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Abstract

The Lomax distribution, known as Pareto (type II) distribution, is a heavy tail probability distribution used extensively in
business, economics and in actuarial modeling. The Weibull-Pareto distribution defined by Alzaatreh et al. (2013a) has
shown high bias and standard error for the ML estimates when the parameter c >> 1. In this paper we use the Lomax
distribution to construct the Weibull-Lomax distribution. It is observed that the Weibull-Lomax distribution performs
significantly better in terms of the ML estimations. Some structural properties of the Weibull-Lomax distribution are
discussed.
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1. Introduction

Let r(t) be the probability density function (PDF) of a random variable T ∈ [a, b] for −∞ ≤ a < b ≤ ∞ and let G(x) be the
cumulative distribution function (CDF) of a random variable X such that the link function W(·) : [0, 1] −→ [a, b] satisfies
the following conditions: (i) W(·) is differentiable and monotonically non-decreasing, and (ii) W(0)→ a and W(1)→ b.

The CDF of the T-X family defined by Alzaatreh et al. (2013b) is

F(x) =
∫ W(G(x))

a
r(t) dt. (1)

If the random variable T ∈ (0,∞) and W(z) = − log(1 − z), then the PDF corresponding to (1) is given by

f (x) = hg(x) R
(
Hg(x)

)
, (2)

where hg = g/(1 − G) and Hg = − log(1 − G) are the hazard and cumulative hazard rate functions corresponding to the
PDF g(x).

Alzaatreh et al. (2013a) studied a generalization of the Pareto distribution by using (2) where T and X follow Weibull and
Pareto random variables respectively. The probability density function (PDF) of the Weibull-Pareto distribution (WPD) is
defined as

f (x) =
βc
x

(
β log

( x
θ

))c−1
e−(β log(x/θ))c

, x > θ; c, β, θ > 0. (3)

Alzaatreh et al. (2013a) studied some general properties of the Weibull-Pareto distribution in (3). They showed that this
distribution can be applied to fit data with different characteristics. It can fit data with long right tail, long left tail and
approximately symmetric. However, they pointed out a major problem in estimating the parameters of the Weibull-Pareto
distribution (WPD). The estimated values of the parameters c and β using the maximum likelihood estimation (MLE)
have high biases and standard errors when c >> 1. This occurred because when c > 1, the WPD can be left skewed. The
left skeweness of the WPD affects the ML estimates of the parameters. It was shown that the estimates of c and β are very
sensitive to the estimate of the parameter θ. To solve this problem, Alzaatreh et al. (2013a) proposed a modification of
the MLE method (MMLE) which improved the results of the MLE. However, they pointed out that MMLE still produce
high bias and standard error values in some cases and further research needed to solve the estimation problem for the
parameters of WPD. The main objective of this article is to provide an alternative to the Weibull-Pareto distribution
namely, the Weibull-Lomax distribution. By merely considering another member of the family of Pareto distribution
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(after suitable transformation) a greater improvement in estimation under the MLE (maximum likelihood method) is
achieved. The paper is organized as follows: In section 2, the Weibull-Lomax distribution is defined and several properties
are studied including quantile function, limit behaviour, unimoadality, Shannon entropy, reliability parameter, moments,
mean deviations and order statistics. The asymptotic distributions of the sample minima and maxima are also studied in
section 2. Parameter estimation and application are studied in section 3. We provide some concluding remarks in section
4.

2. The Weibull-Lomax Distribution

Let the random variable T and X follow the Weibull and Lomax distributions. Then from (2), the PDF of the Weibull-
lomax distribution (WLD) can be written as

f (x) =
βc

x + θ

(
β log

(
1 +

x
θ

))c−1
e−(β log(1+ x

θ ))
c

, x > 0; c, β, θ > 0. (4)

Remark 2.1. Note that the WLD in (4) is only a shift by θ of the WPD in (3). I.e. If Y ∼ WPD(c, β, θ) then X = Y − θ
follows WLD(c, β, θ).

When c = 1, the WLD reduces to the Lomax distribution with parameters β and θ. From (4), the CDF and hazard rate
function of WLD, respectively, are

F(x) = 1 − e−(β log(1+ x
θ ))

c

. (5)

h(x) =
βc

x + θ

(
β log

(
1 +

x
θ

))c−1
, (6)

In Figures 1 and 2, various graphs of f (x) and h(x) are provided for different parameter values. The plots indicate that the
Weibull-Lomax distribution can be reverse J-shaped, right-skewed or left-skewed. Also, the Weibull-Lomax distribution
hazard function can be a decreasing failure rate or upside down bathtub shapes.
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Figure 1. Graphs of the Weibull-Lomax PDF for various choices of c and θ when β = 1.

Remark 2.2. Based on Remark 2.1 and Alzaatreh et al. (2013a), one can obtain the following properties of the WLD.

(i) If a random variable Y follows the Weibull distribution with parameters c and 1/β , then the random variable
X = θ(eY − 1) follows the Weibull-Lomax distribution.

(ii) Let Q(p), 0 < p < 1 denote the quantile function of WLD. Then Q(p) = θ
{
exp

((− log(1 − p)
)1/c /β

)
− 1

}
.
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Figure 2. Graphs of the Weibull-Lomax hazard function for various choices of c when β = θ = 1

(iii) The limit of the Weibull-Lomax density and the Weibull-Lomax hazard function as x → ∞ is 0, and the limit as
x→ 0 is given by

lim
x→0

f (x) = lim
x→0

h(x) =


0, c > 1
β/θ, c = 1.
∞, c < 1

(iv) The WLD is unimodal at x0. When c ≤ 1, the mode is at x0 = 0 and when c > 1, the mode is the solution of the
equation k(x0) = 0, where

k(x) = − log(1 + x/θ) − c
(
β log(1 + x/θ)

)c
+ c − 1.

(v) The Shannon entropy (Shannon, 1948) for a random variable X that follows the WLD is

ηX = − log
(
βc
θ

)
+

1
β
Γ

(
1 +

1
c

)
+

(
1 − 1

c

)
δ + 1,

where δ = −
∫ ∞

0 e−u log(u)du = 0.57722 is the Euler gamma constant.

2.1 Reliability Parameter

The reliability parameter R is defined as R = P(X > Y), where X and Y are independent random variables. Numerous
applications of the reliability parameter have appeared in the literature such as the area of classical stress-strength model
and the break down of a system having two components. Other applications of the reliability parameter can be found in
Hall (1984) and Weerahandi and Johnson (1992). If X and Y are two continuous and independent random variables with
the CDFs F1(x) and F2(y) and their PDFs f1(x) and f2(y) respectively, then the reliability parameter R can be written as

R = P(X > Y) =
∫ ∞

−∞
F2(t) f1(t)dt.

Theorem 2.3. Suppose that X ∼ WLD(c1, β1, θ) and Y ∼WLD(c2, β2, θ), then

R = 1 −
∞∑

k=0

(−1)k

k!

(
β2

β1

)kc2

Γ

(
kc2

c1
+ 1

)
.

Proof. Follows from Lemma 2.4 in Alzaatreh and Ghosh (2014). �
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2.2 Moments and Mean Deviations

Using Remark 2.1, the s-th moments for the WLD can be written as

E(Xs) = (−1)s θs + θs
s∑

k=1

∞∑
i=0

(
s
k

)
(−1)s−kki

i!βi Γ(1 + i/c). (7)

Remark 2.4. From (7), we have the following

(i) If c > 1, then the s-th moments of the Weibull-Lomax distribution exist.

(ii) If c < 1, then the s-th moments of the Weibull-Lomax distribution do not exist.

(iii) If c = 1, then the s-th moments of the Weibull-Lomax distribution exist iff β > s.

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean
and median. If we denote the median by M, then the mean deviation from the mean, D(µ), and the mean deviation from
the median, D(M), can be written as

D(µ) = 2µF(µ) − 2
∫ µ

0
x f (x)dx. (8)

D(M) = µ − 2
∫ M

0
x f (x)dx. (9)

Now, consider Im =
∫ m

0 x f (x)dx, where f (x) is defined in (4). On Using the substitution u = (β log(1 + x/θ))c, we get

Im = θ

∞∑
k=0

1
βkk!

∫ am

0
uk/ce−udu

= θ

∞∑
k=0

γ(am, 1 + k/c)
βkk!

, c > 1, (10)

where m > 0, am = (β log(1 + m/θ))c and γ(x, a) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma function.

From equations (8) and (9), the mean deviation from the mean and the mean deviation from the median are, respectively,
given by

D(µ) = 2µ
(
1 − exp

{− (
β log(1 + µ/θ)

)c}) − 2Iµ
D(M) = µ − 2IM ,

where Iµ and IM can be calculated numerically from (10).

2.3 Quantile Measures of Tail Behavior

Skewness and kurtosis of a distribution can be measured by β1 = µ3/σ
3 and β2 = µ4/σ

4, respectively. However the
expression for the third and fourth moments of WLD(c, β, θ) do not always exist (see Remark 2.4). Consequently, the
moment based skewness and kurtosis measures can not be applied when c < 1. Instead we consider the quantile based
skewness and kurtosis measures which always exist. The quantile function of WLD(c, β, θ) are in closed form, alternative-
ly we can define the measure of skewness and kurtosis based on the quantile function. The Galton’ skewness S defined
by Galton (1883) and the Moors’ kurtosis K defined by Moors (1988) are given by

S =
Q(6/8) − 2Q(4/8) + Q(2/8)

Q(6/8) − Q(2/8)
. (11)

K =
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
. (12)

When the distribution is symmetric, S = 0 and when the distribution is right (or left) skew, S > 0 (or S < 0). As K
increases the tail of the distribution becomes heavier. To investigate the effect of the two shape parameters c and β on
the WLD(c, β, θ) distribution, equation (11) and (12) are used to obtain the Galtons’ skewness and Moors’ kurtosis where
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the quantile function can be found from Remark 2.2. Figure 3 displays 3D graphs for the Galtons’ skewness and Moors’
kurtosis for the WLD(c, β, θ) when θ = 1 and different values of c and β. From Figure 3, the WLD can be left skewed,
right skewed or near symmetric (S=0). Furthermore, for fixed value of c > 1, Galton’s skewness and Moors’ kurtosis are
decreasing function of β. Also, for fixed value of β, Galton’s skewness and Moors’ kurtosis are decreasing function of
c. In Figure 4, we determined the regions when the WLD is left skewed, right skewed or nearly symmetric (S=0) occur.
A cubic function relating log(β) to log(c) is obtained for the situation when the distribution is nearly symmetric (see R
results in the Appendix). Since the symmetry of WLD does not depend on θ, we assumed θ = 1.
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Figure 3. Graphs of Quantile Skewness and Kurtosis for the WL PDF when θ = 1.
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2.4 Order Statistics for the Weibull Lomax Distribution

In this section, we study the moments of the r-th order statistic and the large sample distribution of the sample minimum
and the sample maximum when a random sample of size n are drawn from the WLD(c, β, θ) distribution. The density
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function of the r-th order statistic Xr:n for a random sample of size n drawn from (4), is given by

fXr:n (x) = r
(
n
r

)
(F(x))r−1(1 − F(x))n−r f (x)

= r
(
n
r

) r−1∑
k=0

(−1)k
(
r − 1

k

)
WLD(c, β(n − r + k + 1)1/c, θ)

(n − r + k + 1)
. (13)

From (13), the PDF of the rth order statistic Xr:n can be expressed as a finite sum of the Weibull-Lomax PDFs. From (13),
the distribution of the sample maximum Xn:n = max(X1, X2, · · · , Xn), and the sample minimum X1:n = min(X1, X2, · · · , Xn)
are, respectively, given by

fXn:n (x) = n
n−1∑
k=0

(−1)k

k + 1

(
n − 1

k

)
WLD(c, β(k + 1)1/c, θ). (14)

fX1:n (x) = WLD(c, βn1/c, θ). (15)

From (15), it is evident that the Weibull-Lomax distribution is closed under minimization. This property is also known as
min stable property (See Feller, 1971).

In order to find the large sample distribution of Xn:n, we will use the sufficient condition for weak convergence due to von
Mises (1936) which is stated in the following theorem:

Theorem 2.5. Let F be an absolutely continuous c.d.f and suppose h f (x) is nonzero and differentiable function. If

lim
x→F−1(1)

d
dx

(
1

h f (x)

)
= 0,

then F ∈ D(G1), where G1(x) = exp(− exp(x)).

In our case F−1(1) = ∞ and from (6), we have

lim
x→∞

d
dx

(
1

h f (x)

)
=

0, c ≥ 1
∞, c < 1.

(16)

Hence, the large sample distribution of Xn:n is of extreme value type provided that c > 1.When c = 1, the Weibull Lomax
distribution reduces to the Lomax distribution. Also, according to Arnold et al. (2008), the large sample distribution of
Xn:n will be of extreme value type.

In order to derive the asymptotic distribution of the sample minima X1:n, we consider Theorem 8.3.6 of Arnold et al.(2008).
Observe that, since F−1(0) is finite, it follows from the theorem that the asymptotic distribution of the sample minima X1:n
is not of Fréchet type. The asymptotic distribution of X1:n will be of the Weibull type with parameter α > 0 if

lim
ε→0+

F(F−1(0) + εx)
F(F−1(0) + ε)

= xα, for all x > 0.

Note that
lim
ε→0+

F(θ + εx)
F(θ + ε)

= x lim
ε→0+

f (θ + εx)
f (θ + ε)

= xc.

Hence, the asymptotic distribution of the sample minima X1:n is of the Weibull type with shape parameter c. Furthermore,
since the WLD is only a shift by θ of the WPD, therefore, the asymptotic distributions for the sample maxima when c ≥ 1
is of extreme type. Also, the asymptotic distribution the sample minima for the WPD is of the Weibull type with shape
parameter c.

Next, we consider the s-th moment for Xr:n, 1 ≤ r ≤ n. From (13), if Y ∼ WLD(c, β(n − r + k + 1)1/c, θ), then

E(Y s) = (−1)s θs + θs
s∑

k=1

∞∑
i=0

(
s
k

)
(−1)s−kki

i!βi(n − r + k + 1)i/c Γ(1 + i/c). (17)
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From (13), the sth moment of Xr:n can be written as

E(Xs
r:n) = r

(
n
r

) r−1∑
k=0

(−1)k

n − r + k + 1

(
r − 1

k

)
E(Y s), (18)

where E(Y s) are given in (17). The s-th non central moment of X1:n and Xn:n can be obtained by setting r = 1 and r = n
in equation (18).

Theorem 2.6. (i) If c > 1, then the s-th non central moment of Xr:n exist.

(ii) If c < 1, then the s-th non central moment of Xr:n do not exist.

(iii) If c = 1, then the s-th non central moment of Xr:n exist iff β(n − r + 1) > s.

Proof. Follows directly from Remark 2.4. �

3. Parameter Estimation and Application

The parameters of WLD are estimated by using the maximum likelihood. A simulation study is conducted to evaluate the
performance of the maximum likelihood method.

3.1 Maximum Likelihood Estimation Method

Let X1, X2, · · · , Xn be a random sample of size n drawn from the density in (4). The log-likelihood function ℓ = ℓ(c, β, θ)
is given by

ℓ = nc log β + n log c −
n∑

i=1

log (θ + xi) + (c − 1)
n∑

i=1

log
(
log(1 + xi/θ)

) − n∑
i=1

(
β log(1 + xi/θ)

)c . (19)

The log-likelihood can be maximized numerically to obtain the maximum likelihood estimates. Several routines available
for numerical maximization. We used the PROC NLMIXED in SAS to maximize equation (19). The initial estimates for
the parameters of WLD are obtained as follows: the initial estimates of c and β are the moment estimates of c and β from
the Weibull distribution, which are given by c0 =

π

(6slog xi )
and β0 = exp

(
−x̄log xi − δ/c0

)
, where slog xi and x̄log xi are the

sample standard deviation and the sample mean for log xi and δ is the Euler gamma constant (Johnson et al., 1994, pp.
642-643). The initial estimate of θ is taken to be 1.

3.2 Simulation Study to Evaluate the Performance of MLE

In this sub-section, a simulation study is conducted to evaluate the performance of the MLE method of WLD in terms
of both bias and standard deviation for various parameter combinations and different sample sizes. For each parame-
ter combination, a random sample from WLD is generated by first generating a random sample y1, y2, · · · , yn from the
Weibull distribution with parameters c and 1/β, then by using Remark 2.2(i), Xi = θ(eYi − 1), i = 1, 2, . . . , n follows the
WLD(c, β, θ).

The parameter combinations for the simulation study are c = 0.5, 1, 4, 7, β = 0.5, 1, 3, and θ = 0.5, 1, 3. Two different
sample sizes of n = 100 and 500 are used in the simulation. For each sample size and parameter combination, the
simulation process is repeated 200 times. The average bias (estimate - actual), and the average standard deviation of the
maximum likelihood estimates are presented in Tables 1 and 2.

The results show that the maximum likelihood estimation method performs well. In general, the biases and standard
deviations of the parameters are reasonably small. As the sample size increases, the results show that the biases and stan-
dard deviations of the estimators decrease. The results from this simulation study, suggest that the maximum likelihood
estimates method can be used effectively to estimate the parameters of the Weibull-Lomax distribution. Also, if c > 1 , the
results from Tables 1 and 2 show that the MLE method performs good in estimating the model parameters. This suggests
that the WLD can be used an alternative to the WPD in modeling real life data sets.

3.3 Applications

Alzaatreh et al. (2013a) used three data sets from Park et al. (1964) and Park (1954) and fit them to Weibull-Pareto
distribution using the MMLE method. In this subsection, we fit these data sets and show that WLD provides similar fit.
The data sets are the grouped frequency distributions of adult numbers for Tribolium Confusum and Tribolium Castaneum
cultured at 24 C and Tribolium Confusum strain. In particular, Data set 1 represents a random sample of 857 Tribolium
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Table 1. Bias and standard deviation of the parameter estimates for n = 100

Actual Values Bias Standard deviation
c β θ ĉ β̂ θ̂ ĉ β̂ θ̂

0.5 0.5 0.5 0.0287 −0.0001 0.0218 0.0748 0.1764 0.4158
1 0.0225 0.0073 0.1774 0.0784 0.1920 0.9007
3 0.0266 0.0092 0.3276 0.0772 0.1826 2.5553

1 0.5 0.0232 −0.0011 0.0184 0.0683 0.3520 0.3326
1 0.0218 0.0086 0.1598 0.0681 0.3814 0.9051
3 0.0223 0.0165 0.3531 0.0626 0.3643 2.1206

3 0.5 0.0206 0.0176 0.0258 0.0517 1.1344 0.2790
1 0.0241 0.1880 0.1011 0.0497 1.1983 0.6267
3 0.0154 0.1619 0.1682 0.0478 1.1155 1.6073

1 0.5 0.5 0.0836 0.0083 0.0680 0.2328 0.1924 0.4886
1 0.0500 0.0227 0.2613 0.2244 0.1856 0.9557
3 0.0773 0.0168 0.5588 0.2333 0.1861 2.9163

1 0.5 0.0333 0.0658 0.0743 0.1542 0.3902 0.3491
1 0.0472 0.0258 0.0940 0.1596 0.3618 0.6508
3 0.0556 0.0495 0.3845 0.1691 0.3917 2.1340

3 0.5 0.0408 0.0797 0.0193 0.1052 1.1522 0.2372
1 0.0376 0.0614 0.0085 0.1022 1.1650 0.4817
3 0.0256 0.1354 0.1569 0.0955 1.1701 1.4879

4 0.5 0.5 0.5229 −0.0268 −0.0256 1.0086 0.1698 0.4036
1 0.3374 −0.0004 0.0775 0.8892 0.1671 0.8325
3 0.6047 −0.0413 −0.3706 1.0022 0.1418 1.9807

1 0.5 0.6234 −0.0505 −0.0246 0.9791 0.4286 0.3377
1 0.4174 0.0260 0.0676 0.9472 0.4471 0.7082
3 0.4091 0.0246 0.1803 1.0248 0.4609 2.1711

3 0.5 0.1886 −0.1328 −0.0265 0.4220 1.1250 0.2178
1 0.1209 0.1592 0.0614 0.4010 1.2174 0.4728
3 0.1377 −0.0921 −0.1133 0.4029 1.1831 1.3794

7 0.5 0.5 0.4476 −0.0086 0.0007 1.3689 0.1239 0.2988
1 0.4629 −0.0004 0.0396 1.3946 0.1250 0.6038
3 0.6692 −0.0191 −0.1366 1.5165 0.1097 1.5466

1 0.5 1.8592 −0.1978 −0.1348 1.7858 0.4377 0.3463
1 1.6115 −0.1439 −0.1945 1.9261 0.4591 0.7135
3 1.9645 −0.2476 −1.0595 1.7831 0.4022 1.8825

3 0.5 0.2483 0.0982 0.0197 0.7125 1.1624 0.2273
1 0.2000 0.0234 0.0083 0.6995 1.2274 0.4811
3 0.2757 −0.0104 −0.0079 0.6927 1.2099 1.4260
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Table 2. Bias and standard deviation of the parameter estimates for n = 500

Actual Values Bias Standard deviation
c β θ ĉ β̂ θ̂ ĉ β̂ θ̂

0.5 0.5 0.5 0.0132 −0.0151 −0.0281 0.0348 0.0944 0.1861
1 0.0116 −0.0030 −0.0058 0.0341 0.0974 0.3857
3 0.0067 0.0026 0.0893 0.0372 0.0978 1.2534

1 0.5 0.0079 0.0138 0.0189 0.0356 0.2224 0.2066
1 0.0077 0.0057 0.0303 0.0359 0.2250 0.4078
3 0.0138 −0.0107 0.0092 0.0384 0.2345 1.1882

3 0.5 0.0057 0.1076 0.0213 0.0298 0.9001 0.1922
1 0.0073 0.0660 0.0442 0.0321 0.8795 0.4162
3 0.0060 0.0491 0.0766 0.0302 0.8460 1.1589

1 0.5 0.5 0.0098 0.0221 0.0816 0.1273 0.1266 0.3280
1 0.0171 0.0143 0.1173 0.1333 0.1168 0.5645
3 0.0253 0.0084 0.2387 0.1228 0.1140 1.7001

1 0.5 0.0117 0.0198 0.0211 0.0962 0.2375 0.2007
1 0.0200 0.0162 0.0540 0.1017 0.2642 0.4483
3 0.0161 0.0260 0.1870 0.0987 0.2624 1.3323

3 0.5 0.0179 0.1027 0.0238 0.0676 1.0732 0.2246
1 0.0118 0.1047 0.0476 0.0602 0.9458 0.3995
3 0.0112 0.1673 0.2464 0.0672 1.0295 1.3051

4 0.5 0.5 0.1038 0.0497 0.1590 0.9285 0.1857 0.4613
1 0.0944 0.0491 0.3146 0.9194 0.1861 0.9304
3 0.3544 −0.0079 0.0952 0.9766 0.1537 2.1699

1 0.5 0.0156 0.1598 0.1371 0.6922 0.3962 0.3200
1 0.0250 0.1420 0.2442 0.6449 0.3926 0.6303
3 −0.0064 0.1548 0.7849 0.6285 0.3846 1.8555

3 0.5 0.0956 0.0416 0.0097 0.2913 1.2129 0.2396
1 0.0868 0.0659 0.0288 0.2875 1.2269 0.4841
3 0.1223 0.0032 0.0094 0.3002 1.2342 1.4565

7 0.5 0.5 0.2962 0.0415 0.1375 1.2609 0.1857 0.4586
1 −0.0383 0.0600 0.3516 1.1002 0.1743 0.8852
3 −0.0157 0.0398 0.7004 1.1850 0.1412 2.1105

1 0.5 0.5314 0.0559 0.0571 1.5608 0.4655 0.3683
1 0.5067 0.0802 0.1527 1.5718 0.4696 0.7455
3 0.5462 0.0624 0.3714 1.6205 0.4495 2.1272

3 0.5 0.3919 −0.4290 −0.0834 0.5326 1.1271 0.2209
1 0.0085 0.2958 0.1175 0.4168 1.0852 0.4266
3 0.1736 0.0318 0.0439 0.5122 1.2105 1.4283
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Table 3. Parameter estimates and K-S values for the fitted data sets

Data sets Data set 1 Data set 2 Data set 3
Distributions WPD WLD WPD WLD WPD WLD

Estimates θ̂ = 9.107 θ̂ = 14.245 θ̂ = 33.208 θ̂ = 22.122 θ̂ = 23.283 θ̂ = 12.627
β̂ = 0.380 β̂ = 0.436 β̂ = 0.747 β̂ = 0.521 β̂ = 0.866 β̂ = 0.517
ĉ = 6.953 ĉ = 6.863 ĉ = 5.059 ĉ = 8.719 ĉ = 6.161 ĉ = 12.398

K-S values 0.0482 0.0549 0.0730 0.0905 0.0803 0.0901
AIC values 8904.5 8908.6 9276.41 9311.5 2973.44 2982.1

Castaneum cultured at 240C, the Data set 2 represents a random sample of 952 Tribolium Castaneum cultured at 240C
and Data set 3 represents a random sample of 368 Tribolium Castaneum cultured at 240C. The data sets are avialable
in Alzaatreh, et al. (2013a). Above we provide the estimates, the Kolmogorov-Smirnov test (K-S) and the Akaike
information criterion (AIC) values for the WLD and WPD in Table 3. The estimates of WLD are based on MLE method
and the estimates of WPD are based on MMLE method (taken from Alzaatreh et al., 2013a). The results in Table 3 show
that WLD and WPD provide similar fits to three data sets. Figure 5 supports the results in Table 3.
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Figure 5. Histograms and fitted PDFs for WLD and WPD.

4. Conclusion

In this paper, a shift by a parameter θ > 0 of the Weibull-Pareto distribution defined by Alzaatreh et al. (2013a) is proposed
namely, the Weibull-Lomax distribution. Based on Alzaatreh et al. (2013a), the maximum likelihood estimation produces
high biases and standard errors for the WPD parameters and therefore, they proposed a modification of the MLE, MMLE,
which can be used only when c > 1. This problem in estimatioing the WPD parameters has motivated us to present an
alternative to the WPD by using Lomax distribution in replace of Pareto distribution in the T − X family proposed by
Alzaatreh et al. (2013b). In this paper we showed that the MLE method can be used effectively to estimate the WLD
parameters without any restriction on the parameter c. The results of the simulation study in section 3.2 are compared with
the results of the simulation study for the WPD obtained by Alzaatreh et al. (2013a). In most cases, it was observed that
the biases and standard errors for the MLEs of WLD parameters are smaller than the MMLEs for the WPD parameters.
Furthermore, WLD is applied to the same data sets used in Alzaatreh et al. (2013a). The results in Table 3 and Figure 5
showed that WLD and WPD provide similar fit to the data sets.
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Appendix R outputs for the regression line in Figure 4.

C a l l :

lm ( f o r m u l a = l o g ( b ) ˜ l o g ( c ) + I ( l o g ( c ) ˆ 2 ) + I ( l o g ( c ) ˆ 3 ) )

R e s i d u a l s :

Min 1Q Median 3Q Max

−0.089138 −0.017417 −0.003819 0 .019843 0 .095153

C o e f f i c i e n t s :

E s t i m a t e S td . E r r o r t v a l u e Pr ( > | t | )

( I n t e r c e p t ) 9 .16963 0 .36639 25 .03 < 2e−16 ∗∗∗

l o g ( c ) −8.50759 0 .45294 −18.78 < 2e−16 ∗∗∗

( l o g ( c ) ) ˆ 2 2 .42676 0 .17909 1 3 . 55 8 . 3 6 e−15 ∗∗∗

( l o g ( c ) ) ˆ 3 −0.26426 0 .02279 −11.59 5 . 4 1 e−13 ∗∗∗

−−−

S i g n i f . codes : 0 ∗∗∗ 0 . 001 ∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

R e s i d u a l s t a n d a r d e r r o r : 0 .03302 on 32 d e g r e e s o f f reedom

M u l t i p l e R− s q u a r e d : 0 . 9 9 8 8 , A d j u s t e d R− s q u a r e d : 0 .9987

F− s t a t i s t i c : 8651 on 3 and 32 DF , p−v a l u e : < 2 . 2 e−16
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