165 YSK4 1 0.129
C6orf115 1 0.090 NEK1 1 0.175 YY1AP1 1 -0.082

CACNA1S 1 -0.084 NEK2 1 -0.091 ZFHX2 1 -0.094
CDK5RAP2 1 -0.096 NEK9 1 -0.107 ZNF167 1 -0.080

CNGB1 1 -0.124 NLRX1 1 0.090 ZNF197 1 -0.164
COX17 1 0.109 NRAS 1 -0.136 ZNF621 1 -0.117
CPA2 1 -0.085 NSL1 1 0.119 ZNF782 1 -0.146
CRIPT 1 0.120 OR7D4 1 0.123 CTRB2 2 -0.103
CRY1 1 0.170 OR9Q1 1 0.176 DRD3 2 -0.144

DEDD2 1 -0.133 OS9 1 0.153 LCE3A 2 -0.092
DLG3 1 -0.117 PALB2 1 -0.169 LMAN1L 2 -0.105

DNAH7 1 -0.087 PLEKHH1 1 0.191 OR2G2 2 0.102
DNAI1 1 -0.118 POMP 1 -0.094 TAAR8 2 0.208

DNAJC19 1 0.164 PPP2R2B 1 0.128 CLEC4A 3 0.105
DNAJC5 1 0.087 RNF12 1 -0.104 CTSS 3 0.086
DNASE1 1 -0.105 RNF181 1 0.093 EBI3 3 0.099
ELA2A 1 0.154 RNF20 1 0.175 LY86 3 0.080
EPB41 1 -0.082 RNF31 1 -0.144 RNASE6 3 0.096
EWSR1 1 -0.197 RNF7 1 0.248 SRGN 3 0.099
EXOSC8 1 0.152 RPL21 1 -0.100 ABCG5 4 0.137
FAM86B1 1 -0.083 SCYL1BP1 1 0.178 AP1B1 4 -0.224
GAS2L2 1 -0.231 SEBOX 1 0.093 CD248 4 -0.080
GHRH 1 -0.108 SEC22B 1 0.083 CIDEA 4 -0.131
GRM6 1 -0.090 SFT2D1 1 0.087 COL8A2 4 -0.109
GSTA3 1 0.192 SLC8A2 1 0.168 FABP4 4 -0.098
HEXDC 1 -0.097 SNRPG 1 -0.143 GPBAR1 4 -0.137
HMOX2 1 -0.127 SPN 1 0.228 GRN 4 -0.087

JUB 1 -0.095 SRrp35 1 0.135 OAS1 4 0.082
KIAA0323 1 -0.108 STAT2 1 0.124 OASL 4 0.091

KIF27 1 -0.099 TBPL1 1 0.094 TIMP4 4 0.201
KIF4B 1 -0.097 KLHL22 1 -0.100 ZNF660 4 -0.120

3.2 Prognostic Gene Identification

Using the Cox model with sparse group lasso penalty, we obtain a final list of 115 prognostic genes (in Table 2), of which
many were reported to be involved in cancer initiation and progression. To name a few, gene CTSS is closely related
to gastric cancer and silencing CTSS expression suppressed the migration and invasion of gastric cancer cells (Yang et
al., 2010). Gene CD248 can facilitate tumor growth via its cytoplasmic domain and multiple pathways regulated by the
cytoplasmic domain of CD248 highlight its potential as a therapeutic target to treat cancer (Maia et al., 2011). Gene
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DRD3 is a dopamine receptor, whose expression can change as stress factors associated with breast cancer (Pornour et al.,
2014). Gene CDK5RAP2 is required for spindle checkpoint function and is a common target in paclitaxel and doxorubicin.
Cancer cells cultured in the presence of paclitaxel or doxorubicin exhibit a dramatic decrease in CDK5RAP2 levels (Zhang
et al., 2009).

We also identify several subgroups (families) of genes whose associations with cancer have been reported. For instance,
three genes in the NEK family, NEK1, NEK2 and NEK9, were identified in our final list. Mutations of NEK family
members have also been identified as drivers behind the development of ciliopathies and cancer. Recent emergence
of comprehensive cancer genomes is highlighting certain members of the NEK family as targets of frequent mutations
(Moniz, Dutt, Haider, & Stambolic, 2011). We also identified five genes in the RNF family: RNF12, RNF181, RNF20,
RNF31,RNF7. A recent study reported that the RNF family such as RNF20 drives histone H2B monoubiquitylation and
modulates inflammation and inflammation-associated cancer in mice and humans (Tarcic et al., 2016).

The predictive power of our 115-gene signature was illustrated using Kaplan-Meier curves in Figure 3, where the samples
were equally divided into two groups based on the hazard risk. The moderate separation of two groups demonstrates the
effectiveness of our method.
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Figure 3. Kaplan-Meier curves. Survival probability against time (in days) of different groups by the hazard risk based on
the 115-gene signature. The red and blue lines are based on high-risk group and low-risk group, respectively.

4. Conclusion

In this paper, we developed a flexible three-step computational pipeline for identifying prognostic biomarkers related to
the overall survival of serous ovarian cancer patients using the rich TCGA data set. This pipeline facilitates the pathway
level analysis of the biomarkers associated with cancer survival. The proposed methods are computationally efficient and
can be generally applied to many large-scale genomic cancer data sets including the TCGA data. We applied this pipeline
to TCGA ovarian cancer data and identified a list of 115 genes, as well as several gene families including the NEK family
and RNF family, which may greatly affect the overall survival of ovarian cancer patients. Some of these findings are well
supported by literature.
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