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Abstract

In this paper, we consider an adaptive sequential CUSUM procedure in an exponential family where the change-point and
post-change parameters are estimated adaptively. It is shown that the adaptive CUSUM procedure is efficient at the first
order. The conditional biases of the estimation for the change-point and post-change parameter are studied. Comparison
with the classical CUSUM procedure in the normal case is made. Nile river flow and average global temperature data sets
are used for demonstration.
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1. Introduction

Let
dFθ(x) = exp(θx − c(θ))dF0(x)

be a standard exponential family with c(0) = c′(0) = 0 and c′′(0) = 1. Under Pθ(.), EθX = c′(θ) and Varθ(X) = c′′(θ) for
|θ| ≤ K0 for a positive constant K0 > 0. We shall assume that |c′′(θ)| ≤ K for |θ| ≤ K0. To detect a change in the parameter
θ from θ = 0 to θ > 0 at the change point ν, the regular CUSUM procedure is to select a reference values δ > 0 for θ and
form an one-sided CUSUM process T̃n as

T̃n = max(0, T̃n−1 + δXn − c(δ))

with T̃0 = 0 and an alarm is raised at
Ñ = inf{n > 0 : T̃n > d},

for some predesigned boundary d which satisfies certain condition such as ARL0 = E∞[Ñ]. For detecting two-sided
change, another one-sided CUSUM process is constructed by using the conjugate value δ̃ < 0 such that c(δ̃) = c(δ) to
detect negative change.

However, when θ , δ, the procedure is no longer efficient. Three approaches have been used to increase efficiencies.
One is to use the GLRT (generalized likelihood ratio test) by treating θ as a unknown parameter (Siegmund & Venkatra-
men, 1991). To overcome the memory problem, Lai (1995) considered the window-limited GLRT. The second is to use
integrated likelihood ratio by treating the post-change parameter as a nuisance parameter. However, explicit forms are
typically difficult to obtain. The third, considered in this paper, is to use the adaptive CUSUM procedure by estimating the
change-point and the post-change parameter adaptively (Draglin, 1990; Wu, 2005, 2015; Lorden & Pollak, 2005, 2008).
The advantage for this approach is the change-point and post-change parameters are easily identified after the detection
as the basic form of the CUSUM procedure is kept.

Many forms of adaptive CUSUM control charts in on-line quality control have been proposed and discussed. Draglin
(1998) suggested to use the sample mean. Yakir et al. (1999) and Krieger et al. (2003) considered the linear post-change
model. Capizzi and Mascrotto (2003) proposed an adaptive EWMA procedure. An adaptive Shiryayev-Roberts procedure
using the adaptive estimators is considered in Lorden and Pollak (2005). Yashchin (1995) and Jiang et al. (2008) used the
EWMA as the adaptive post-change mean estimator. Han et al. (2010) proposed to use the last current observation as the
estimator for the mean.

Our discussion is mainly focused on the change-point and post-change parameter estimation after detection under the
exponential family model which extends the results of Wu (2005) and Lorden and Pollak (2008). By treating the CUSUM
procedure as a sequence of sequential tests, we can use the adaptive sequential tests (Robbins & Siegmund, 1974, 1975)
by estimating the post-change parameters adaptively for each test. More specifically, we use the notations from stochastic
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approximation. For observations Xk+1, ..., Xn, define recursively the mean estimator

µk+1,n(δ, t) = µk+1,n−1 + γk,n(t)(Xn − µk+1,n−1(δ, t)),

where µk+1,k = µ0 is the initial mean value and γk,n(t) is the gain defining the rate of convergence. Two most used ones
are (i)(recursive moment estimation) γk,n =

1
t+n−k ; and (ii) (exponentially weighted moving average) γk,n = γ, a constant.

Correspondingly, the post-change parameter θ is estimated through the equation

c′(θk+1,n(δ, t)) = µk+1,n(δ, t).

The adaptive CUSUM procedure is defined as follows:
(i) Set ν = 0, µ = δ, and T0 = 0;
(ii) For θ = c′−1(µ), define

Tn ← max{0,Tn−1 + θxn − c(θ)}
(iii) If Tn = 0, reset ν = n and µ = δ;
If Tn > 0, update θ by letting

c′(θ)← c′(θ) + γk,n(t)(xn − c′(θ)).

(iv) The procedure stops at
N = inf{n > 0 : Tn > d}.

And the change-point and post-change parameter are estimated as

ν̂ = νN ; θ̂ = θνN+1,N .

The discussion is organized as follows. In Section 2, we first present a nonlinear renewal theorem for the adaptive random
walk which gives asymptotic results for the ARL0 under the changed adaptive measure and also provides an adaptive
importance sampling technique for simulating ARL0. The first order result for ARL1 is given by using a martingale
structure related to the adaptive random walk which shows the adaptive CUSUM procedure is asymptotically efficient.
The biases for the change-point and post-change parameter estimation are studied theoretically in Section 3 by using the
renewal property of the adaptive CUSUM process. Simulation comparison with the classical CUSUM procedure in the
normal case in terms of average delay detection time and bias of change-point estimation is conducted in Section 4. Nile
river flow and average global temperature data sets are used for illustration in Section 5.

2. Operating Characteristics

2.1 A Nonlinear Renewal Theorem

We first present a nonlinear renewal theorem under the changed adaptive measure for an adaptive random walk, which
helps to derive the first order result for ARL0 and also provides an adaptive importance sampling technique for simulation.
Denote by Hk = σ(µ0, X1, .., Xk) the history up to time k, where {Xn} follows the exponential family distribution Fθk+1,n (x)
with adaptively estimated parameter θk+1,n−1 = θk+1,n−1(θ0, t). Define

S k+1,n = S k +

n∑
i=k+1

(θk+1,i−1Xi − c(θk+1,i−1)),

as the adaptive random walk. We are interested in evaluating the probability P0(τd < ∞|Hk), where

τd = inf{n > 0 : S n > d}.

Suppose
(A1) under Pθ(.), θk+1,n → θ with probability one such that Eθ(θk+1,n − θ)2 = O(1/n).

We first write

S k+1,n = S k +

n∑
i=k+1

(θk+1,i−1Xi) −
n∑

i=k+1

c(θk+1,i−1).

Under P0(.|Hk), Since E0[
∑n

i=k+1(θk+1,i−1Xi)] = 0 and

Var0(
n∑

i=k+1

(θk+1,i−1Xi)) = E0[
n∑

i=k+1

θ2k+1,i−1] = O(ln(n)),
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under Assumption (A1), the normal law for martingale states that 1√
ln(n)

∑n
i=k+1(θk+1,i−1Xi) converges weakly to a normal

variance. On the other hand,

E0[
n∑

i=k+1

c(θk+1,i−1)] = O(ln(n)),

under Assumption (A1). Thus,

S k+1,n/
√

ln(n) =
1

√
ln(n)

n∑
i=k+1

(θk+1,i−1Xi) −
1
2

Op(
√

ln n),

which converges almost surely to −∞. Thus
P0(τd < ∞|Hk)→ 0,

as d → ∞. To obtain a more accurate approximation, we introduce the adaptive changed measure

dP∗0(.|Hk) = exp(S n − S k)dP0(.|Hk).

Assume
(A2) under P∗0(.|Hk), θk+1,n converges with probability 1 to a random variable, say θk+1,∞, as d → ∞.

Intuitively, under P∗0(.|Hk) the adaptive random walk behaves asymptotically like a conditional random walk with a random
drift . Thus, no matter what the sign of the drift is, P∗0(τd < ∞|Hk) = 1 since for θ , 0,

Eθ[θX − c(θ)] = θc′(θ) − c(θ) > 0.

Define

S ∗n =
n∑

i=1

(θk+1,∞Xi − c(θk+1,∞)),

as the random walk with random drift θk+1,∞ and τ∗d = inf{n > 0 : S ∗n > d}. The following theorem is deducted from
Woodroofe (1990).

Theorem 1. As d → ∞, given Hk, in distribution under P∗0(.|Hk),

(µk+1,n, S τd − d)→ (µk+1,∞,R∗∞(Hk)),

where R∗∞(Hk) = lim(S τ∗d − d) denotes the overshoot.

By using Wald’s likelihood ratio identity, we have

P0(τd < ∞|Hk) = E∗0[exp(−(S τd − S k))|Hk]
≈ e−(d−S k)E∗0[e−R∗∞ |Hk].

Example 1. (Recursive moment estimation) First, we notice that the assumption (A1) is obviously satisfied. Second,
since

µk+1,n = µ0 +

n∑
i=k+1

Xi − µk+1,i−1

n − i + t
,

under P∗0(.|H + k), Xi ∼ exp(θk+1,i−1x − c(θk+1,i−1)). So by using the martingale property of the recursive structure,

E∗0[µk+1,n = µ0,

and

Var∗0(µk+1,n) = Var∗0(µk+1,n−1) +
E[c′′(θk+1,n−1)]

(n − k + t)2

=

n∑
i=k+1

E[c′′(θk+1,i−1)]
(i − k + t)2

≤ K
n∑

i=k+1

1
(i − k + t)2 ,

under the assumption that |c′′(θ)| ≤ K. The almost sure convergence of µk+1,n implies the almost convergence of θk+1,n.
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2.2 ARL0

Define
Nx = inf{n > 0 : S n ≤ 0; or > d}, for S 0 = x.

Before the change occurs, the time epoches at which Tn = 0 consists a sequence of renewal points for Tn. The renewal
argument shows that

ARL0 = E0[N0] + ARL0P0(S N0 ≤ 0),

which implies

ARL0 =
E0[N0]

P0(S N0 > d)
. (1)

As d → ∞, by using the renewal theorem and Wald’s likelihood ratio repeatedly, we have

P0(S N0 > d) = P0(τd < ∞) − P0(τd < ∞; S N0 ≤ 0)
= E∗0[e−S τd ] − E0[P0(τD < ∞|S N0 ); S N0 ≤ 0]
≈ e−dE∗0[e−R∗∞(H0)] − E0[e−d+S N0 E∗0[e−R∗∞(HN0 )]; S N0 ≤ 0]
= e−d(E∗0[e−R∗∞(H0)] − E∗0[e−R∗∞(HN0 ); S N0 ≤ 0])
≈ e−d(E∗0[e−R∗∞(H0)] − E∗0[e−R∗∞(Hτ− ); τ− < ∞]).

Also, note that
E0[N0] = E∗0[N0e−S N0 ] ≈ E∗0[τ−e−S τ− ; τ− < ∞].

Thus,

ARL0 ≈ ed E∗0[τ−e−S τ− ; τ− < ∞]
E∗0[e−R∗∞(H0)] − E∗0[e−R∗∞(Hτ− ); τ− < ∞]

.

2.3 ARL1

The most common measure for the operating characteristics of a detecting procedure is the average out-of-control run
length ARL1. By using the same renewal argument as in Equation (1), we can show

ARL1 =
Eθ(N0)

Pθ(S N0 > d)
.

To evaluate Eθ[N0], we note that (Robbins & Siegmund, 1975) {∑n
k=1 θn−1(Xn − c′(θ))} is a martingale with mean 0 under

Pθ(.). We rewrite it as
n∑

k=1

θn−1Xn −
n∑

k=1

c′(θ)θn−1 =

n∑
k=1

(θn−1Xn − c(θn−1))

+

n∑
k=1

(c(θn−1) − c(θ) − (θn−1 − θ)c′(θ)) + n(θc′(θ) − c(θ)).

By using the martingale property, we get

Eθ[N0] =
Eθ(S N0 ) + E[

∑N0
k=1(c(θn−1) − c(θ) − (θn−1 − θ)c′(θ))]
θc′(θ) − c(θ)

.

The second term appears because of the adaptive estimation. The first order result can be obtained as follows. First,

Eθ[S N0 ] = Eθ[S N0 ; S N0 > d] + Eθ[S N0 ; S N0 ≤ 0]
≈ Eθ[S N0 ; S N0 > d] + Eθ[S τ− ; τ− < ∞].

Second, using the same technique, we have

E[
N0∑

k=1

(c(θn−1) − c(θ) − (θn−1 − θ)c′(θ))] = E[
N0∑

k=1

(c(θn−1) − c(θ) − (θn−1 − θ)c′(θ)); S N0 > d]

+E[
τ−∑

k=1

(c(θn−1) − c(θ) − (θn−1 − θ)c′(θ)); τ− < ∞]
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Note that
Eθ[S N0 |S N0 > d] ≈ d + Eθ[R∞].

On the other hand, given S N0 > d, N0 = Op(d/(θc′(θ) − c(θ))) (see Wu (2004)). Under the boundness of c′′(θ)

|c(θn−1) − c(θ) − (θn−1 − θ)c′(θ)| ≤ K′(θn−1 − θ)2,

and the assumption that Eθ(θn−1 − θ)2 = O(1/n), we have

E

 N0∑
k=1

(c(θn−1) − c(θ) − (θn−1 − θ)c′(θ))|S N0 > d

 = O(ln(d)).

It follows that at the first order,

ARL1 =
d

θc′(θ) − c(θ)
(1 + o(1)).

Remark. For the recursive moment estimation, Eθ(θn−1 − θ)2 = O(1/n) is obviously satisfied.

3. Bias of ν̂ and θ̂

In this section, we study the biases of the estimation for the change point and post-change mean in the recursive mean
estimation case. The main ideas follow the lines of Srivastava and Wu (1999) and Wu (2004).

3.1 Bias of ν̂

From the renewal theorem, as ν→ ∞, (ν − νn,Tn) converges in distribution to (L,M) where L follows distribution

P0(L = k) =
P0(τ− ≥ k)

E0τ−
, for k ≥ 0,

and given L = k, M follows the same distribution as S k given S 1 > 0, ..., S k > 0 and µ0 = δ. In particular, if L = 0, M = 0.
By splitting on whether ν̂ > ν or ν̂ ≤ ν, we can write

Eν[ν̂ − ν|N > ν] = Eν[ν̂ − ν; ν̂ > ν|N > ν]
−Eν[ν − ν̂; ν̂ < ν|N > ν].

The event {ν̂ > ν} is asymptotically equivalent to τM < ∞ with initial state (L,M). Given ν̂ > ν, ν̂ − ν is equivalent to τM

plus the total length of cycles of Tn coming back to zero afterwards with total expected length

Eµ[τ−; τ− < ∞]
Pµ(τ− = ∞)

.

On the other hand, given ν̂ < ν, ν − ν̂ is asymptotically equal to L. Thus, we have the following result:

Theorem 2 As ν, d → ∞,

Eν[ν̂ − ν|N > ν] → E0[Eµ[τ−M; τ−M < ∞|L,M]]

+ E0[Pµ(τ−M < ∞|L,M)]
Eµ[τ−; τ− < ∞]

Pµ(τ− = ∞)
− E0[LPµ(τ−M = ∞|L,M)].

3.2 Bias of θ̂

To evaluate the bias of θ̂, we first consider the bias of µ̂ by writing

Eν[µ̂ − c′(θ)|N > ν] = Eν[µ̂ − c′(θ); ν̂ > ν|N > ν]
+Eν[µ̂ − c′(θ); ν̂ < ν|N > ν].

To develop explicit formula, we only consider the case of recursive mean estimation. Given ν̂ > ν, µ̂ = µN0 (δ, t) con-
ditioning on S N0 > d with µ0 = δ and S 0 = 0. On the other hand, given ν̂ < ν, µ̂ is equivalent to µL+1,N0 with initial
value

µ′L =
δt + LX̄′L

t + L
,
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where L,M, and µ′L are defined from another independent copy {X′1, ..., X′n, ..., } of {X1, ..., Xn, ...} and S 0 = M. Therefore,
as ν, d → ∞,

Eν[µ̂ − c′(θ)|N > ν] → Eθ[µN0 − c′(θ)|S N0 > d]E0[Pθ(τ−M < ∞|L,M)]
+E0[Eθ[µL+1,N0 − c′(θ)|S N0 > d; S 0 = M; µ0 = µ

′
L]

×Pθ(τ−M < ∞|L,M)].

It seems difficult to derive the second order approximation for the bias, and we only give the first order result:

Theorem 3As ν, d → ∞, uniformly for θ in a compact positive interval,

Eν[µ̂ − c′(θ)|N > ν]

=
1
d

[
(θc′(θ) − c(θ))t(δ − µ) + (θc′(θ) − c(θ))E0[L(X̄′L − c′(θ))Pθ(τ−M = ∞)]

+
P0θ(τ−M < ∞)
Pθ(τ− = ∞)

∂

∂θ
[(θc′(θ) − c(θ))Pθ(τ− = ∞)]

+E0[
∂

∂θ
[(θc′(θ) − c(θ))P0θ(τ−M = ∞)]]

]
(1 + o(1)).

Proof. Note that conditioning on S N0 > d, uniformly for θ in a compact positive interval, as d → ∞,

N0 =
d

θc′(θ) − c(θ)
(1 + op(1)),

and

µN0 =
t

t + N0
δ +

N0

t + N0
X̄N0

=

(
t(δ − c′(θ))

N0
+ X̄N0

)
(1 + op(1)).

Thus, we can write

Eθ[µN0 − c′(θ); S N0 > d] =
t(δ − c′(θ)))

2
(θc′(θ) − c(θ))Pθ(S N0 > d)

+
1
d
∂

∂θ
[(θc′(θ) − c(θ))Pθ(S N0 > d)](1 + o(1)).

Thus, we have

Eθ[µN0 − c′(θ)|S N0 > d]

=
1
d

[
(θc′(θ) − c(θ))t(δ − c′(θ)) +

1
Pθ(S N0 > d)

∂

∂θ
[(θc′(θ) − c(θ))Pθ(S N0 > d)]

]
(1 + o(1))

=
1
d

[
(θc′(θ) − c(θ))t(δ − c′(θ)) +

1
Pθ(τ− = ∞)

∂

∂θ
[(θc′(θ) − c(θ))Pθ(τ− = ∞)

]
(1 + o(1)).

Similarly,

E0[Eθ[µN0 (t + L) − c′(θ); S N0 > d]]

= E0

[
Eθ

[
tδ + LX̄′L + NM X̄NM

NM + t + L
− c′(θ); S NM > d

]]
=

1
d

[
t(θc′(θ) − c(θ))(δ − c′(θ))P(τ−M = ∞)

+ (θc′(θ) − c(θ))E[L(X̄′L − c′(θ)); τ−M = ∞]

+
∂

∂θ
((θc′(θ) − c(θ))P(τ−M = ∞))

]
(1 + o(1)).

The bias of θ̂ can be obtained by using delta-method as

Eν[θ̂ − θ|N > ν] ≈ 1
c′′(θ)

Eν[µ̂ − µ|N > ν].
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Table 1. Simulated ARL0 for recursive mean estimation with d = 4.8

(δ,t) A B C ARL0

(1.0,0.0) 0.519 0.395 1.885 1117.5
(1.0,0.5) 0.518 0.447 1.890 993.7
(0.5,0.0) 0.367 0.442 2.132 1596.2
(0.5,0.5) 0.343 0.490 2.198 1589.1

Table 2. Simulated ARL1 for recursive mean estimation with d = 4.8

µ Pµ(S N0 > d) Eµ[N0] Eµ[RN0 |.] ARL1

δ = 1.0 t = 1.0
0.50 0.119 4.786 0.542 40.32
0.75 0.277 5.322 0.669 19.19
1.00 0.437 5.11 0.861 11.69
δ = 1.0 t = 0.5

0.50 0.134 5.205 0.500 38.76
0.75 0.302 5.516 0.657 18.30
1.00 0.482 5.348 0.837 11.10
δ = 0.5 t = 0.0

0.50 0.121 5.423 0.521 44.74
0.75 0.265 5.583 0.666 21.07
1.00 0.433 5.436 0.833 12.55
δ = 0.5 t = 0.5

0.50 0.154 6.198 0.494 40.35
0.75 0.337 6.654 0.643 19.74
1.00 0.511 6.096 0.788 11.92

4. Simulation Comparison in the Normal Case

4.1 Normal Mean Shift

We compare the classical CUSUM procedure with the adaptive CUSUM procedure for detecting the mean shift in a
normal model with unit variance.

For the classical CUSUM procedure, the design of d can use the following simple accurate approximation (Siegmund,
1985, Equation (2.56))

ARL0 = E0[N] = (ed+1.166δ − 1 − (d + 1.166δ))/(δ2/2),

where
N = inf{n > 0 : Tn = max(0,Tn−1 + δXn − δ2/2) > d}.

So we shall first simulate ARL0’s for the adaptive CUSUM procedure and then find the value of d for the classical CUSUM
procedure by matching the corresponding ARL0’s.

For δ = 1.0, 0.5 and t = 0.0, 0.5, we let d = 4.8. Table 1 gives the simulated results for ARL0 where we use the adaptive
importance sampling technique by simulating ARL0 as

ARL0 =
E∗0[N0e−S N0 ]

E∗0[e−S N0 ; S N0 > d]
= ed C

A × B
,

where A = P∗0(S N0 > d), B = E∗0[e−(S N0−d)|S N0 > d], and C = E∗0[N0e−S N0 ]. The simulation is replicated for 10,000 times.
The results show that the effect of t is not significant.

Table 2 gives the corresponding ARL1 for several typical values of µ where E[RN0 |.] = E[S N0 − d|S N0 > d].
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Table 3. Simulated bias at ν = 75 with d = 4.8

(δ,t) µ ADT E[ν̂ − ν|.] E[µ̂ − µ|.]
(1.0,0.0) 0.50 38.61 12.96 0.448

0.75 17.93 1.75 0.348
1.00 10.98 -0.72 0.266

(1.0,0.5) 0.50 36.51 11.14 0.417
0.75 17.39 1.47 0.319
1.00 10.42 -1.05 0.226

(0.5,0.0) 0.50 41.98 14.83 0.394
0.75 19.47 2.60 0.315
1.00 11.57 -0.59 0.233

(0.5,0.5) 0.50 38.88 10.290 0.337
0.75 18.43 0.86 0.246
1.00 11.33 -1.54 0.147

Finally, we simulate the biases for the change-point and post-change mean estimators. For the same designs given in
Table 2, the simulation is replicated 5000 times and and only those stopping times with N > ν are counted to calculate the
conditional expectations. Reported also includes the average delay detection time

ADT = Eν[N − ν|N > ν],

as an alternative measure to ARL1. By comparing Table 3 with Table 2, we see that there are very little differences between
ALR1 and ADT . Also, the bias for the change-point estimation becomes larger when the post-change mean gets smaller,
so does the bias for the post-change mean estimation.

4.2 Unknown Initial Mean

Let µ0 and µ be the pre-change and post-change means which are unknown and µ − µ0 > 0 be the change magnitude.
We can update the estimate for µ0 after each sequential test when it goes below zero and track the change magnitude
recursively when a new sequential test is formed. More specifically, with a slight different notations, let µ(0)

0 = µ0 and δ(0)
0

be the assigned starting value for the pre-change mean and change magnitude. Define

N(i) = inf{n > 0 : S (i)
n =

n∑
j=1

δ(i−1)
j−1 (X(i)

j − µ
(i−1)
0 − δ(i−1)

j−1 /2) ≤ 0; or > d},

where
δ(i−1)

j−1 = µ(δ0, X
(i)
1 − µ

(i−1)
0 , X(i)

2 − µ
(i−1)
0 , ..., X(i)

j−1 − µ
(i−1)
0 ),

and if S (i)
N(i)
≤ 0, we update µ(i−1)

0 to

µ(i)
0 =

(N(1) + ... + N(i−1))µ(i−1)
0 + X(i)

1 + ... + X(i)
N(i)

N(1) + ... + N(i) .

An alarm will be made at N(1) + ... + N(K) where

K = inf{i ≥ 1 : S (i)
N(i) > d}.

The change-point ν and the post-change mean will be estimated as

ν̂ = N(1) + ... + N(K−1), and µ̂ = µ(K−1)
0 + δ(K)

N(K) ,

with µ(K−1)
0 being the pre-change mean estimation.

4.3 Restricted Adaptive Estimations

For practical application, the recursive post-mean estimation may become negative. Robbins and Siegmund (1974) pro-
posed to use

max(δ, µk+1,n(δ, t))
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as the adaptive estimation where δ is treated as the minimum shift amount to detect.

Sparks (2000) and Jiang et al. (2008) proposed to use restricted exponentially weighted moving average as the adaptive
estimation. More specifically, instead of using the sample mean we define

µk+1,n(δ, β) = (1 − β)µk+1,n−1(δ, β) + βxn,

as the exponentially weighted moving average and use max(δ, µk+1,n(δ, β)) as the adaptive estimation. The EWMA as
a control charting tool has been extensively studied in the literature and an adaptive EWMA procedure can be seen in
Capizzi and Mascrotto (2003). An advantage of EMMA estimation is that it gives the most current mean estimation for
more flexible post-change mean structures. However, its convergence in probability under the adaptive change probability
measure P∗(.) can not be established.

4.4 Detecting Slope Change

Suppose the means follow the model
µk(ν) = I[k≤ν] + β(k − ν)I[k>ν].

Following the same idea as for the mean shift case, we define the adaptive estimator for β based on Xk+1, ..., Xn as

βk+1,n(β0, t) =
tβ0 +

∑n
j=k+1( j − k)Xi

t +
∑n

j=k+1( j − k)2

= βk+1,n−1 +
n − k

t +
∑n

j=k+1( j − k)2 (Xn − (n − k)βk+1,n−1),

where βk+1,k = β0 by default. The CUSUM process can be defined as

Tn = max{0,Tn−1 + βνn−1+1,n−1(n − νn−1)(Xn −
1
2
βνn−1+1,n−1(n − νn−1))},

where the adaptive change-point estimation is updated as νn = νn−1 if Tn > 0, and ν = 0 if Tn = 0. After an alarm is raised
at N, the change-point is estimated as νN and the post-change slope is estimated as

βνN+1,N =
tβ0 +

∑N
j=νN+1( j − νN)Xi

t +
∑N

j=νN+1( j − νN)2
.

5. Examples

5.1 Nile River Flow Data

The Nile river flow data from 1871 to 1970 are reproduced from Cobb (1978) (also see Wu (2005, pg. 27)). A plot in
Figure 1 shows that there is an obvious decrease after year 1900.

(i) To use the adaptive CUSUM procedure, we use the first 20 data from year 1871 to 1890 as the training sample to
estimate the pre-change mean and stdev as 1070 and 143, respectively. We standardize the data by letting

xi = −(yi − 1070)/143,

for i = 1, 2, ..., 100, and a negative sign is added in order to detect a decrease in mean. For t = 0.5 and δ = 0.5 and 1.0
with d = 30, the adaptive CUSUM procedure gives N = 52 and ν̂ = 28, which is the same as the ones by using the regular
CUSUM procedure with known post-change mean (Wu [19]). Also, the post-change mean is estimated as 1.63, which
gives post-change mean 1070 − 143 ∗ 1.62 ≈ 837.

(ii) To detect whether a second change occurs, we use the data from 29 to 52 to calculate the mean and standard deviation
as 837 and 149.5. So we standardize the data as

xi = −(yi − 837)/149.5,

for i = 29, ..., 100. For t = 0.5 and δ = 0.5 and 1.0 with d = 30, no further change point is detected by the adaptive
CUSUM procedure.

With change-point ν̂ = 28, the global pre-change mean is given as 1097.75 and the post-change mean is 849.97. Note that
we implicitly assumed that the post-change variance is the same as the pre-change variance. Figure 1 also shows that the
residuals have no significant correlation.

51



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 5, No. 5; 2016

 

 

                                                                                               Figure 1: Nile river data  

Figure 1. Nile river date

5.2 Global Warming Data

In this subsection, we apply the technique to detect the change in global average temperature. Figure 2 plots the global
average temperature from 1880 to 2013 which is downloaded from http://data.giss.nasa.gov/gistemp/. A piecewise linear
model is used in Karl et al. (2000) for a smaller data set (1880-1997) by fitting an AR(1) time series error model with
wavelet analysis. It reveals that there are increment periods.

The scatter-plot of the data {yi} for i=1,..., 134 (years 1880-2013) shows that there are at least two increment periods. Here
we use the sequential adaptive CUSUM procedure to detect the change-point one-by-one. After a change is detected, the
post-change model is fitted by using R programming by using the data from the delay detection time.

(i) To detect the first change, we use the initial value µ0 = −0.387 as the mean of the first 30 observations with s.d. =0.130.
Then the data are standardized by letting

xi = (yi + 0.387)/0.13,

which are assumed to be i.i.d. N(0,1) random observations by ignoring the correlations at first. As it is not clear whether
the change is shift or linearly increasing, we use the sudden mean shift model. For t = 0.5, δ = 1.0, and control limit
d = 20, the alarm is raised at year 1937 (N = 58) with the estimated change-point at year 1909 (ν̂ = 30 ).

(ii) To detect the second change-point, the 28 data after the change-point estimation are used to fit a model by using R and
it shows that a linear model −0.30867 + 0.009267(i − 30)+ is the better fit with estimated standard deviation 0.10143. So
we standardize the data starting from number 31 by subtracting the mean −0.30867+0.009267(i−30)+ and being divided
by 0.10143. The same values of δ, t, and d are used and the alarm is raised at time 85 (year 1964) with change-point
estimation at 68 (year 1947).

(iii) Similarly, to detect the third change-point, we use the delay detection data from numbers 69 to 85 to fit the post-
change model and it shows a constant mean model is a better fit. The mean of these 17 data is -0.05294 with stdev 0.1063.
By standardizing rest of the data starting from number 69, the adapted CUSUM procedure detected the third change-point
at number 97 (year 1976) with alarm at 103 (year 1982).

(iv) Since no more change-point is detected, we can use the three change-points 30, 68, 97 to fit a global piece-wise linear
model. The lm() function in R is used to find the best fit and the final mean is given as

µ̂(t) = −0.3722 + 0.01194(t − 30)I[30<t≤68] + 0.3280I[68<t≤97] + (0.5118 + 0.01997(t − 97))I[97<t≤134].

(v) The residual analysis shows that the AR(1) model fits the residuals well with autocorrelation 0.2033 and stdev 0.1079.
So the final fitted model is

xt = µ̂(t) + ϵt

where
ϵt = 0.2033ϵt−1 + 0.1079zt,

with zt being i.i.d. normal random variables. Figure 2 also gives the fitted model and the ACFs and qq-norm plot for the
residuals before and after the correlation fitting. The analysis under AR(1) model under classical CUSUM procedure can
be seen in Wu (2016).
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Figure 2. Global average temperature

6. Conclusion

In this paper, we discussed an adaptive sequential CUSUM procedure in order to deal with more flexible post-change
mean structures. Sudden mean shift and linear increasing post-change means are used for illustration. The adaptive
CUSUM procedure can easily estimate the change-point estimation and post-change mean comparing with other detecting
procedures. Future investigations will consider the generalized multi-parameter exponential family model, e.g. the case
when both mean and variance change along with the dependent observation case in order to fit longitudinal data. Also
more theoretical comparisons with alternative adaptive CUSUM procedures are under investigation.
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