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Abstract 

This work was motivated by the need to model a periodic time series function with linear trend. A Fourier series 

representation with detrended linear function was proposed. In this representation, the time series 𝑋𝑡 is expressed as a 

combination of the linear trend component and a linear combination of 𝑠 orthogonal trigonometric functions; where 𝑠 is 

the number of seasons. The method was applied to a rainfall data and the proposed model was found to give a good fit. 

Comparative study was carried out with the complete Fourier representation. Diagnostic checks revealed that the 

proposed method performs better the pure Fourier approach. 

Keywords: Fourier series, seasonal model, linear trend, periodogram, spectral density and white noise process. 

 

1. Introduction 

The usual autoregressive integrated moving average (ARIMA) models developed by Box and Jenkins (1970) has been 

extensively used in modelling linear time series. The ARIMA models assume that the current observation depends on 

weighted previous observations, weighted previous random shocks and the current shock. However, most time series 

arising in nature do not assume linearity but rather, periodic or seasonal with linear trend. Seasonal time series contain a 

seasonal phenomenon that repeats itself after a regular period of time. Such phenomena stem from factors such as weather, 

which affects many business and economic activities, cultural events and graduation ceremonies. Series with seasonal 

pattern cannot be adequately represented by ARIMA models. To analyze such series, Wold (1974) arranged the series in a 

two dimensional table according to the season; and the totals and averages were computed. In Wold (1974) representation, 

a time series is thought to consist of trend-cycle, seasonal and irregular components. To estimate these components, 

several decompositions are usually involved. Box, Jenkins and Reinsel (2008) made an extension of the Box and Jenkins 

(1970) ARIMA models to include the seasonal part and is called the seasonal autoregressive integrated moving average 

(SARIMA) models. Despite these efforts, the models do not adequately represent most periodic series. 

A better procedure extensively used for modelling periodic time series is the Fourier analysis. This method represent the 

time series by a set of elementary functions called basis such that all functions under study can be written as linear 

combinations of the elementary functions in the basis. These elementary functions involve the sine and cosine functions 

or complex exponentials. The Fourier series approach describes the fluctuation of time series in terms of sinusoidal 

behaviour at various frequencies. Despite the wider acceptability of the method, however, Fourier approach still suffers 

some set backs. One major problem associated with it is the cumbersomeness in Fourier representation and non inclusion 

of trend component. As will be seen in the methodology, the inconveniences in representing the time series is enormous if 

we are to include all the terms required in Fourier series. This cannot go well with a series of large sample size because 

representing all the terms will consume several pages and can be boring to both the researcher and the reader. Hence, there 

is need to shorten the number of terms in the Fourier expression and give a summarized representation that adequately 

describe the time series. This is the intent of this work. As earlier stated, seasonal variations in time series can be caused 

by climatic factor and we are going to use rainfall data in our illustration. 

2. Literature Review 

The need for accurate rainfall prediction is necessary when considering the importance in which such information would 

give for river control, reservoir operation, forestry interests, flood mitigation, etc. Due to the numerous benefits of rainfall 

modelling and prediction, studies on rainfall analysis have been on the fore front in the research world.  

Afshar, Joshua, Buckman, and Samuel (2014) modelled rainfall data using ARIMA model and artificial neural networks 

(ANNs). The ARIMA was found to give discouraging result. However, with application of artificial neural network to the 
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ARIMA component, the combined model was found to be adequate and forecast were generated. 

Cenis (1989) studied temperature in solarized soil using Fourier analysis. He obtained the daily maximum and minimum 

temperatures at two dept on daily basis for three summer periods. He used the values to fit sinusoidal equations which 

accounted for 93% variation. The variation and the hourly mean differences between the measured temperatures were 

calculated. The analysis gave an overall encouraging result. 

Serangelo, Ferrari and De Luca (2011) applied non-homogeneous Poisson process to examine the seasonal effects of daily 

rainfall. The modelling process involved the partitioning of observed daily rainfall data into calibration periods for the 

estimation of parameters. Though the validation period for checking the occurrence process changed; the model which 

was applied to the set of rain gauges placed at different geographical areas was shown to provide good fit. 

Falahah and Suorapto (2010) carried out research on rainfall data using analytic factor method. The data was obtained 

from 50 weather stations for a period of 30 years. The result was plotted on pattern factors to reveal dominant factor for 

each region and inspection period. The method explained factors that influence rainfall in Indonesia and the reasons for 

having relatively high humidity in one area than the other.  

Necholas, Mahmood and Hazan (2013) modelled rainfall data amounts for agriculture planning using gamma distribution 

models. Daily rainfall data of two stations having two different mean annual rainfalls were analyzed. Generalized linear 

models were used to fit smooth regression curves. The mean amount of rain per rainy day was computed using the 

estimates of parameters of the model for each day of the season. The adequacy of the fitted model was check by the 

analysis of deviance residuals and was found to be satisfactory. Fourier approach was employed for comparative study. It 

was discovered that though reasonable results were obtained, Fourier analysis was time consuming and boring. However, 

Fourier series was found suitable in fitting gamma distribution for the determination of mean rain per rainy day.  

Zakaria (2013) conducted a study on periodic and stochastic modelling of monthly rainfall and the periodicities were 

determined. Stochastic components were estimated using the auto-regressive model approach. Residuals obtained from 

the model were shown to follow a white noise process; thus indicating the adequacy of the fitted model. 

Beatrice, Nasser, Afshar, Selaman and Fahmi (2014) analyzed data from eight rain gauge stations. Annual rainfall data for 

27 years were computed with the Fourier series equation. The result was compared with that obtained from harmonic 

series models. It was discovered that both models were capable of describing rainfall pattern and were able to provide 

reasonable relationship between the simulated and the observed data. 

Akpanta, Okorie and Okoye (2015) adopted SARIMA modelling of the frequency approach in analyzing monthly rainfall 

data in Umuahia. Probability time series approach was considered. The original data plotted showed seasonality which 

was removed by differencing. After subjecting the model to diagnostic checks, SARIMA (0,0,0)(0,1,1)12 was found to fit 

the data well and was used for prediction.  

3. Methodology 

In this method, a periodic time series is first observed whether it contains a linear trend or not. Visual inspection of the raw 

data plot can reveal this pattern. Assuming a linear trend is detected, a linear regression model of the form 

                                    𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝑒𝑡                                             (1) 

is first fitted to the data; 

where 𝑌𝑡 is the observed time series, 𝑡 is the time points (𝑡 = 1,2, … , 𝑛), 𝑛 is the number of observations, 𝛽0 and 𝛽1 

are the regression parameters, and 𝑒𝑡 is the error component. 

Fitting the above model (1) to the data 𝑌𝑡 , we can obtain the estimate of the error component 

𝑒𝑡̂ = 𝑌𝑡̂ − 𝛽0̂ − 𝛽1̂𝑡 

which can be tested for randomness or white noise. 

After obtaining the trend equation ( i.e. 𝑌̂ = 𝛽0̂ + 𝛽1̂𝑡 ), the main series 𝑌𝑡 is detrended by the expression   

                             𝑦𝑡 = 𝑌𝑡 − 𝑌𝑡̂ = 𝑌𝑡 − 𝛽0̂ − 𝛽1̂𝑡                                      (2) 

The resulting series 𝑦𝑡 is then used to fit seasonal model using Fourier representation. 

3.1 Fourier Series Representation of the Time Series 𝒚𝒕 

Given a time series of 𝑛 observations, the Fourier representation is the set of  𝑞 orthogonal trigonometric functions 

shown below: 

               𝑦𝑡 = ∑ (𝛼𝑖cos2𝜋𝑓𝑖𝑡 + 𝛽𝑖sin2𝜋𝑓𝑖𝑡  ) + 𝑒𝑡
𝑞
𝑖=1                                   (3) 
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estimated by 

              𝑦𝑡̂ = ∑ (𝑎𝑖cos2𝜋𝑓𝑖𝑡 + 𝑏𝑖sin2𝜋𝑓𝑖𝑡  )
𝑞
𝑖=1                                        (4) 

where 𝑞 = 𝑛
2⁄ , 𝑎𝑖 =

2

𝑛
∑ 𝑦𝑡cos2𝜋𝑓𝑖𝑡

𝑛
𝑡=1 , 𝑏𝑖 =

2

𝑛
∑ 𝑦𝑡sin2𝜋𝑓𝑖𝑡

𝑛
𝑡=1 , 

𝑒𝑡~𝑁𝐼𝐼𝐷(0, 𝜍2); period = 𝑝𝑖 = 𝑛
𝑖⁄    and 𝑓𝑖 = 𝑖

𝑛⁄  is the 𝑖𝑡ℎ harmonic of the fundamental frequency 1
𝑛⁄ . 

3.2 The Peridogram 

The periodogram is defined as the function of intensities 𝐼(𝑓𝑖) at frequency 𝑓𝑖 = 𝑖/𝑛 and is given as 

𝐼(𝑓𝑖) =
𝑛

2
(𝑎𝑖

2 + 𝑏𝑖
2)       ;     𝑖 = 1,2, … , 𝑞. 

Periodogram is the plot of the intensities against the frequencies or periods. The periodogram 𝐼(𝑓𝑖) is simply the sum of 

squares associated with the pair of coefficients (𝑎𝑖 , 𝑏𝑖) and hence with the frequency 𝑓𝑖 or period  𝑝𝑖. That is,  

∑ (𝑦𝑡 − 𝑦)2𝑞
𝑡=1 = ∑ 𝐼(𝑓𝑖)

𝑛/2
𝑡=1 . 

In the context at hand, the periodogram is used to determine the seasonality or periodicity of a time series. This is usually 

indicated by the largest peak in the periodogram plot. 

3.3 The Spectrum 

The sample spectrum is obtained by allowing the frequency 𝑓 to vary continuously in the range 0 to 0.5 cycle so that the 

periodogram can be re-defined as 

𝐼(𝑓) =
𝑛

2
(𝑎𝑗

2 + 𝑏𝑗
2)          ;       0 ≤ 𝑓 ≤ 0.5. 

The function 𝐼(𝑓) is called the spectrum. 

3.4 Autocorrelation Function 

This is the plot of autocorrelation at lag k (𝜌𝑘) versus k. 

3.5 Spectral Density Function 

Spectral density is the Fourier transform of the auto-correlation function and is estimated by 

𝑔(𝑓) = 2,1 + ∑ 𝜌𝑘
∞
𝑘=1 𝑐𝑜𝑠(2𝜋𝑓𝑘)-        ;       0 ≤ 𝑓 ≤ 0.5 

where 𝜌𝑘 is the autocorrelation at lag k. The spectral density performs the same function as the periodogram. The period 

or seasonality of a time series is obtained at where the spectral density is maximum. 

3.6 White Noise Process 

A process *𝜀𝑡+ is said to be a white noise process with mean 0 and variance 𝜍𝜀
2 written *𝜀𝑡+~𝑊𝑁(0, 𝜍𝜀

2), if it is a 

sequence of uncorrelated random variables from a fixed distribution. 

3.7 The Seasonal Fourier Representation 

Rather than fitting the entire Fourier series expression in equation (3), we fit only the Fourier terms up to the season 

detected by the periodogram. That is, suppose the season determined by the periodogram in the detrended series 𝑦𝑡 is 𝑠, 

then equation (3) reduces to 

𝑦𝑡 = ∑ (𝛼𝑖cos2𝜋𝑓𝑖𝑡 + 𝛽𝑖 sin 2𝜋𝑓𝑖𝑡)𝑠
𝑖=1 + 𝜀𝑡                                  (5) 

                               ⟹ 𝑌𝑡̂ = 𝛽0̂ + 𝛽1̂𝑡 + ∑ (𝑎𝑖cos2𝜋𝑓𝑖𝑡 + 𝑏𝑖 sin 2𝜋𝑓𝑖𝑡)𝑠
𝑖=1                             (6) 

and  

𝜀𝑡̂ = 𝑌𝑡 − 𝑌𝑡̂                                                     (7) 

Comparatively, the expression (5) is less cumbersome in carrying out analysis than the complete Fourier form expressed 

in equation (3). The model (5) can be fitted to any periodic or seasonal data and the estimated residuals 𝜀𝑡̂ obtained from 

(7) can be tested for white noise to determine whether the model is adequate or not.  

4. Data Analysis and Result 

The data used for this work is the average monthly rainfall data (𝑌𝑡) in Calabar, Nigeria between 2005-2015 (Source: 

www.cbn.gov.ng); and the analysis is carried out using Minitab and gretl softeware. 
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4.1 Complete Fourier Series Model 

Fitting the full Fourier series in equation (3) where  𝑞 =
120

2
= 60 result in a residual variance of 11.23 and the Fourier 

coefficients are displayed in Appendix C. The residual autocorrelation function is displayed in figure 5. Clearly, there is a 

significant spike at lag 12 ( 𝜌𝑘 = −0.36). This shows that the residuals are correlated (at lag 12) and hence do not follow 

a white noise process. The actual and estimate values plots displayed in figure 6 shows a low correlation between these 

values. Thus, the full Fourier series, despite it cumbersome nature does not fit adequately to the data. 

4.2 The Proposed Approach 

4.2.1 Seasonality and the Estimated Trend 

The raw data plot in figure 1 clearly shows the existence of seasonality and trend. This is indicated by the periodic pattern 

and upward movement of the graph. Fitting the trend equation gives the Minitab output in table 1 below. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1. Raw data plot of the series 𝑌𝑡 

Table 1. Minitab Output for the Trend equation 

Predictor Coef StDev T P 

Constant   185.28 26.96 6.87 0.000 

t 0.6639 0.3898 1.70 0.031 

The regression equation is Yt = 185 + 0.6639 t 

The p–values in table 1 shows that both the constant term and the coefficient of 𝑡 are significant. Thus, the estimated 

trend equation is 

 𝑌𝑡̂ = 185.28 + 0.6639𝑡 

Next, we obtain the new series from equation (2) as 

𝑦𝑡 = 𝑌𝑡 − 𝑌𝑡̂ = 𝑌𝑡 − 185.28 − 0.6639𝑡 

The new series 𝑦𝑡 now becomes our working data. 

4.2.2 The Peridogram and Spectral Density of 𝒚𝒕 

The periodogram analysis was conducted using the gretl software. The periodogram is displayed in figure 2. The values 

for the spectral densities, periods and frequencies are equally displayed in appendix A. From the table of appendix A and 

figure 2; it is observed that the periodogram is dominated by a very large peak at scaled frequency, 𝑓𝑖
∗ = 𝑖 = 10 

(𝑓𝑖 = 𝑖/𝑛 = 10/120 = 0.0833). This is indicated by the largest  spectral density of 16.397 shown in bold figures. This 

density and frequency correspond to a period or season,  𝑠 = 𝑛/𝑖 = 120/10 = 12 months. This indicates a 12 – month 

cycle. 
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Figure 2. Periodogram plot of 𝑦𝑡 

4.2.3 The Seasonal Fourier Representation of 𝒚𝒕  

Rather than use 𝑞 = 60 in equation (3), we reduce the Fourier components to the number of seasons, 𝑠 = 𝑞 = 12  and 

apply equation (5). That is, 

                        𝑦𝑡 = ∑ (𝛼𝑖cos2𝜋𝑓𝑖𝑡 + 𝛽𝑖 sin 2𝜋𝑓𝑖𝑡)12
𝑖=1 + 𝜀𝑡                                  (8) 

Equivalently, equation (8) can be expressed as  

                     𝑦𝑡 = ∑ (𝛼𝑖cos𝜔𝑖𝑡 + 𝛽𝑖 sin 𝜔𝑖𝑡)12
𝑖=1 + 𝜀𝑡                                      (9) 

where, 𝜔𝑖 = 2𝜋𝑓𝑖. 

Subjecting equation (9) to regression analysis give the parameter estimates displayed in Appendix B. In appendix B, some 

coefficients of the variables are not statistically significant (i.e. their 𝑝 values are less than 0.05) and are therefore 

excluded in the overall equation.  

Hence, from (6), the resulting estimated model is 

𝑌𝑡̂ = 185.28 + 0.6639𝑡 − 0.621 sin 𝜔1𝑡 − 0.314 sin 𝜔2𝑡 − 0.129 sin 𝜔3𝑡 − 0.105 sin 𝜔4𝑡 

                                 −0.085 sin 𝜔5𝑡 − 0.081 cos 𝜔8𝑡 − 0.155 cos 𝜔9𝑡 − 0.074 sin 𝜔10𝑡 

                                             + 0.142 cos 𝜔11𝑡 − 0.206 cos 𝜔11𝑡 + 0.094 cos 𝜔12𝑡         (10) 

 

The residual 𝜀𝑡̂  of the fitted is obtained from 

𝜀𝑡̂ = 𝑌𝑡 − 𝑌𝑡̂ 

5. Diagnosis 

We present here two diagnostic checks to ensure that the proposed model (10) fitted to the data is adequate. 

5.1 Actual and Estimate Plots 

The overlaid plots of the actual values (𝑌𝑡) and the estimated values (𝑌𝑡̂) is displayed in figure 3. The two superimposed 

plots move together in the same direction indicating closeness and  strong correlation between the values of the two 

variables. This shows that the model is adequate. 
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Figure 3. Actual and estimate plot of 𝑌𝑡 

5.2 Residual Variance, Autocorrelation and White Noise 

The residual variance of the fitted model is 4.78. This is significantly smaller than the 11.23 obtained from fitting the full 

Fourier series. The residual autocorrelation function is displayed in figure 4 and it shows that there is no significant 

autocorrelation of the residuals. That is, all autocorrelations at all lags are within the range ±2/√𝑛 (as indicated by the 

two red lines in figure 4). This means the residuals of the fitted model are not serially correlated. In more precise terms, 

the residuals follow a white noise process. Hence, the model is adequate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Residual Autocorrelation function plot of 𝜀𝑡̂ 

6. Discussion and Conclusion 

It has been noted that the Fourier series model can only be applied to periodic series that are stationary in mean. If the 

series contain trend, however, special technique is required for the modelling process. Perhaps, this constituted the 

problem of Afshar et al (2014) that made them to obtain a discouraging result by applying ARIMA model to a periodic 

data without considering the trend. Besides, as noted by Necholas et al (2013), Fourier series modelling is time consuming 

and boring because of the large number of Fourier coefficients involved. In this work, however, these problems have been 

addressed. As clearly demonstrated in this method, the trend component of a periodic series is taken care of. Also, setting 

𝑞 = 𝑠 has reduced the computational burden by 80% and has given adequate Fourier representation as confirmed by the 

diagnostic checks. It is believed that this work has opened another possibility of addressing periodic functions.  
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Figure 5. Residual Autocorrelation function plot of 𝑒𝑡̂ 

 

Figure 6. Actual and estimate plot of 𝑌𝑡
∗ 
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