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Abstract

We propose a convolution based approach to the simulation of a modified version of a unit root process where the state
variable Yt−1 is dependent on the innovation εt. The dependence structure is given by a copula function C. We study by
simulation the effect of a negative correlation on the properties of unit roots. We call this process C-UR(1).
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1. Introduction

In this paper we present a modified version of a unit root processes using a convolution-based technique. This method-
ology exploits the properties of copula functions. The application of copula functions to stochastic processes (more
in particular to Markov processes) was recently described in the book by Cherubini, Gobbi, Mulinacci and Romagnoli
(2012). Our contribution relies on the application of a particular family of copulas, which are generated by the convo-
lution operator, to the design of time series processes. From this point of view, the paper contributes to the literature
modeling time series with copulas (Chen & Fan, 2006; Chen, Wu, & Yi, 2009; Cherubini & Gobbi, 2013). While this
literature builds on the pioneering paper by Darsow, Nguyen and Olsen (DNO, 1992) on the link between copula functions
and Markov processes, our paper exploits the concept of convolution based copulas to define a new version of the unit
root process. Beyond the Markov property, there is a long standing and extremely vast literature on the fact that most
of the changes of the processes, those that are called innovations, are not predictable on the basis of past information
(Samuelson, 1963; 1973; Fama, 1965). In financial markets the natural representation of this concept is to assess that
log-prices of assets follow a random walk, which is, in fact, a unit root process. Technically, this process is character-
ized by innovations that are permanent and independent of the level of the process. The same random walk hypothesis
spread into the literature in the field macroeconomics in the 1980s, starting with the seminal paper by Nelson and Plosser
(1982). Based on the first unit root tests, due to Dickey-Fuller (1979; 1981), Nelson and Plosser found that most of the
US macroeconomic time series included a random walk component, that is a shock, independent and persistent. In this
paper we propose an extension to this approach, which allows for dependent innovations, and for non linear dependence
between the innovation and the value of the process of the previous period. This is our modified version of the unit root
process. The dependence structure is modelled by a copula function and the distribution of the process for all t is obtained
by applying the C-convolution technique (Cherubini, Mulinacci, & Romagnoli, 2011) as it will be described in section
3. The choice of the family of copulas changes the probabilistic properties of the new process. In order to simplify the
computational aspects, in this paper we concentrate on gaussian copulas for which a closed form of the C-convolution is
available. In this framework, we propose a C-convolution-based unit root process, C-UR(1), characterized by a negative
correlation between the innovation and the value of the process of the previous period. We investigate the stationarity
property of this new process by a simulation experiment.

The plan of the paper is as follows. In section 2 we present the standard linear autoregressive model and the unit root case.
In section 3 we introduce our modified version of the unit root process based on the concept of C-convolution. In section
4 we describe the simulation algorithm and we discuss the results. Section 5 concludes.

2. The Standard AR(1) Process

We begin by describing briefly the property of the celebrate autoregressive process of order 1, AR(1). The definition is
the following.

Definition: 1. AR(1). The discrete time stochastic process (Yt)t is a first order autoregressive process, AR(1), if

Yt = ϕYt−1 + εt,

where ϕ is a real number and (εt)t is a sequence of i.i.d. random variables, i.e., (εt)t is a white noise process. Moreover,
Yt−1 is independent of εt.

In other words, a stochastic process Yt is an autoregressive process if the value at the time t depends linearly on its own
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previous values and on a stochastic term (a stochastican imperfectly predictable term); thus the model is in the form of a
stochastic difference equation. The notation AR(1) indicates an autoregressive model of order 1.
It is well known the constraints on the autoregressive parameter for the model to remain wide-sense stationary. In partic-
ular, the process is wide-sense stationary if |ϕ| < 1 since it is obtained as the output of a stable filter whose input is white
noise. Conversely, the condition |ϕ| ≥ 1 identifies the case where the process is not stationary.

0 50 100 150 200 250
−5

0

5

(a)
0 50 100 150 200 250

−10

−5

0

5

(b)

0 50 100 150 200 250
−10

−5

0

5

10

(c)
0 50 100 150 200 250

−20

−10

0

10

(d)

Figure 1. Example of trajectories of a AR(1) process with: (a) ϕ = 0.50, (b) ϕ = 0.90, (d) ϕ = 0.95, (d) ϕ = 0.99.

Figure 1 displays some examples of trajectories of a stationary AR(1) process for some values of the parameter. The mean-
reverting property appear clear from the figure. Furthermore, the absence of any kind of trends is more evident for small
values of the autoregressive parameter. Stationarity assures that the mean, µ = E[Yt], and the variance, V2

t = Var(Yt), are
constants for all t. In particular, it is known that µ = E[Yt] = 0 and V2

t =
σ2
ε

1−ϕ2 (see Hamilton (1994) for more details).
The autocovariance function γk = E[(Yt − µ)(Yt−k − µ)], k = 1, 2, ... depends only on the lag k and it is given by

γk =
σ2
ε

1 − ϕ2 ϕ
k,

whereas the autocorrelation function (ACF), ρk, has the form

ρk =
γk

γ0
= ϕk.

Notice that the ACF of a weakly stationary AR(1) process decays exponentially with rate ϕ. Figures 2 shows the theoretical
autocorrelation function for some values of the parameter. If the parameter assumes values close to 1 the decline of the
ACF is much slower. For a detailed discussion on autoregressive processes we refer the reader to the manuals of Hamilton
(1994) and of Brockwell and Davis (1991).

2.1 The Unit Root Case

In this paper we are particularly interested in the unit root case, i.e., when the autoregressive parameter ϕ = 1. The
definition of a unit root process is the following.

Definition: 2. I(1). The discrete time stochastic process (Yt)t is called a unit root process, also known as integrated
process, if

Yt = Yt−1 + εt,

where (εt)t is a white noise process. We denote such a process by I(1). Moreover, Yt−1 is independent of εt.

Observe that a unit root process is a random walk. As mentioned in the previous section, since the autoregressive parameter
is equal to 1 the I(1) process is not stationary, as we can also infer by observing figure 3 which reports some simulated
examples of paths of a unit root process. We can observe that the trajectories are not stationary in their means as we would
expect if they were constant over time. As regards the variance, and more in general all higher-order moments, it depends
on t. In particular, by repeated substitutions, we can write Yt = Y0 +

∑t
j=1 ε j. Then the variance of Yt, say V2

t , changes
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Figure 2. Autocorrelation function of a AR(1) process with: (a) ϕ = 0.50, (b) ϕ = 0.90, (d) ϕ = 0.95, (d) ϕ = 0.99.

linearly with t

V2
t =

t∑
j=1

σ2
ε = tσ2

ε,

and it approaches to infinity when t tends to infinity.

We can investigate the behavior of the state variable Yt and of its standard deviation Vt with a Monte Carlo simulation. In
particular, we generate 5000 trajectories of 250 points of an I(1) process with initial condition Y0 = 0 with the assumption
that εt are i.i.d. N(0, σε); each simulated path (ỹt)t=1,...,250 is a realization of the I(1) process, whereas if we fix t = t0 we
have 5000 realizations of the state variable at the time t0, (ỹ(i)

t0 )i=1,...,5000.

Figure 4 (panel (a)) reports the estimated probability density function relatively to (ỹ(i)
t )i=1,...,5000 for increasing value of t.

We see that the dispersion of the distribution of ỹt increases as t increases, signalling that the process is not stationary in
variance. Moreover, figure 4 (panel (b)) displays the standard deviation, say Ṽt, of a realization (ỹ(i)

t )i=1,...,5000 for increasing
values of t. As expected, Ṽt is monotone increasing.

The theoretical autocorrelations of a I(1) process tend to one asymptotically for any lag k but the sample autocorrelations
may decline rather fast even with large sample (Hassler, 1994). The average ACF up to the lag k = 20 over the 5000
simulated trajectories of our random experiment is reported in figure 5. Clearly, the inspection of this ACF is not sufficient
to find out the presence of a unit root. A several test for the presence of unit roots are available in literature (Dickey, 1976;
Dickey & Fuller, 1979; 1981).
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Figure 3. Examples of trajectories of a unit root process.

3. The Convolution Based Unit Root Process

In this section we introduce a modified version of the standard unit root process based on the notion of C-convolution
introduced by Cherubini, Mulinacci and Romagnoli (2011). The C-convolution was originally introduced to determine
the distribution function of a sum of two dependent and continuous random variables X and Y . The dependence structure
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Figure 4. (a) Probability density function of the state variable of a simulated unit root process; (b) Standard deviation of
the state variable of a simulated unit root process
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Figure 5. ACF of an I(1) process.

between X and Y is modeled by a copula function. The copula technique allows to write every joint distribution as a
function of the marginal distributions. In other words, we can represent the joint distribution of X and Y , say Pr(X ≤
a, Y ≤ b), with a, b ∈ R as a function of FX(a) ≡ Pr(X ≤ a) and FY (a) ≡ Pr(Y ≤ b). More formally, there exists a function
CX,Y (u, v) such that

Pr(X ≤ a, Y ≤ b) = CX,Y (FX(a), FY (b)). (1)

Conversely, given two distribution functions FX and FY and a suitable bivariate function CX,Y we may build joint distri-
bution for (X,Y). The requirements to be met by this function are that: i) it must be grounded (C(u, 0) = C(0, v) = 0);
ii) it must have uniform marginals (C(1, v) = v and C(u, 1) = u); iii) it must be 2-increasing (meaning that the volume
C(u1, v1) −C(u1, v2) −C(u2, v1) +C(u2, v2) for u1 > u2 and v1 > v2 cannot be negative).
The one to one relationship that results between copula functions and joint distributions is known as Sklar theorem. See
Nelsen (2006) and Joe (1997) for a detailed discussion on copulas.

The C-convolution technique links the marginal distributions of X and Y and their dependence structure given by a copula
so as to determine the probability distribution of the sum X + Y . The seminal paper is that of Cherubini, Mulinacci &
Romagnoli (2011) where we may find the concept of convolution-based copulas. If X e Y be two real-valued random
variables with corresponding copula CX,Y and continuous marginals FX and FY , then the distribution function of the sum

X + Y , denoted by FX
C∗ FY , is given by

FX+Y (z) = (FX
C∗ FY )(z) =

∫ 1

0
D1CX,Y

(
w, FY (z − F−1

X (w))
)

dw, (2)

where D1CX,Y (u, v) denotes ∂CX,Y (u,v)
∂u .

The choice of the copula function affects the probabilistic behavior of the distribution of the sum (for a detailed discussion
on this topic see the book of Cherubini, Gobbi, Mulinacci & Romagnoli (2012). Some of the most used copula functions
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are the Gaussian copula, the Clayton copula, the Frank copula and the Gumbel copula. The Gaussian copula is constructed
from a bivariate normal distribution over R2 by using the probability integral transform. For a given correlation coefficient
ρ, the Gaussian copula with parameter ρ can be written as

C(u, v; ρ) = Φ2

(
Φ−1(u),Φ−1(v)

)
,

where Φ2 is the bivariate standard normal distribution with correlation coefficient ρ and Φ is the standard normal distribu-
tion. The Clayton copula is an asymmetric Archimedean copula, exhibiting greater dependence in the negative tail than
in the positive. Its functional form is given by

C(u, v; θ) = (u−θ + v−θ − 1)−1/θ,

where θ is the parameter which assumes positive values, θ ∈ (0,+∞). The Frank copula is a symmetric copula defined as

C(u, v; θ) = − ln
(
1 +

(exp(−θu) − 1)(exp(−θv) − 1)
exp(−θ) − 1

)
,

where the parameter θ is a real number, θ ∈ R. The Gumbel copula is an asymmetric archimedean copula, exhibiting
greater dependence in the positive tail than in the negative. This copula is given by:

C(u, v; θ) = exp
(
−

(
(− ln u)θ + (− ln v)θ

)1/θ
)
,

where θ ∈ [1,+∞). It is important to notice that the C-convolution has a closed form if and only if the marginal distri-
butions are gaussian and the copula linking them is the gaussian copula (see Cherubini, Gobbi, Mulinacci & Romagnoli,
2012). For computational purposes in this paper we only consider that case. The reader can find some examples of C-
convolution with Clayton and Frank copulas in the book of Cherubini, Gobbi, Mulinacci & Romagnoli (2012).
Here, we are interested in how to use the C-convolution to modelling stochastic processes. As shown in Cherubini,
Gobbi & Mulinacci (2016) we can construct a dependent increments Markov processes by a repeated application of the
C-convolution technique. More precisely, given a stochastic process (Yt)t, let Yt−1 with marginal distribution Ft−1 and
∆Yt = Yt − Yt−1 with distribution Ht. Moreover let C be the copula associated to (Yt−1,∆Yt). Then, we may recover the
distribution of Yt = Yt−1 + ∆Yt iterating the C-convolution (2) for all t

Ft(y) = (Ft−1
C∗ Ht)(y) =

∫ 1

0
D1C

(
w,Ht(y − F−1

t−1(w))
)

dw. (3)

The process (Yt)t is called the C-convolution based process. This methodology may be applied to define a new version of
the unit root process I(1), Yt = Yt−1 + εt, when Yt−1 and εt are not independent as in the standard case but linked by some
copula C. This is our modified version of a I(1) process.

Notice that if the copula C is the independent copula, that is C(u, v) = uv, the C-convolution coincides with the standard
convolution and we obtain the standard I(1) process. In this section we consider a C-convolution-based unit root process,
C-UR(1), by imposing a dependence structure between Yt−1 and εt. The distribution of Yt = Yt−1 + εt is given by the
C-convolution between the distribution of Yt−1, Ft−1, and the distribution of εt, Ht. Suppose that Y0 has distribution F0.
Then, the distribution of Yt is

Ft(yt) = (Ft−1
C∗ Ht)(yt) =

∫ 1

0
D1C(w,Ht(yt − F−1

t−1(w)))dw, t = 1, 2, ... (4)

We are now ready to introduce the definition of our modified version of a I(1) process. In particular we have the following

Definition: 3. C-UR(1). The discrete time stochastic process (Yt)t is a C-convolution based unit root process, C-UR(1), if

• the functional form is that of a unit root process, Yt = Yt−1 + εt;

• there exists a dependence structure between the state variable at the time t−1, Yt−1, and the innovation εt. Moreover,
this dependence structure is described by a copula function, C, with a time-invariant parameter.

Remark 1. Patton (2005; 2006) introduced the notion of conditional copulas that allows us to define a time-varying
dependence structure. In other words, the parameter of the copula function depends on the time t while remaining within
the same family of copulas.
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3.1 The Gaussian C-UR(1) Process

As mentioned before, if C is not the gaussian copula the above integral (4) cannot be expressed in closed form and they
have to be evaluated numerically. In those cases the simulation of a C-UR(1) process may not be simple. However,
since the gaussian family is closed under C-convolution, we can perform a simulation design under some restrictions. In
particular, suppose that the following conditions hold.

1. The initial distribution is gaussian:
Y0 ∼ N(0, σ0),

and the distribution of innovations is gaussian and stationary

εt
i.i.d.∼ N(0, σε).

2. The copula function linking Yt−1 and εt is gaussian and stationary, i.e., C(u, v) = G(u, v; ρ), where ρ is the correlation
coefficient.

Under this framework, as shown in Cherubini, Gobbi & Mulinacci (2016), by iterating the C-convolution technique (4)
we recover the distribution of the state variable for all t

Yt ∼ N(0,V2
t ), (5)

where the variance V2
t has a closed functional form

V2
t = Var(Yt) = V2

1 + (t − 1)σ2
ε + 2ρσε

t−1∑
i=1

Vt−i, t = 1, ... (6)

Moreover, it is shown that the copula between two consecutive state variables, Yt−1 and Yt, is Gaussian with parameters

ρXt−1,Xt =
Vt−1 + ρσε

Vt
, t = 1, ...,

where V1 = σ1.
Furthermore, we can prove that the behavior of V2

t when t → +∞ depends on the correlation coefficient ρ. As shown in
Cherubini, Gobbi & Mulinacci (2016) the limiting behavior of the standard deviation Vt is

Vt −→
{
−σε2ρ , if ρ ∈ (−1, 0);
+∞, otherwise.

(7)

It is very significant to notice that the standard deviation of a C-UR(1) process does not grow indefinitely as t tends to
infinity only in the case of negative correlation between Yt−1 and εt. Even more significant is the fact that the sufficient
condition is ρ < 0.

4. Simulation Design

The simulation of a gaussian C-UR(1) process is based on the conditional sampling technique which allows to generate
random pairs (u, v) from a given family of copulas (Nelsen, 2006 and Cherubini, Luciano & Vecchiato, 2004). The method
is based on the property that if (U,V) are U(0, 1) distributed r.vs. whose joint distribution is given by C the conditional
distribution of V given U = u is the first partial derivative of C

P(V ≤ v|U = u) = D1C(u, v) = cu(v),

which is a non-decreasing function of v. With this result in mind the simulation of a pair (u, v) from C is obtained in the
following two steps. We call the following algorithm Alg1.

1. Generate two independent r.vs. (u, z) from a U(0, 1) distribution: (u, z) i.i.d.∼ U(0, 1).

2. Compute v = c−1
u (z), where c−1

u (·) is the quasi-inverse function of the first partial derivative of the copula.

3. (u, v) is the desired pair.
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Figure 6. Example of trajectories of a C-UR(1) process. (a) ρ = −5%; (b) ρ = −10%; (c) ρ = −25%.
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C−UR(1): ρ=−10%
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Figure 7. Comparison among autocorrelation functions of a standard AR(1) process and a C-UR(1) process with
ρ = −10% (top) and ρ = −25% (bottom).

Now, we propose our algorithm to simulate trajectories from a C-UR(1) process using Alg1. The input is given by a
sequence of distributions of innovations, εt, that for the sake of simplicity we assume stationary Ht = H and gaussian:
H ∼ N(0, σε). Moreover we assume a dependence structure stationary and gaussian, CYt−1,εt (u, v) = G(u, v; ρ), We also
assume Y0 = 0. We describe a procedure to generate a iteration of a n-step trajectory.

1. Generate u from the uniform distribution.

2. Compute ỹt = H−1(u) with t = 1.

3. Use Alg1 to generate v from G(u, v; ρ).

4. Compute ε̃t+1 = H−1(v).

5. ỹt+1 = ỹt + ε̃t+1.

6. Compute the distribution Ft+1 by C-convolution given by equation (4).

7. Compute u = Ft+1(ỹt+1).

8. Repeat steps 4-7 with t = 2, 3, ..., n − 1.
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Figure 9. Standard deviation of the state variable of a simulated C-UR(1) process for three different values of the
correlation coefficient.

We generate 5000 trajectories of 250 points. We can think of daily trajectories therefore 250 points refer to a calendar
year. The number of trajectories has been chosen according to the computational resources available. Without loss of
generality we set σε = 1 and we select three different levels of negative correlation: ρ = −5%, ρ = −10% and ρ = −25%.

4.1 Results

We now describe the results of our simulations. Figure 6 shows some simulated trajectories for each level of correlation.
We can observe that as the correlation increases in absolute value the dynamics of trajectories appears more stationary
both in mean and in variance. If we compare this figure with figure 3 the effect is even more clear. We notice a mean
reverting effect which becomes stronger as the negative correlation increases. If we consider the autocorrelations the
behavior of our C-UR(1) is also interesting. Table 1 reports the autocorrelation function for the first 20 lags for a I(1)
process and for our C-UR(1) process with correlation level from -3% to -25%. The impact of negative correlation is
clear. If in the case of low negative correlation the decline of autocorrelations is in fact identical (with ρ = −3%) or very
similar (with ρ = −5%) to that of a I(1) process, when ρ is -10% or -25% the situation drastically changes. In particular, a
negative correlation greater than -20% virtually eliminates serial correlation while being in the presence of a unit root. For
example, in the case of ρ = −10% autocorrelations are very close to those of a standard AR(1) process with autoregressive
parameter ϕ around 0.94 whereas in the case of ρ = −25% are very similar to those of a standard AR(1) process with ϕ
around 0.84 as we can see in figure 7. Figure 8 compares the dynamics of autocorrelations of a I(1) process with those
of a C-UR(1) process with negative correlation from -5% to -25%. As regards the variance of the state variable, figures 9
and 10 show the impact of the negative correlation. More precisely, figure 9 reports the behavior of the standard deviation
Vt as a function of the time t. The convergence towards a constant level (given by equation 7) is faster as the negative
correlation increases. If ρ = −25% the convergence to the limit value is immediate and the variance of the state variable is
constant over time as in stationary processes. Figure 10 emphasizes this aspect showing that the dispersion is the same for
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Figure 10. Panel (a). Probability density function of the state variable of a simulated C-UR(1) process with ρ = −10%.
Panel (b). Probability density function of the state variable of a simulated C-UR(1) process with ρ = −25%.

both the instants of time considered if ρ = −25%. The linear relationship between the time t and the variance disappears.

Table 1. Comparison among autocorrelation values for different choices of the correlation coefficient.

Lag I(1) ρ = −3% ρ = −5% ρ = −10% ρ = −25%
1 0.9836 0.9817 0.9756 0.9410 0.8633
2 0.9689 0.9637 0.9493 0.8699 0.7388
3 0.9520 0.9487 0.9227 0.8015 0.6317
4 0.9377 0.9373 0.8943 0.7502 0.5557
5 0.9241 0.9227 0.8653 0.7056 0.4955
6 0.9118 0.9096 0.8348 0.6649 0.4115
7 0.8970 0.8956 0.8030 0.6235 0.3342
8 0.8841 0.8813 0.7748 0.5851 0.2584
9 0.8718 0.8705 0.7569 0.5443 0.2084
10 0.8583 0.8589 0.7397 0.5079 0.1784
11 0.8456 0.8459 0.7208 0.4790 0.1443
12 0.8332 0.8321 0.7009 0.4556 0.1271
13 0.8190 0.8164 0.6807 0.4415 0.1115
14 0.8034 0.8022 0.6675 0.4284 0.0941
15 0.7882 0.7899 0.6576 0.4118 0.0818
16 0.7750 0.7788 0.6417 0.3879 0.0668
17 0.7630 0.7661 0.6276 0.3651 0.0500
18 0.7515 0.7548 0.6166 0.3311 0.0476
19 0.7395 0.7420 0.6075 0.2898 0.0558
20 0.7240 0.7261 0.5953 0.2449 0.0766

5. Conclusion

In this paper we propose a convolution based approach to the simulation of a modified version of a unit root process
which we called C-convolution-based unit root process, C-UR(1). The idea is that once the distribution of innovations
is specified, and the dependence structure between innovations and levels of the process is chosen, the distribution of
the process can be automatically recovered. The variance of this new process converges to a constant level and this
convergence is faster as the correlation becomes more negative. The autocorrelation function rapidly decay towards zero
as soon as the correlation is around -20%. For these reasons, the model is well suited to address problems of persistent
and unpredictable shocks, beyond the standard paradigm of linear models.
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