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Abstract

A new regression model based on the exponentiated Weibull with the structure distribution and the structure of the gen-
eralized linear model, called the generalized exponentiated Weibull linear model (GEWLM), is proposed. The GEWLM
is composed by three important structural parts: the random component, characterized by the distribution of the response
variable; the systematic component, which includes the explanatory variables in the model by means of a linear structure;
and a link function, which connects the systematic and random parts of the model. Explicit expressions for the logarithm
of the likelihood function, score vector and observed and expected information matrices are presented. The method of
maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. To detect influential
observations in the new model, we use diagnostic measures based on the local influence and Bayesian case influence
diagnostics. Also, we show that the estimates of the GEWLM are robust to deal with the presence of outliers in the
data. Additionally, to check whether the model supports its assumptions, to detect atypical observations and to verify the
goodness-of-fit of the regression model, we define residuals based on the quantile function, and perform a Monte Carlo
simulation study to construct confidence bands from the generated envelopes. We apply the new model to a dataset from
the insurance area.

Keywords: Exponentiated Weibull model, generalized linear model, residuals, sensibility.

1. Introduction

The Weibull distribution has been widely used in biomedical and industrial studies and to analyze lifetime data in several
areas. According to (Collet, 2003), it is just as important for parametric analysis of survival data as the Normal distri-
bution is in linear models. However, the Weibull distribution does not produce good results in situations that present a
non-monotone hazard rate function (hrf), such as the unimodal and U-shaped (or bathtub) functions, which are common in
studies of reliability, biology and engineering. Due to this problem, (Mudholkar & Srivastava, 1993) proposed the expo-
nentiated Weibull (EW) model, whose hrf can be either monotone or non-monotone. Sub-models of the EW distribution
are the Weibull, Exponential, Rayleigh, Burr type X and Exponentiated-Exponential (EE) distributions, among others.

The EW distribution has been widely applied in many fields of knowledge, both practical and theoretical. Researchers in
the computer sciences, clinical drug trials, hydrology, silviculture, statistics, actuary, reliability, ecology and mechanical
engineering, have employed this distribution successfully. As an example, we can mention the works of (Mudholkar
& Hutson, 1996), who modeled flood data on the Floyd river in the American state of Iowa, (Ahmad, Islam & Salam,
2006) on accelerated lifetime tests, (Surles & D’Ambrosio, 2004) in applications to carbon fiber compounds, (Wang &
Rennolls, 2005) to model the diameter of trees in Chinese pine plantations, (Zhang, Xie & Tang, 2005) in a lifetime
study of firmware systems, and (Barghout, 2009), who proposed a new order-based reliability prediction model for failure
detection, among many others. More recently, (Nadarajah, Cordeiro & Ortega, 2013) presented an extensive review of the
EW distribution, with details on its development, several recent results and main applications.

(Prudente & Cordeiro, 2010) proposed a class of regression models following the same concepts of generalized linear
models (GLMs), but assuming the Weibull distribution for the response variable. The generalized Weibull linear model
(GWLM), as called by the authors, allows a new use of the Weibull distribution in a structure very similar to that of
GLMs. The proposed model was defined as a synthesis of three important GLM structures: the random component for the
response variable, following a suitably parameterized Weibull distribution; a systematic component specified by a linear
function to model a relevant part of the means distribution, called the linear predictor; and a link function to connect
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the random and systematic components. Due to the importance of the Weibull and exponentiated Weibull distributions
in analyzing data and following the works by (Prudente & Cordeiro, 2010) and (Vanegas, Rondón & Cordeiro, 2013),
we propose a new class of regression models based on the EW distribution, called the generalized exponentiated Weibull
linear model (GEWLM), and we emphasize the GWLM as special case of the GEWLM. The proposed model is very
competitive to the GLMs, in particular to the gamma and inverse Gaussian models.

The inferential part was carried out using the asymptotic distribution of the maximum likelihood estimators (MLEs),
which, in situations when the sample is small, may present difficult results to be justified. As an alternative to classic
analysis we explore the use of the Bayesian method as a feasible alternative. After modeling, it is important to check
assumptions in the model and to conduct a robustness study in order to detect influential or extreme observations that
can cause distortions in the results of the analysis. Numerous approaches have been proposed in the literature to detect
influential or outlying observations.

In this paper, we use two approaches: local influence and Bayesian case influence. Further, we study the residual analysis
to assess departures from the error assumptions and to detect outlying observations in the GEWLM.

The paper is organized as follows. In Section 2, we define the GEWLM and examine some of its properties. In Sections 3,
we discuss the new GEWLM regression model. In Section 4, we obtain the MLEs and the estimates based on a Bayesian
method and provide some results from simulation studies for the GEWLM regression model. The sensitivity analysis
based in local influence and Bayesian case influence diagnostics is developed in Section 5. In Section 6, we define the
quantile residuals for the new model and study the method to construct a simulation envelope to assess its goodness of
fit to a dataset. In Section 7, we fit the new model to a real dataset in the insurance area to demonstrate the performance
of the GEWLM in contrast to the GWLM. Finally, in Section 8, we provide some conclusions and suggestions for future
research.

2. The Generalized Exponentiated Weibull Linear Model

The GWLMs are very effective, as stated by the authors, to model a part of the mean response in terms of a regression
equation for positive continuous data and to define the residuals. Many other diagnostic measures can closely follow the
theory of GLMs.

Let Y1, ..., Yn be n independent random variables, where each Yi has the Weibull distribution with shape parameter ϕ and
scale parameter αi, which varies according to the observations, with cumulative distribution function (cdf) and probability
density function (pdf) given by

F(yi;αi, ϕ) = 1 − exp
− (

yi

αi

)ϕ (1)

and

f (yi;αi, ϕ) = ϕ y−1
i

(
yi

αi

)ϕ
exp

− (
yi

αi

)ϕ , ϕ, αi, yi > 0, (2)

respectively. The mean and variance are

E(Yi) = αiΓ1(ϕ) and Var(Yi) = α2
i

{
Γ2(ϕ) − Γ2

1(ϕ)
}

,

where Γ j(ϕ) = Γ(1 + j
ϕ

) for j ≥ 1, Γ(p) =
∫ ∞

0 tp−1e−tdt is the gamma function and Γ′(p) = ∂Γ(p)/∂p.

By re-parameterizing equation (1) according to the relation λi = αi exp
[
ϕ−1Γ′(2)

]
, proposed by (Cox & Reid, 1987), we

obtain the orthogonality between the parameters ϕ and λi, i.e., E(∂2ℓ(θ)/∂ϕ∂λi) = E(∂2ℓ(θ)/∂λi∂ϕ) = 0. The advantage
of having orthogonal parameters is the asymptotic independence of the MLEs of ϕ and λi and the simplification of the
algebraic developments, since the expected information matrix is block diagonal. Then, the re-parameterized expressions
for the cdf, pdf, expectation and variance of Yi are given by

F(yi; λi, ϕ) = 1 − exp
− (

yi

λi

)ϕ
eΓ
′(2)

 , (3)

and

f (yi; λi, ϕ) = ϕy−1
i

(
yi

λi

)ϕ
eΓ
′(2) exp

− (
yi

λi

)ϕ
eΓ
′(2)

 , ϕ, λi, yi > 0, (4)

E(Yi) = λi c1(ϕ) and Var(Yi) = λ2
i c2(ϕ),
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where c1(ϕ) = exp[−Γ′(2)/ϕ]Γ1(ϕ) and c2(ϕ) = exp[−2Γ′(2)/ϕ][Γ2(ϕ) − Γ2
1(ϕ)].

The GWLM is defined by the pdf (4) for the random component, and by a function g applied to λi such that g(λi) = ηi =

xT
i β is the systematic component, where xi is the vector of covariates associated with the ith observation and β is an

unknown vector of parameters.

By raising equation (3) to the power δ > 0, we obtain the EW distribution with scale parameter λi and two shape
parameters ϕ and δ. Henceforth, the re-parameterized EW distribution is denoted by Y ∼ EW(λi, ϕ, δ). The cdf and
pdf of Y are given by

F(yi; λi, ϕ, δ) =

1 − exp
− (

yi

λi

)ϕ
eΓ
′(2)


δ

(5)

and

f (yi; λi, ϕ, δ) = δϕy−1
i

(
yi

λi

)ϕ
eΓ
′(2) exp

− (
yi

λi

)ϕ
eΓ
′(2)

 1 − exp
− (

yi

λi

)ϕ
eΓ
′(2)


δ−1

, (6)

respectively. The model (6) is referred to as the EW distribution. If δ = 1 and ϕ = 1, we obtain the Exponential
distribution, whereas if ϕ = 1, we have the EE distribution. If Yi follows the EW distribution, then the random variable
Zi = (Yi/λi)ϕeΓ

′(2) has the EE distribution with unit scale parameter and shape parameter δ. The following theorem
presents the result in a more general form.

Theorem: If Y ∼ EW(λ, ϕ, δ) and Z = (Y/λ)ϕeΓ
′(2), then Z ∼ EE(1, δ).

Proof: Let t be a point in the support of the EW model. Then,

FZ(t) = P(Z ≤ t) = P
(

Yϕ

λϕ
eΓ
′(2) ≤ t

)
= P

(
Yϕ ≤ t λϕ

eΓ′(2)

)
= P

(
Y ≤ t1/ϕ λ

eΓ′(2)/ϕ

)
=

= FY

(
t1/ϕ λ

eΓ′(2)/ϕ

)
=

1 − exp

− (
t1/ϕ λ/eΓ

′(2)/ϕ

λ/eΓ′(2)/ϕ

)ϕ

δ

=
[
1 − exp (− t)

]δ .�

The rth ordinary moment of the EW distribution (without restrictions) is given by (Choudhury, 2005)

µ′k = λ
k
i δ exp

[
−kΓ′(2)

ϕ

]
Γk(ϕ)

1 + ∞∑
i=1

ai(i + 1)−
(
1+ k

ϕ

) ,

where ai = (−1)i
(
δ−1

i

)
.

The first two moments of the EW distribution are

µ′1 = E(Yi) = λi δ exp
[
−Γ

′(2)
ϕ

]
Γ1(ϕ)

1 + ∞∑
i=1

ai(i + 1)−
(
1+ 1

ϕ

)
and

µ′2 = E(Y2
i ) = λ2

i δ exp
[
−2Γ′(2)

ϕ

]
Γ2(ϕ)

1 + ∞∑
i=1

ai(i + 1)−
(
1+ 2

ϕ

) .

So, the expectation and variance of Yi are given by

E(Yi) = λi c1(ϕ, δ) and Var(Yi) = λ2
i [h2(ϕ, δ) − h2

1(ϕ, δ)] = λ2
i c2(ϕ, δ),

where

c1(ϕ, δ) = h1(ϕ, δ) = δ exp
[
−Γ

′(2)
ϕ

]
Γ1(ϕ)

1 + ∞∑
i=1

ai(i + 1)−
(
1+ 1

ϕ

)
and

h2(ϕ, δ) = δ exp
[
−2Γ′(2)

ϕ

]
Γ2(ϕ)

1 + ∞∑
i=1

ai(i + 1)−
(
1+ 2

ϕ

) .

The parameter λi is a type of location parameter that also affects the variance function of the EW distribution in the new
parametrization so, the variance is a quadratic function of the mean. Plots of the density function of Y for selected values
of δ and λi are displayed in Figure 2.
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Figure 1. Some densities of the EW distribution

3. The New Regression Model

In practice there are many situations where the response variable is influenced by one or more explanatory variables or
covariates, and can be related to treatments, intrinsic traits of sample units, exogenous variables, interactions or time-
dependent variables, among others. The random component of the GEWLM is defined by the pdf (6) for the response
variable yi. We accommodate different covariates structures for model (6) using a known function g, which is twice
differentiable and bijective, that links the parameter λi to the predictor ηi, called the link function, by

g(λi) = ηi = xT
i β,

where xT
i = (xi1, . . . , xip) is a set of p covariates associated with the ith response variable yi for i = 1, . . . , n and βT =

(β1, . . . , βp) is the vector of regression parameters to be estimated. The parameter λi can be specified by the inverse of the
link function, i.e. λi = g−1(ηi) = g−1(xT

i β) so that µi = E(Yi) = g−1(ηi) c1(ϕ, δ), where it can be seen that part of the mean
response for the ith variable is specified by λi, besides influencing the model’s variance, because the variance function of
the EW distribution is a quadratic function of the mean Var(Yi) = λ2

i h2(ϕ, δ) − µ2
i .

The behavior of c1(ϕ, δ) and c2(ϕ, δ) are shown in Figure 3 for the values of δ = 0.2, 1, 2 and 9.
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Figure 2. Plots of the functions c1(ϕ, δ) and c2(ϕ, δ)

Figure 3 reveals that as the value of ϕ approaches zero, the expectation and variance of Yi increase, while as ϕ increases,
both moments decrease. In particular, if δ = 1, when ϕ→ ∞, c1(ϕ, 1)→ 1 and c2(ϕ, 1)→ 0.

If Y1, . . . , Yn is a sequence of n independent random variables, such that Yi ∼ EW(λi, ϕ, δ) and g(λi) = ηi = xT
i β is the

link function, then the equation that best describes the regression model is given by

Yi = λi εi = g−1(xT
i β) εi , (7)

where εi ∼ EW(1, ϕ, δ). The mean and variance are given, respectively, by

E(Yi) = λi E(εi) = λi c1(ϕ, δ) = g−1(xT
i β) c1(ϕ, δ) and

Var(Yi) = λ2
i Var(εi) = λ2

i c2(ϕ, δ) = [g−1(xT
i β)]2 c2(ϕ, δ).

The systematic component ηi = xT
i β enters in the regression model in the form of a linear structure for the explanatory

variables and the connection between the systematic and random components is established by the inverse link function
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λi = g−1(ηi) > 0. The choice of the link function depends strongly on the experiment and the relation between the
response variable and the covariates. Some possible choices for the link function are, for example, the identity g(λi) = λi,
the reciprocal g(λi) = 1/λi and the logarithmic g(λi) = log(λi) functions. In this way, the regression is composed of a
linear structure in the parameters and a nonlinear function with multiplicative error. Clearly, the GWLM (Prudente &
Cordeiro, 2010) is a special case of (7) when δ = 1.

4. Estimation, Tests and Simulation

4.1 Maximum Likelihood Estimation

We consider a random sample (y1,x1), . . . , (yn,xn) of n independent observations, where xT
i = (xi1, . . . , xip), for i =

1, . . . , n, is the vector of covariates associated with the ith individual and yi is the response variable following the
EW(λi, ϕ, δ) distribution with λi = g−1(xT

i β).

The log-likelihood function for the model parameters θT = (βT , ϕ, δ) is given by

ℓ(θ) =
n∑

i=1

{
log(δ) − log(yi/ϕ) + log(zi) − zi + (δ − 1) log[1 − exp(−zi)]

}
, (8)

where zi = (yi/λi)ϕ eΓ
′(2).

The score vectors for β, ϕ and δ can be expressed as

Uβ =
∂ℓ

∂β
= ϕXTW 1/2s , Uϕ =

∂ℓ

∂ϕ
=

n
ϕ
+ τ T1 and Uδ =

∂ℓ

∂δ
= κT1 ,

respectively, where W = diag[(λ
′

i/λi)2] is a diagonal matrix of order n, λ
′

i = ∂λi/∂ηi, λ
′′

i = ∂λ
′

i/∂ηi are the derivatives
of the inverse link function, 1 is an n × 1 vector of ones and the vectors s = (s(z1), . . . , s(zn))T , τ = (τ1, . . . , τn)T and
κ = (κ1, . . . , κn)T have components given by

s(zi) = (zi − 1) − (δ − 1)li , τi = −s(zi) log(yi/λi) , κi = δ
−1 + log[1 − exp(−zi)] ,

zi =

(
yi

λi

)ϕ
eΓ
′(2) , li =

zi exp(−zi)
1 − exp(−zi)

, ci = ϕ log
(

yi

λi

)
= log

( zi

eΓ′(2)

)
and fi =

λ
′′

i λi

(λ′i)
2

,

respectively. The MLEs of the regression coefficients and unknown parameters are the solutions of the nonlinear equations
Uβ = 0, Uϕ = 0 and Uδ = 0. We use iterative methods to determine the roots. The NLMixed procedure in SAS has been
used for maximizing the log-likelihood function ℓ(θ). Initial values for β and ϕ are taken from the fit of the GWLM with
δ = 1.

For interval estimation and hypothesis tests on the model parameters, we require the (p+ 2)× (p+ 2) observed (L̈(θ)) and
expected (I(θ)) information matrices given in the Appendix. Under general regularity conditions, we can construct ap-
proximate confidence intervals for the individual parameters based on the multivariate normal Np+2(0, I(θ̂)−1) distribution,
where θ̂ is the MLE of θ.

We can compute the maximum values of the unrestricted and restricted log-likelihoods to construct likelihood ratio (LR)
statistics for testing some sub-models of the GEWLM. For example, the test of H0 : δ = 1 versus H1 : H0 is not true is
equivalent to comparing the GEWLM and GWLM and the LR statistic reduces to

w = 2[ℓ(̂β, ϕ̂, δ̂) − ℓ(β̃, ϕ̃, 1)],

where β̂, ϕ̂ and δ̂ are the MLEs under H1 and β̃ and ϕ̃ are the estimates under H0. The test statistic w has approximately
a Chi-square distribution with degree of freedom given by the difference between the numbers of parameters of the two
models.

Simulation Study: Maximum Likelihood

Next, we perform a Monte Carlo simulation study to evaluate the MLEs of the GEWLM by considering the systematic
component ηi = β0 + β1xi, i = 1, . . . , n, and the reciprocal (g(λi) = 1/λi), the identity (g(λi) = λi) and the logarithmic
(g(λi) = log(λi)) link functions.

The values of the response variable are simulated from the inverse of the cdf of the EW distribution given by (5), such that
Yi = F−1(Ui) with Ui ∼ U(0, 1). Further, the values of the covariates x are generated by xi = exp(ti), where ti ∼ N(0, 1),
so that x has strong rightward symmetry.
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Therefore, for each combination n, β0, β1, ϕ, δ and g(λi), we generate 1,000 samples and, for each sample, we obtain
the MLEs of the parameters. Further, we calculate the mean, bias and mean squared error (MSE) for each of the 1, 000
estimates, as listed in Table 4.1. For this study, we employ four sample sizes (n = 75, 150, 300 and 750), and consider the
reciprocal, identity and logarithmic link functions and true values β0 = 1.5, β1 = 2.0, ϕ = 0.5, δ = 0.5 and 1.5.

Based on the values reported in Table 4.1, we note that, in all cases, as the sample size increases, the the MSEs and biases
decrease and the estimates approach the true values. Further, the biases and MSEs are much smaller for the estimates of
β0 and β1 using the logarithmic link function, and the convergence to the true parameter values is faster.

Table 1. Mean, bias and MSE based on 1,000 simulations of the GEWLM with β0 = 1.5, β1 = 2.0, ϕ = 0.5 and
δ = 0.5 and 1.5

δ = 0.5 δ = 1.5
g(λi) n θ Average Bias MSE θ Average Bias MSE

δ = 0.5 δ = 1.5
g(λi) n θ Average Bias MSE θ Average Bias MSE

1/λi 75 β0 3.7136 2.2136 566.7043 β0 3.0633 1.5633 52.5531
β1 5.2468 3.2468 1231.4334 β1 4.1954 2.1954 158.4900
ϕ 0.6288 0.1288 0.1077 ϕ 0.5806 0.0806 0.0636
δ 0.5435 0.0435 0.1920 δ 1.8357 0.3357 2.7380

1/λi 150 β0 1.7279 0.2279 2.3447 β0 2.118 0.6180 7.1914
β1 2.4023 0.4023 3.6811 β1 2.7272 0.7272 11.2634
ϕ 0.5584 0.0584 0.0304 ϕ 0.5254 0.0254 0.0167
δ 0.4999 -0.0001 0.0341 δ 1.6823 0.1823 0.7946

1/λi 300 β0 1.6549 0.1549 0.9182 β0 1.7592 0.2592 1.0130
β1 2.2022 0.2022 1.6008 β1 2.2627 0.2627 1.2709
ϕ 0.5250 0.0250 0.0102 ϕ 0.5073 0.0073 0.0060
δ 0.5004 0.0004 0.0164 δ 1.5956 0.0956 0.2450

1/λi 750 β0 1.5809 0.0809 0.3340 β0 1.5818 0.0818 0.2399
β1 2.0757 0.0757 0.3906 β1 2.0824 0.0824 0.3840
ϕ 0.5065 0.0065 0.0031 ϕ 0.5044 0.0044 0.0025
δ 0.5031 0.0031 0.0060 δ 1.5283 0.0283 0.0834

λi 75 β0 2.0274 0.5274 5.5805 β0 1.9304 0.4304 3.4099
β1 2.3816 0.3816 5.4610 β1 2.4132 0.4132 4.5988
ϕ 0.6596 0.1596 0.1335 ϕ 0.5913 0.0913 0.0817
δ 0.4954 -0.0046 0.0844 δ 1.7533 0.2533 1.5490

λi 150 β0 1.6272 0.1272 2.0534 β0 1.5747 0.0747 1.1083
β1 2.3445 0.3445 2.9381 β1 2.1675 0.1675 1.8551
ϕ 0.5681 0.0681 0.0367 ϕ 0.5225 0.0225 0.0174
δ 0.4995 -0.0005 0.0406 δ 1.7024 0.2024 0.7972

λi 300 β0 1.6210 0.1210 0.9375 β0 1.6188 0.1188 0.5708
β1 2.0686 0.0686 1.1237 β1 2.0979 0.0979 0.7743
ϕ 0.5236 0.0236 0.0102 ϕ 0.5173 0.0173 0.0072
δ 0.5038 0.0038 0.0175 δ 1.5510 0.0510 0.2683

λi 750 β0 1.5326 0.0326 0.2753 β0 1.5656 0.0656 0.2185
β1 2.0224 0.0224 0.4127 β1 2.0414 0.0414 0.3016
ϕ 0.5067 0.0067 0.0031 ϕ 0.5085 0.0085 0.0027
δ 0.5032 0.0032 0.0058 δ 1.5082 0.0082 0.0789

log(λi) 75 β0 1.4416 -0.0584 0.7315 β0 1.3060 -0.1940 1.1192
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δ = 0.5 δ = 1.5
g(λi) n θ Average Bias MSE θ Average Bias MSE

β1 1.9573 -0.0427 0.0455 β1 1.9868 -0.0132 0.0138
ϕ 0.6329 0.1329 0.1173 ϕ 0.5668 0.0668 0.0677
δ 0.5394 0.0394 0.1877 δ 2.0828 0.5828 5.6226

log(λi) 150 β0 1.4700 -0.0300 0.3306 β0 1.4362 -0.0638 0.4242
β1 1.9743 -0.0257 0.0168 β1 1.9912 -0.0088 0.0054
ϕ 0.5507 0.0507 0.0319 ϕ 0.5295 0.0295 0.0185
δ 0.5211 0.0211 0.0423 δ 1.6864 0.1864 0.8804

log(λi) 300 β0 1.5056 0.0056 0.1509 β0 1.4908 -0.0092 0.1684
β1 1.9842 -0.0158 0.0072 β1 1.9940 -0.0060 0.0024
ϕ 0.5237 0.0237 0.0104 ϕ 0.5168 0.0168 0.0074
δ 0.5070 0.0070 0.0179 δ 1.5545 0.0545 0.2607

log(λi) 750 β0 1.4984 -0.0016 0.0556 β0 1.4940 -0.0060 0.0618
β1 1.9938 -0.0062 0.0027 β1 1.9980 -0.0020 0.0009
ϕ 0.5095 0.0095 0.0032 ϕ 0.5058 0.0058 0.0025
δ 0.5019 0.0019 0.0060 δ 1.5211 0.0211 0.0841

4.2 Bayesian Estimation

As an alternative analysis, we use the Bayesian method which allows for the incorporation of previous knowledge of the
parameters through informative priori density functions.

Prior and Posterior Distributions

The normal distribution with mean α and variance σ2 is denoted by N(α,σ2). We assume β, δ, and ϕ are a priori
independent, that is,

π(θ) =
p∏

i=1

π(βi)π(δ)π(ϕ), (9)

where β j ∼ N(0,σ2
β j

), j = 1, . . . , p, log(δ) ∼ N(0,σ2
δ) and log(ϕ) ∼ N(0,σ2

ϕ). All the hyper-parameters have been
specified to express non-informative priors.

By combining the likelihood function (8) and the prior distribution in (9), the joint posterior distribution for θ is obtained
as π(θ|D) ∝ L(θ;D)

∏p
i=1 π(βi)π(δ)π(ϕ). This joint posterior density is analytically intractable and we have based our

inference on the Markov chain Monte Carlo (MCMC) simulation methods. In particular, the Gibbs sampler algorithm
(Gamerman & Lopes, 2006) has proven a powerful alternative. No closed-form is available for any of the full conditional
distributions necessary for the implementation of the Gibbs sampler. Thus, we have resorted to the Metropolis–Hastings
algorithm. We begin by making a change in the variables to ξ = (log(δ), (log(ϕ),β), so that the parameter space is
transformed into Rp+2 (necessary for the work with Gaussian densities). Regarding the Jacobian of this transformation,
our joint posterior density (or target density) is given by

π(ξ|D) ∝ L(ξ;D) exp

−1
2

 p∑
j=1

β2
j

σ2
β j

+
log(δ)
σ2
δ

+
log(ϕ)
σ2
ϕ


 . (10)

To implement the Metropolis-Hastings algorithm, proceed as follows:

(1) Start with any point ξ(0) and stage indicator j = 0;

(2) Generate a point ξ′ according to the transitional kernel Q(ξ′, ξ j) = Np+2

(
ξ j, Σ̃

)
, where Σ̃ is the covariance matrix

of ξ, which is the same in any stage;

(3) Update ξ( j) to ξ( j+1) = ξ′ with probability p j = min{1, π(ξ′|D)/π(ξ( j)|D)}, or keep θ( j) with probability 1 − p j;
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(4) Repeat steps (2) and (3) by increasing the stage indicator until the process has reached a stationary distribution.

All computations are performed in R software (R Development Core Team [RDCT], 2011).

Model Comparison Criteria

A variety of methodologies can be applied for the comparison of several competing models for a given data set and
selecting the best one to fit the data. One of the most used approaches is derived from the conditional predictive ordinate
(CPO) statistic. For a detailed discussion on the CPO statistic and its applications to model selection, see (Gelfand, Deys
& Chang, 1992).

LetD denote the full data andD(−i) denote the data with the deleted i-th observation. We denote the posterior density of
θ givenD(−i) by π(θ|D(−i)), i = 1, . . . , n. For the i-th observation, CPOi can be written as

CPOi =

∫
θ∈Θ

f (yi|θ)π(θ|D(−i))dθ =
{∫

θ

π(θ|D)
f (yi|θ)

dθ
}−1

. (11)

The CPOi can be interpreted as the height of the marginal density of the time for an event at yi. Therefore, high CPOi

implies a better fit of the model. No closed-form of the CPOi is available for the proposed model. However, a Monte
Carlo estimate of CPOi can be obtained by using a single MCMC sample from the posterior distribution π(θ|D). Let
θ(1), . . . ,θ(Q) be a sample of size Q of π(θ|D) after the burn-in. A Monte Carlo approximation of CPOi (Ibrahim, Chen
& Sinha, 2001) is given by

ĈPOi =

 1
Q

Q∑
q=1

1
f (yi|θ(q))


−1

.

For model comparisons we use the log pseudo marginal likelihood (LPML) defined by LPML =
n∑

i=1
log(ĈPOi). The

higher the LPML value, the better the fit of the model.

Other criteria, such as the deviance information criterion (DIC) proposed by (Spiegelhalter, Best & van der Linde, 2002),
the expected Akaike information criterion (EAIC)- (Brooks, 2002), and the expected Bayesian (or Schwarz) information
criterion (EBIC)-(Carlin & Louis, 2001) can also be used. They are based on the posterior mean of the deviance, which

can be approximated by d =
Q∑

q=1
d(θq)/Q, and d(θ) = −2

n∑
i=1

log
[
f (yi|θ)

]
. The DIC criterion can be estimated using the

MCMC output by D̂IC = d + ρ̂d = 2d − d̂, where ρD is the effective number of parameters defined as E{d(θ)} − d{E(θ)},
where d{E(θ)} is the deviance evaluated at the posterior mean that can be estimated as

D̂ = d

 1
Q

Q∑
q=1

β(q),
1
Q

Q∑
q=1

δ(q),
1
Q

Q∑
q=1

ϕ(q)

 .

Similarly, the EAIC and EBIC criteria can be estimated by means of ÊAIC = d + 2#(θ) and ÊBIC = d + #(θ) log(n),
where #(θ) is the number of model parameters.

Simulation Study: Bayesian Analysis

A simulation study conducted to evaluate the parameter estimates for the proposed model through the Bayesian analysis.
We consider the systematic component ηi = β0 + β1xi, i = 1, . . . , n, and the logarithmic (g(λi) = log(λi)) link function.

The values of the response variable are simulated from the inverse of the cdf of the EW distribution , such that Yi = F−1(Ui)
with Ui ∼ U(0, 1). Further, the values of the covariates x are generated by xi = exp(ti), where ti ∼ N(0, 1), so that x has
strong rightward symmetry.

Samples of size n = 150 and 300 were generated with logarithmic link functions and true values β0 = 2, β1 = 1.0, ϕ = 0.5,
δ = 1.5. Therefore, each one with 500 Monte Carlo generated data sets. The following values σ2

β0
= σ2

β1
= σ2

δ = σ
2
ϕ = 100

for the prior distributions given in (9) were considered. Note that we assume weak, but informative prior. Because our prior
is still informative, the posterior is always proper. In all the work, we consider 40,000 sample burn-in, and use every tenth
sample from the 200, 000 MCMC posterior samples to reduce the autocorrelations and yield better convergence results,
thus obtaining an effective sample of size 20,000 upon which the posterior is based on. We monitor the convergence of
the Metropolis-Hasting algorithm using the method proposed by (Geweke, 1992), as well as trace plots.
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Further, we calculate the mean, biases, mean squared error (MSE) and 95% Coverage Probability (CP). The figures in
Table 4.1 indicate that the bias and MSE decrease when the sample size increases. It is also observed that as the sample
size increases the CPs become closer to the nominal value.

Table 2. Mean, bias, MSE and 95% CP for the parameter estimates for fitting the GEWLM model in each dataset

n Parameter Mean Bias MSE CP
δ 2.0092 0.5092 3.0407 0.916

150 ϕ 0.7096 0.2096 0.6888 0.920
β0 1.8663 -0.1337 1.3791 0.904
β1 1.0058 0.0058 0.0125 0.912
δ 1.7135 0.2135 0.7609 0.958

300 ϕ 0.5099 0.0099 0.0137 0.964
β0 1.9000 -0.1000 0.3887 0.954
β1 0.9990 -0.0010 0.0049 0.960

5. Sensibility Analysis

There are basically two approaches to detecting observations that seriously influence the results of a statistical analysis.
One approach is the influence local approach, and the second approach is Bayesian case influence diagnostics.

5.1 Local Influence

Influence diagnostic is an important step in the analysis of data, since it provides an indication of bad model fit or of in-
fluential observations. Since regression models are sensitive to the underlying model assumptions, generally performing
a sensitivity analysis is strongly advisable. (Cook, 1986) used this idea to motivate the assessment of influence analysis.
He suggested that more confidence can be put in a model which is relatively stable under small modifications. Anoth-
er approach suggested by (Cook, 1986) is to weight observations instead of removing them. The calculation of local
influences can be carried out for model (7). If the likelihood displacement LD(ω) = 2{l(θ̂) − l(θ̂ω)} is used, where
θ̂ω denotes the MLE under the perturbed model, then the normal curvature for θ at direction d, ∥d∥ = 1, is given by
Cd(θ) = 2|dT∆T [L̈(θ)

]−1∆d|, where ∆ is a (p + 2) × n matrix that depends on the perturbation scheme. The elements
of this matrix are given by ∆vi = ∂

2l(θ|ω)/∂θv∂ωi, i = 1, 2, . . . , n and v = 1, 2, . . . , p + 2, evaluated at θ̂ and ω0; ω0 is
the no-perturbation vector. For the GEWLM, the elements of L̈(θ) can be obtained from the authors upon request. We
can also calculate the normal curvatures Cd(θ) to obtain various index plots, including, for instance, the index plot of
dmax, the eigenvector corresponding to Cdmax , the largest eigenvalue of the matrix B = −∆T [

L̈(θ)
]−1∆, and the index plots

of Cdi (θ), which are together denoted as the total local influence. See, for example, (Lesaffre & Verbeke, 1998), where
di denotes an n × 1 vector of zeros with one at the ith position. Thus, the curvature at the direction di takes the form
Ci = 2|∆T

i
[
L̈(θ)

]−1∆i|, where ∆T
i denotes the ith row of ∆. It is commonplace to point out cases for which Ci ≥ 2C̄, where

C̄ = 1
n
∑n

i=1 Ci.

Next, for three perturbation schemes, we calculate the following matrix

∆ = (∆vi)(p+2)×n =

[
∂2l(θ|ω)
∂θi∂ωv

]
(p+2)×n

, v = 1, . . . , p + 2 and i = 1, . . . , n.

Previous works on local influence curvatures in regression models for censored data are due to (Escobar & Meeker,
1992), (Ortega, Bolfarine & Paula, 2003), (Ortega, Cancho & Paula, 2009), (Ortega, Cordeiro & Hashimoto, 2011),
(Silva, Ortega, Garibay & Barreto, 2008) and (Hashimoto, Ortega, Cancho, & Cordeiro, 2013). We consider model (7)
and its log-likelihood function given by (8). We denote the vector of weights by ω = (ω1, . . . ,ωn)T .

• Case-weight Perturbation

In this case, the log-likelihood function reduces to

ℓ(θ|ω) =
n∑

i=1

ωi

{
log(δ) − log(yi/ϕ) + log(zi) − zi + (δ − 1) log(1 − e−zi )

}
,

where zi = (yi/λi)ϕ eΓ
′(2), 0 ≤ ωi ≤ 1 and ω0 = (1, . . . , 1)T . Here, ∆ is given by
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∆ =

ϕ̂X
TŴ 1/2s

(uϕ1 , . . . , uϕn)
(κ1, . . . , κn)

 ,

where s = diag{s(ẑ1), . . . , s(ẑn)}, uϕi = ϕ̂
−1[1 − s(ẑi) log(ẑi/eΓ

′(2))] and κi = δ
−1 + log(1 − e−zi ).

• Response Perturbation
Now, we consider that each yi is perturbed as yiw = yi+ωiS y, where S y is a scale factor that may be estimated by the
standard deviation of the observed response y and ωi ∈ ℜ. The perturbed log-likelihood function can be expressed
as

ℓ(θ|ω) =
n∑

i=1

{
log(δ) − log(yiω/ϕ) + log(ziω) − ziω + (δ − 1) log[1 − e−ziω ]

}
,

where ziω = (yiω/λ̂i)ϕ̂eΓ
′(2) and ω0 = (0, . . . , 0)T . The matrix ∆ is given by

∆ = ϕ̂sy

 ϕ̂XTŴ 1/2s˜−(uϕ1ω/ϕ̂y1ω, . . . , uϕnω/ϕ̂ynω)
(l1ω/y1ω, . . . , lnω/ynω)

 ,

where s˜ = diag{n1ω/y1ω, . . . , nnω/ynω} , uϕiω = s(ziω) + niω log(ziω/eΓ
′(2)) , niω = ziω − (δ − 1)liω(1 − eziω liω),

s(ziω) = (ziω − 1) − (δ − 1)liω and liω = ziωe−ziω/(1 − e−ziω ).

• Explanatory Variable Perturbation
Consider now an additive perturbation on a particular continuous explanatory variable, say x j, by setting xi jω =

xi j + ωi S x j , where S x j is a scale factor and ωi ∈ ℜ. The perturbed log-likelihood function has the form

ℓ(θ|ω) =
n∑

i=1

{
log(δ) − log

(
yi

ϕ

)
+ log(ziω) − ziω + (δ − 1) log[1 − e−ziω ]

}
,

where ziω = (yi/λ̂iω)ϕ̂eΓ
′(2) e λ̂iω = g−1(xT

i β̂ + S x j β̂ jωi) and ω0 = (0, . . . , 0)T . The matrix ∆ is given by

∆p+2×n = (∆βp×n,∆ϕ1×n,∆δ1×n)T ,

where

∆βi j =

 ϕ̂β̂tS x j xi j(λ
′

iω/λiω)2
[
( fiω − 1)s(ziω) − ϕ̂niω

]
, j , t ,

ϕ̂β̂tS x j xi jω(λ
′

iω/λiω)2
[
( fiω − 1)s(ziω) − ϕ̂niω

]
+ ϕ̂S x j (λ

′

iω/λiω)s(ziω) , j = t ,
∆ϕi = ϕ̂β̂tS x j (λ

′

iω/λiω)
[
ϕ̂−1s(ziω) + niωciω

]
,

∆δi = −ϕ̂β̂tS x j (λ
′

iω/λiω)liω .

Note that the equations, λ
′

iω, s(ziω), liω, niω, ciω and fiω are defined in Section 3, but applied to ziω and λiω.

In order to determine whether the ith observation is possibly influential, (Poon & Poon, 1999) proposed classifying the
ith observation as possible influential if M(0)i =

Cdi(θ)
tr(2T̈ ) is greater than M(0) + c∗S M(0), where M(0) = 1/q, S M(0) is the

sample standard error {M(0)k, k = 1, . . . , q} and c∗ is a any constant selected according to the real application.

5.2 Bayesian Case Influence Diagnostics

(Cook, 1986) suggested that more confidence should be put in a model relatively stable under small modifications. The
best known perturbation schemes are based on case-deletion (Cook & Weisberg, 1982) whose effects are studied of com-
pletely removing cases from the analysis. This reasoning will be the basis for our Bayesian global influence methodology
for the determining of the influential observation in the analysis.

This reasoning will form the basis of our Bayesian global influence methodology and, in doing so, it will be possible
to determine which subjects might influence the analysis. In this work, we use the Bayesian case-deletion influence
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diagnostic measures for the joint posterior distribution based on the ψ-divergence ((Peng & Dey, 1995) and (Weiss,
1996)).

Let Dψ(P, P(−i)) denote the ψ-divergence between P and P(−i), in which P denotes the posterior distribution of ϑ for the
full data, and P(−i) denotes the posterior distribution of ϑ without the ith case. Specifically,

Dψ(P, P(−i)) =
∫

ψ

(
π(θ|D(−i))
π(θ|D)

)
π(θ|D) dθ, (12)

where ψ is a convex function with ψ(1) = 0. Several choices concerning the ψ are given by (Dey & Birmiwal, 1994).
For example, ψ(z) = − log(z) defines the Kullback-Leibler (K-L) divergence, ψ(z) = 0.5|z − 1| defines the L1 norm (or
variational distance) and ψ(z) = (z − 1) log(z) gives the J-distance (or the symmetric version of K-L divergence).

Let θ(1), . . . ,θ(Q) be a sample of π(θ|D), Dψ(P, P(−i)) the calculated numerically by

D̂ψ(P, P(−i)) =
1
Q

Q∑
q=1

ψ

 ĈPOi

f (yi|θ(q))

 , (13)

where ĈPOi =

{
1
Q

Q∑
q=1

1
f (yi |θ(q))

}−1

is the numerical approximation of the conditional predictive ordinate statistic of the i-th

observation (Ibrahim et al., 2001).

Note that Dψ(P, P(−i)) can be interpreted as the ψ-divergence of the effect of deleting the i-th case from the full data on
the joint posterior distribution of θ. As pointed out by (Peng & Dey, 1995) and (Weiss, 1996), it may be difficult for a
practitioner to judge the cutoff point of the divergence measure so as to determine whether a small subset of observations
is influential or not. Therefore, we will use the proposal by (Peng & Dey, 1995) and (Weiss, 1996) by considering a biased
coin, which has success probability p. Then, the ψ-divergence between the biased and unbiased coins is

Dψ( f0, f1) =
∫

ψ

(
f0(x)
f1(x)

)
f1(x)dx, (14)

where f0(x) = px(1 − p)1−x and f1(x) = 0.5, x = 0, 1. If Dψ( f0, f1) = dψ(p), it can be easily checked that dψ satisfies the
following equation

dψ(p) =
ψ(2p) + ψ(2(1 − p))

2
. (15)

It is not difficult to see for the divergence measures considered that dψ increases as p moves away from 0.5. In addition,
dψ(p) is symmetric at p = 0.5 and dψ, achieves its minimum at p = 0.5. At this point, dψ(0.5) = 0, and f0 = f1.
Therefore, if we consider p > 0.90 (or p ≤ 0.10) as a strong bias in a coin, then dK-L(0.90) = 0.51, dJ(0.90) = 0.88 and
dL1 (0.90) = 0.4. Thus, if we use the J-distance, an observation which dJ > 0.88 can be considered influential. Similarly,
using the Kullback-Leibler divergence and the L1 norm, we can consider an influential observation when dK-L > 0.51 and
dL1 > 0.4, respectively.

5.3 Influence of Outlying Observations

One of our main goals is to show the need for robust models to deal with the presence of outliers in the data. We
consider simulated datasets with one, two and three generated perturbed cases to examine the performance of the proposed
diagnostics measures. A sample of size 300 is generated by GEWLM considering the logarithmic link function and true
values β0 = 1, β1 = 0.5, ϕ = 2, δ = 1.5. In the simulated data, yi ranged from 0.4535 to 744.8722 with median = 4.1141,
mean = 13.4078 and standard deviation = 56.6212. We selected the cases 25, 150 and 225 for perturbation. To create
an influential observation in the dataset, we choose one to three select the cases and perturbed the response variable as
follows: ỹi = yi + 5S y, i = 25, 150 and 225, where S y is the standard deviations of the yi’s. Here, we consider eight
setups in the study. Setup A: original dataset, without outliers; Setup B: data with outlier 25; Setup C: data with outlier
150; Setup D: data with outliers 225; Setup E: data with outliers 25 and 150; Setup F: data with outlier 25 and 225; Setup
G: data with outliers 150 and 225; and Setup H: data with outliers 25, 150 and 225. The MCMC computations are made
similar to those in the last subsection and further to monitor the convergence of the Gibbs samples we use the Geweke’s
convergence diagnostic proposed by (Geweke, 1992).

Table 5.3 shows the posterior inferences about the parameters that, except for the parameter β1, are sensitive to the
perturbation of the selected case(s).

Table 5.3 shows the Monte Carlo estimates of the DIC, EAIC, EBIC and LPML criteria for each perturbed version of the
original data set. We can observe that, as expected, the original simulated data (Setup A) has the best fit.
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Table 3. Mean and standard deviation (SD) for the parameter estimates for fitting the GEWLM in each dataset

Parameters
Dataset Perturbed δ ϕ β0 β1

names case Mean (SD) Mean (SD) Mean (SD) Mean (SD)
A None 1.6337 (0.5221) 1.8532 (0.2945) 0.9896 (0.1141) 0.4901 (0.0143)
B 25 27.4966 (5.4909) 0.4909 (0.0276) -1.0455 (0.2077) 0.4798 (0.0194)
C 150 20.6355 (4.8647) 0.5605 (0.0391) -0.6994 (0.2218) 0.4899 (0.0186)
D 225 26.6348 (5.3982) 0.4992 (0.0290) -1.0024 (0.2100) 0.4817 (0.0191)
E {25, 150} 30.9432 (5.7190) 0.4504 (0.0235) -1.2664 (0.2087) 0.4819 (0.0202)
F {25, 225} 33.2884 (5.7556) 0.4310 (0.0211) -1.3888 (0.2032) 0.4763 (0.0213)
G {150, 225} 30.5419 (5.7452) 0.4547 (0.0247) -1.2439 (0.2112) 0.4832 (0.0198)
H {25, 150, 225} 35.1426 (6.2281) 0.4078 (0.0222) -1.5410 (0.2254) 0.4796 (0.0224)

Table 4. Bayesian criteria

Dataset Criterion
names EAIC EBIC DIC LPML

A 1,376.4892 1,391.3043 1,371.7413 -686.1304
B 1,502.2160 1,517.0310 1,497.8440 -755.9290
C 1,477.5376 1,492.3528 1,473.2525 -742.6665
D 1,497.5984 1,512.4136 1,493.3490 -753.0548
E 1,542.6485 1,557.4637 1,538.3057 -772.7122
F 1,555.7940 1,570.6092 1,551.7796 -780.6969
G 1,539.2131 1,554.0282 1,535.1550 -772.1113
H 1,592.2849 1,607.1000 1,589.8817 -796.7907

For each simulated data set, we now consider the sample from the posterior distributions of the parameters of the EW
model to calculate the three ψ-divergence measures (dKL, dJ , dL1 ) described in Section 5.2. The results in Table 5.3 show,
before perturbation (Setup A), the selected cases are not influential according to all ψ-divergence measures. However,
after perturbation (Setup, B-H), the measures increase, which indicates that the perturbed cases are influential. Thus, we
clearly see that all ψ-divergence measures performe well to identifying influential case(s),

Table 5. ψ-divergence measures for the simulated data fitting the WE model
Dataset Names Case Number ψ-divergence measures

dK-L dJ dL1

25 0.0050 0.0100 0.0401
A 150 0.0028 0.0057 0.0300

225 0.0155 0.0312 0.0702
B 25 7.6356 13.4340 0.9523
C 150 6.5771 11.5979 0.9426
D 225 7.0510 12.0335 0.9352
E 25 3.2524 5.8476 0.7939

150 1.1009 2.1237 0.5379
F 25 3.0605 6.0520 0.8067

225 2.7802 5.5341 0.7852
G 150 1.4175 2.8145 0.6120

225 4.0247 7.1761 0.8459
25 1.5909 3.0451 0.6263

H 150 0.6040 1.1972 0.4204
225 1.5199 2.9159 0.6156

Figures 5.3, 5.3, 5.3 and 5.3 show the three ψ-divergence measures for datasets A, B, F and H, respectively. All measures
identified influential case(s) and provided larger ψ-divergence measures in comparison to the other cases.
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Figure 3. ψ-divergence measures from dataset A
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Figuref 4. ψ-divergence measures from dataset B

0 100 200 300

0
1

2
3

4

Index

K−
L d

ive
rge

nce

25

225

0 100 200 300

0
2

4
6

8

Index

J−d
ista

nce

25

225

0 100 200 300

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Index

L 1−d
ista

nce

25
225

Figure 5. ψ-divergence measures from dataset F
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Figure 6. ψ-divergence measures from dataset H
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6. Residual Analysis

When attempting to adjust a model to a dataset, the validation of this fit must be analyzed by a specific statistic with
the purpose, with the purpose of measuring the goodness-of-fit. Once the model is chosen and fitted, the analysis of the
residuals is an efficient way to check the model’s adequacy. The residuals also serve for other purposes, such as to detect
the presence of aberrant points (outliers), identify the relevance of an additional factor omitted from the model and verify
if there are indications of serious deviance from the distribution assumed for the random error. Further, since the residuals
are used to identify discrepancies between the fitted model and the dataset, it is convenient to try to define residuals that
take into account the contribution of each observation to the goodness-of-fit measure used.

In summary, the residuals allow measuring the model’s fit for each observation and enable studying whether the differences
between the observed and fitted values are due to chance or to a systematic behavior that can be modeled. The methods
proposed by (Dunn & Smyth, 1996) can be used to obtain quantile residuals.

The quantile residual for the GEWLM is given by

ti = Φ−1{[1 − exp(−zi)]δ},

where Φ(·) is the cumulative standard normal distribution.

(Atkinson, 1985) suggested the construction of envelopes to enable better interpretation of the normal plot of probabilities
of the residuals. These envelopes are simulated confidence bands that contain the residuals, such that if the model is well
fitted, the majority of points will be within these bands and randomly distributed. The construction of the confidence
bands follows these steps

• Fit the proposed model and calculate the residuals ti’s;

• Simulate k samples of the response variable using the fitted model;

• Fit the model to each sample and calculate the residuals ti j, j = 1, 2, . . . , k and i = 1, 2, . . . , n;

• Arrange each group of n residuals in rising order to obtain t(i) j for j = 1, 2, . . . , k and i = 1, 2, . . . , n;

• For each i, obtain the mean, minimum and maximum t(i) j, namely

t(i)M =

k∑
j=1

t(i) j

k
, t(i)I = min{t(i) j : 1 ≤ j ≤ k} and t(i)S = max{t(i) j : 1 ≤ j ≤ k} ;

• Include the means, minimum and maximum together with the values of ti against the expected percentiles of the
standard normal distribution.

The minimum and maximum values of ti form the envelope. If the model under study is correct, the observed values
should be inside the bands and distributed randomly.

7. Application: Insurance Payouts for Personal Accidents

The dataset comes from a study of the size of the indemnities paid for personal accidents by Australian insurers, in
the period from July 1989 to June 1999, published by (Jong & Heller, 2008). The aim is to relate the variables legal
representation (1 if the insured is represented by a lawyer and 0 otherwise) and claim settlement time, representing the
percentage of cases whose settlement time was faster than the average for all claims of the same type, with the payouts
denominated in Australian dollars.

The indemnity amounts paid by insurers are typically concentrated in a low range, with many fewer high payouts, so
that the distribution has rightward asymmetry of the data. There are various distributions with rightward asymmetry and
positive support that can be used to model these data. Therefore, application of the hrf is an important tool to model these
data, because often distributions with totally different failure function behavior have similar densities.

For this analysis, we consider the last 18 months of the study (January 1998 to June 1999) and insureds with legal rep-
resentation, giving a total of 542 observations, with settlement time as the covariate. Initially, we conduct an exploratory
analysis of the data, whose results are presented in Table 7. The histogram of this dataset is displayed in Figure 7a. The
results in Table 7 and Figure 7 show symmetry to the right of the data, indicating adjustment by an asymmetric distribution
is most appropriate.
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In many applications there is qualitative information about the hazard shape, which can help with selecting a particular
GEWLM. In this context, a device called the total time on test (TTT) plot (Aarset, 1987) is useful. The TTT plot is
obtained by plotting G(r/n) = [(

∑r
i=1 Ti:n) + (n − r)Tr:n]/(

∑n
i=1 Ti:n), where r = 1, . . . , n and Ti:n for i = 1, . . . , n are the

order statistics of the sample, against r/n. It is a straight diagonal for constant hazards leading to an exponential model. It
is convex for decreasing hazards and concave for increasing hazards leading to a single-Weibull model. It is first convex
and then concave if the hazard is bathtub-shaped leading to a GEWLM. It is first concave and then convex if the hazard
is bimodal-shaped leading to a GEWLM. For multimodal hazards, the TTT plot contains several concave and convex
regions.

The TTT-plot for this dataset is displayed in Figure 7b, where it can be seen that the curve is initially concave and
then becomes convex around the reference diagonal line, indicating that the general shape of the hrf is unimodal, so the
GEWLM is appropriate for the data.

It is interesting to note that if the TTT-plot curve had initially been convex and then turned concave, the hrf would have
been U-shaped, so the Weibull distribution would not be suitable to fit the data, since it does not model data with bathtub
hrf, unlike the EW distribution.

Table 6. Descriptive statistics of the dataset of personal accident insurance payouts

Median Mean Std. Coeff. of Asymmetry Kurtosis Min Max n
Dev. variation

6765.25 8996.41 8790.80 97.71 % 5.59 54.32 109 116586.72 542
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Figure 7. Personal accident insurance payouts (a) Histogram (b) TTT-plot

7.1 Maximum Estimation

The regression model, considering the GEWLM, is given by

yi = g−1(β0 + β1 xi) ϵi, i = 1, . . . , 542,

where yi is the amount paid from the ith observation, xi is the settlement time associated with the ith observation, ϵi is the
random error having the EW(1, ϕ, δ) distribution and g−1(·) is the inverse link function.

In Figure 7, we provide the dispersion plots of the settlement time covariate: (a) versus the response variable (amount
of the indemnity); and (b) versus the natural logarithm of the response variable. It can be seen that the logarithm of the
indemnity amount grows linearly with settlement time and the variability is stabilized. Therefore, we adopt the logarithmic
link function log(λi) = ηi to fit the GEWLM, and the regression model is given by

yi = exp(β0 + β1xi)ϵi .

Table 7 gives the Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC) and Bayesian
Information Criterion (BIC), the estimates of the parameters, the standard errors (SEs) and estimated levels (p-values)
for the GEWLM and GWLM regression models. It can be noted that the GEWLM again gives the lower values for the
AIC, CAIC and BIC statistics than the GWLM. The regression parameters are significant for both models, so they should
remain in the study.
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Figure 8. Dispersion plots of the covariate settlement time (xi). (a) Versus the response variable indemnity amount (yi).
(b) Versus log(yi).

Next, we calculate the odds ratio statistic to test the hypotheses H0 : δ = 1 versus H1 : δ , 1 to compare the GEWLM
and GWLM, namely w = 2[−5365.0 − (−5413.0)] = 96 (p-value = < 0.0001). Then, according to the hypothesis test, H0
should not be accepted. Therefore, the best model to fit the data is the GEWLM.

Table 7. MLE of the parameters for the GWLM and GEWLM regression models

Model δ ϕ β0 β1

GEWLM 6.6226 0.6859 8.0552 0.01769
SE 1.6332 0.0623 0.2047 0.0036
p-value - - < 0.0001 < 0.0001
AIC = 10738 CAIC = 10739 BIC = 10736
Model - ϕ β0 β1

GWLM - 1.4022 9.1651 0.0273
SE - 0.0412 0.0527 0.0036
p-value - - < 0.0001 < 0.0001
AIC = 10832 CAIC = 10832 BIC = 10845

Further, we perform an analysis of local influence for the current data using the GEWLM. The plots in Figure 7 indicate
the possible influential observations in the GEWLM regression. The plots of local influence (M(0) against the index of
the observations) considered three perturbation schemes: likelihood (Figure 7a), response variable (Figure 7b) and the
covariable settlement time (Figure 7c). The observations 28, 369 and 539 appear in the three perturbation schemes as
possible influential points, so we remove them from the dataset, individually and together, and re-estimated the model
parameters to study the influence of these observations on the estimates of the parameters. The observation 28 is the
lowest indemnity payouts for personal accident damages by the Australian insurers within the sample studied (y28 = 109),
with settlement time x28 = 1.1 and the observations 369 and 539 are the highest (y369 = 76255.76, x369 = 14.8) and
(y539 = 116586.72, x539 = 31.4).

Table 7 gives the relative changes (in percents) of the estimates of the parameters after removal of the observations 28,
369, 539, (28 and 369), (28 and 539), (369 and 539) and (28, 369 and 539), defined by RCθ j = (|θ̂ j − θ̂ j(i)|/θ̂ j)×100, where
θ̂ j(i) is the MLE of θ j after removing the ith observation. It can be seen that the significance of the regression parameters
β0 and β1 did not change, indicating the model’s robustness. Hence, there is no change in the inference after removing the
possible influential observations (cases 28, 369, 539, (28 and 369), (28 and 539), (369 and 539) and (28, 369 and 539)).

7.2 Bayesian Analysis

We have checked the sensitivity analysis for the variance component parameters for various choices of prior parameters.
Here, we consider four priors in the study. Prior 1: σ2

β0
= σ2

β1
= σ2

δ = σ
2
ϕ = 50; Prior 2: σ2

β0
= σ2

β1
= σ2

δ = σ
2
ϕ = 100;

Prior 3: σ2
β0
= σ2

β1
= σ2

δ = σ
2
ϕ = 1, 000 and Prior 4: σ2

β0
= σ2

β1
= σ2

δ = σ
2
ϕ = 10, 000.

The posterior summaries of the parameters do not present remarkable difference and not impair the results in Table 7.

In an overall sense, confronting the GEWLM and GWLM, since in Table 7 the estimate of δ is different from 1, 1
< (4.1627, 10.3994), we have indications favoring the GEWLM model. Also, we present in Table 7 the values of the DIC,
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Figure 9. Index plot of dmax for θ. (a) Case-weights perturbation. (b) Response perturbation. (c) Explanatory variable
perturbation

Table 8. Relative changes [RC in %], standard errors and p-values in parentheses when the observations 28, 369, 539,
(28 and 369), (28 and 539), (369 and 539) and (28, 369 and 539) are deleted, respectively.

Dropping δ̂ ϕ̂ β̂0 β̂1

Full [-] [-] [-] [-]
1.6332 0.0623 0.2047 0.0036

(-) (-) (< 0.0001) (< 0.0001)
28 [37.9445] [8.7768] [3.0142] [9.1577]

2.6763 0.06255 0.2574 0.0036
(-) (-) (< 0.0001) (< 0.0001)

369 [11.2203] [5.7734] [1.2265] [1.1306]
1.4259 0.0667 0.1920 0.0035

(-) (-) (< 0.0001) (< 0.0001)
539 [12.1504] [6.4587] [1.5977] [8.7620]

1.3996 0.0667 0.1920 0.0035
(-) (-) (< 0.0001) (< 0.0001)

28 and 369 [20.1818] [3.2512] [1.4798] [7.5549]
2.2717 0.0667 0.2391 0.0035

(-) (-) (< 0.0001) (< 0.0001)
28 and 539 [18.4303] [2.4931] [1.0813] [16.1673]

2.2189 0.0669 0.2379 0.0035
(-) (-) (< 0.0001) (< 0.0001)

369 and 539 [23.9008] [14.0545] [2.9968] [8.0837]
1.1946 0.0729 0.1792 0.0035

(-) (-) (< 0.0001) (< 0.0001)
28, 369 and 539 [0.6070] [4.6946] [0.6257] [14.9802]

1.8385 0.0728 0.2195 0.0034
(-) (-) (< 0.0001) (< 0.0001)

EAIC, EBIC and LPML criteria to compare these models. The GEWLM stands out as the best one.

We compute the ψ-divergence measures in (12) described in Section 5.2. Table 7 gives the results for the four observa-
tions that have higher values. Cases 28 and 359 are possible influential observations in the posterior distribution. The
observation 28 is the lowest indemnity payouts for personal accident damages by the Australian insurers within the sample
studied (y28 = 109), with settlement time x28 = 1.1 and the observation 539 is the highest (y539 = 116586.72, x539 = 31.4).

From now on, we assume Prior 2. Figures 7, 7, 7 and 7 reveal the approximate marginal posterior densities of the model
parameters and trace plot considering the 10,000 observations generated, and Figure 7 shows the index plot of the three
ψ-divergence measures.

Figure 7 shows the index plots of ψ-divergence measures for the insurance payouts for personal accidents data when we
dropped observations 28 and 359. For all divergence measures, we can see that after dropped the two observations have
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Table 9. Real data. Posterior summaries of the parameters for the GEWLM and GWLM

Parameter GEWLM GWLM
Mean SD CI (95%) Mean SD CI (95%)

δ 6.6338 1.6052 (4.1627, 10.3994) - - -
Prior 1 ϕ 0.6936 0.0605 (0.5810, 0.8152) 1.3985 0.0412 (1.3187, 1.4797)

β01 8.0662 0.1957 (7.6559, 8.4145) 9.1668 0.0536 (9.0636, 9.2735)
β11 0.0178 0.0036 (0.0107, 0.0249) 0.0273 0.0036 (0.0202, 0.0344)
δ 6.8091 1.7166 (4.1717, 10.8384) - - -

Prior 2 ϕ 0.6882 0.0620 (0.5713, 0.8156) 1.3985 0.0412 (1.3182, 1.4807)
β01 8.0463 0.2052 (7.6086, 8.4146) 9.1664 0.0533 (9.0648, 9.2737)
β11 0.0178 0.0036 (0.0108, 0.0249) 0.0273 0.0036 (0.0202, 0.0345)
δ 6.9665 1.8359 (4.2487, 11.3956) - - -

Prior 3 ϕ 0.6835 0.0628 (0.5635, 0.8104) 1.3983 0.0408 (1.3189, 1.4789)
β01 8.0299 0.2133 (7.5671, 8.4041) 9.1675 0.0529 (9.0669, 9.2723)
β11 0.0177 0.0036 (0.0106, 0.0248) 0.0272 0.0036 (0.0202, 0.0343)
δ 7.0313 1.8745 (4.2484, 11.4799) - - -

Prior 4 ϕ 0.6816 0.0632 (0.5619, 0.8098) 1.3980 0.0409 (1.3179, 1.4805)
β01 8.0223 0.2164 (7.5569, 8.3995) 9.1670 0.0538 (9.0640, 9.2757)
β11 0.0177 0.0036 (0.0105, 0.0249) 0.0273 0.0037 (0.0200, 0.0345)

Table 10. Real data. Bayesian criteria

Criterion
Model EAIC EBIC DIC LPML

Prior 1 GEWLM 10,742.440 10,759.620 10,738.190 -5,370.800
GWLM 10,835.162 10,848.048 10,832.194 -5,418.818

Prior 2 GEWLM 10,742.486 10,759.667 10,738.244 -5,370.903
GWLM 10,835.130 10,848.016 10,832.132 -5,418.637

Prior 3 GEWLM 10,742.531 10,759.712 10,738.262 -5,371.059
GWLM 10,835.110 10,847.990 10,832.080 -5,418.720

Prior 4 GEWLM 10,742.539 10,759.721 10,738.252 -5,370.985
GWLM 10,835.137 10,848.023 10,832.141 -5,418.749

Table 11. ψ-divergence measures for the real data fitting the GEWLM
Case Number ψ-divergence measures

dK-L dJ dL1

10 0.2577 0.5386 0.2842
Prior 1 28 0.7266 1.5899 0.4687

369 0.2566 0.5543 0.2824
539 0.4666 0.9917 0.3830
10 0.2688 0.5583 0.2918

Prior 2 28 0.7482 1.5887 0.4759
369 0.2567 0.5462 0.2835
539 0.4785 1.0395 0.3847
10 0.2929 0.6127 0.3031

Prior 3 28 0.8646 1.9346 0.5083
369 0.2523 0.5327 0.2816
539 0.4668 1.0065 0.3809
10 0.2821 0.5820 0.2981

Prior 4 28 0.7976 1.6793 0.4882
369 0.2548 0.5432 0.2838
539 0.4658 1.0026 0.3796

not detected more influential points.
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Figure 10. Trace plot and approximate marginal posterior density for the parameter δ
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Figure 11. Trace plot and approximate marginal posterior density for the parameter ϕ.
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Figure 12. Trace plot and approximate marginal posterior density for the parameter β0

Table 7 gives the relative change (RCs) of each estimate of the parameters after removal of the observations 28, 539, and
(28 and 539), and the 95% credible intervals for the parameters. The RC (in percentage) of each estimated parameter is
defined by RCθ j = |(̂θ j − θ̂ j(I))/̂θ j| × 100%, where θ̂ j(I) denotes the posterior mean of θ j, with j = 1, . . . , 4, after set I of
observations has been removed. It can be seen a small RC for the parameter β0 and that the significance of the regression
parameters β0 and β1 did not change, indicating the model’s robustness. Furthermore, a better fit was achieved when we
dropped observation 28, in comparison with the fitting when we removed the observation 539 according to, according to
all criteria.

Thus, Table 7 and Table 7 reveal the parameter estimates, standard errors and significance of the parameters for the MLEs
and Bayesian estimates, respectively. By examining the figures in this table, we conclude that the estimates by the two
methods are very similar. We show that the GEWLM seems to be more appropriate for fitting the data set than the GWLM.

We can also see in the diagnostics analysis results similar in both approaches.
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Figure 14. ψ-divergence measures from full real dataset
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Figure 15. ψ-divergence measures from real dataset when when dropped observations 28 and 539

Also, we present residual analysis. Figure 7 displays the Normal probability plot for the quantile residuals ti’s and the
simulated envelope, which are used to check the regression model’s goodness-of-fit. The Normal probability plot is
constructed using the complete dataset, because the possible influential points (10 and 28) do not modify the significance
of the estimates. The broken red lines in Figure 7a are determined by observation, so that the points farthest from ti = 0 are
highlighted. Figure 7b presents the simulated envelope, where the blue lines represent t(i)I , t(i)M and t(i)S . The confidence
band is defined by the interval [t(i)I , t(i)M], shown in Figure 7b, because it must contain the values ti (black dots) for the set.

Note that all points are inside the envelope, indicating the good fit of the GEWLM. The final model is thus given by

yi = exp(8.0552 + 0.01769x) = 3150.13 × 1.02 xi .

Therefore, an increase of 2% in the indemnity paid for personal accidents implies an increase in the settlement time of
one unit, or 1%.
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Table 12. RCs (in %) and the corresponding 95% credible interval (CI) for fitting the WE model to the data when
dropped the influential cases

Dropped Observation
28 539 {28, 539}

Parameter RC CI (95%) RC CI (95%) RC CI (95%)
δ 33.6288 (5.2704, 15.3334) 11.9081 (3.7309, 9.5729) 16.4957 (4.6816, 13.0944)
ϕ 7.5214 (0.5248, 0.7590) 6.3285 (0.6074, 0.8661) 1.6903 (0.5573, 0.8077)
β0 2.6203 (7.3133, 8.2615) 1.5869 (7.7516, 8.5185) 0.8646 (7.4998, 8.3779)
β1 8.5665 (0.0092, 0.0233) 9.2832 (0.0093, 0.0232) 16.1857 (0.0081, 0.0218)

EAIC 10,708.190 10,701.520 10,667.745
EBIC 10,725.370 10,718.693 10,684.911
DIC 10,703.800 10,697.318 10,663.368

LPML -5,353.220 -5,350.178 -5,332.747
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Figure 16. (a) Quantile residuals (ti) versus the indices of the observations for the GEWLM. (b) Normal probability plot
for the quantile residuals with simulated envelope for the GEWLM

8. Conclusions

The generalized exponentiated Weibull linear model (GEWLM) brings a new approach to the exponentiated Weibull
(EW) distribution in regression models. It is effective in modeling a part of the mean response in positive asymmetric
data, including the explanatory variables by means of a linear function in the parameters called the linear predictor
(η = Xβ) in a nonlinear model using a link function g(λ) = η, which connects the symmetric part of the model to the
random part (in the same way of the generalized linear models). The estimation of the parameters are determined by
two different methods: maximum likelihood and a Bayesian approach. We use the local influence and Bayesian case
influence diagnostics in order to study the sensitivity of the GEWLM. This model is more flexible than the generalized
linear Weibull model (GLWM) proposed by (Prudente & Cordeiro, 2010), since it can model monotone and non-monotone
hazard rate functions and has the GWLM as a sub-model. In the application, the GEWLM provides a better fit than the
GWLM. The new model is robust to small perturbations in the data and in the model, and all the residual values remain
within for the proposed residuals remain within the confidence bands of the simulated envelope constructed, indicating
the adequacy of the fit.
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Appendix

Observed Information Matrix L̈(θ)

Here, we derive the formulas to obtain the second-order partial derivatives of the log-likelihood function. After some
algebraic manipulations, we obtain

L̈(θ) =


L̈ββ L̈βϕ L̈βδ

L̈ϕβ L̈ϕϕ L̈ϕδ
L̈δβ L̈δϕ L̈δδ

 =

−ϕ2XTW [d]X XTW 1/2Uϕ −ϕXTW 1/2L

− − n
ϕ2 − 1

ϕ2 M
T1 − 1

ϕ
BT1

− − − n
δ2

 ,

where

B = (b1, . . . , bn)T , d = diag[d1, . . . , dn] , Uϕ = (uϕ1 , . . . , uϕn)T ,
M = (m1, . . . , mn)T , L = (l1, . . . , ln)T ,

bi = cili, ci = ϕ log
(

yi

λi

)
= log

( zi

eΓ′(2)

)
, fi =

λ
′′

i λi

(λ′i)
2

,

di =
1
ϕ

{
ϕzi − s(zi)( fi − 1) − ϕ(δ − 1)li[1 − exp(zi)li]

}
,

mi = nic2
i , ni = zi − (δ − 1)li

[
1 − exp(zi)li

]
,

uϕi = s(zi) + nici .

Expected Information Matrix I(θ)

The elements of the expected information matrix are given by

I(θ) =


Iββ Iβϕ Iβδ

Iϕβ Iϕϕ Iϕδ
Iδβ Iδϕ Iδδ

 =

ϕ2XTWV X XTW 1/2O ϕδt1XTW 1/21

− − n
ϕ2 − 1

ϕ2 G
T1 − nδ

ϕ2 t2
− − n

δ2

 ,
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where
V = diag(v1, . . . , vn)T ,O = (o1, . . . , on)T ,G = (g1, . . . , gn)T ,

T (d, b, a, e) =
∫ ∞

0
xd−1e−bx(1 − e−x)a−1[log(x)]e dx ,

Γ(p) =
∫ ∞

0
tp−1e−tdt, ψ(p) =

∂ log[Γ(p)]
∂p

, ψ′(x) =
∂2 log[Γ(x)]

∂x2 ,

t1 = T (2, 2, δ − 1, 0), t2 = T (2, 2, δ − 1, 1) − ψ(2)T (2, 2, δ − 1, 0),

vi = δ(δ − 1)T (3, b + 1, δ − 2, 0) + 1,

oi = −ψ(2) +
1

B(δ, 1)
{
T (2, 1, δ, 1) + (δ − 1)

[
T (3, 0, δ − 1, 1) − T (2, 2, δ − 1, 1) − ψ(2)T (3, 2, δ − 2, 0)

]}
,

gi =
1 − (δ − 1)

B(δ, 1)
{
T (2, 1, δ, 2) − 2ψ(2)T (2, 1, δ, 1) + B(δ, 1)[ψ(2)]2} + δ − 1

B(δ, 1)
{
T (3, 2, δ − 2, 2)−

−2ψ(2)T (3, 2, δ − 2, 1) + [ψ(2)]2T (3, 2, δ − 2, 0)
}
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