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Abstract

A closed form formula is provided for the probability, in a closed time interval, that an arithmetic Brownian motion
remains under or above a sequence of three affine, one-sided boundaries (equivalently, for the probability that a
geometric Brownian motion remains under or above a sequence of three exponential, one-sided boundaries). The
numerical evaluation of this formula can be done instantly and with the accuracy required for all practical purposes. The
method followed can be extended to sequences of absorbing boundaries of higher dimension. It is also applied to
sequences of two-sided boundaries.

Keywords: boundary crossing probability; survival probability; probability of absorption; first passage time; hitting
time; Brownian motion; affine boundary; exponential boundary

1. Introduction

The question of the crossing of a non-constant boundary by a diffusion process is of central importance in many
mathematical sciences. As mentioned in Wang and Potzelberger (2007), it arises in biology, economics, engineering
reliability, epidemiology, finance, genetics, seismology and sequential statistical analysis. The probability that a
diffusion process will remain under or above some critical threshold over a given time interval can be referred to as a
survival probability or probability of non-absorption. The vast majority of the research articles published on this topic
either focus on numerical algorithms for general classes of processes or boundaries, usually involving recursive
multidimensional quadrature, or they seek to obtain approximate solutions, typically substituting the initial boundary
with another one for which computations are easier and then deriving a bound for the error entailed by using the
approximating boundary. Much attention has also been paid to asymptotic estimates. However, known closed form
results are scarce. By closed form results, we mean fully explicit formulae involving functions whose numerical
evaluation can be carried out with the accuracy and the efficiency required for all practical purposes, in contrast to
approximate analytical solutions that are quickly computed but inaccurate, and to numerical algorithms that can only
produce the required standard of precision through heavy computational burden. The most classical of these closed form
results is the so-called Bachelier-Levy formula (Levy, 1948), which provides the first-passage time density of Brownian
motion to a linear boundary. This result is extended to a two-sided linear boundary by Doob (1949), but only in infinite
time. The generalisation to a closed time interval is given by Anderson (1960), who is also able to integrate the density.
The first passage time density of Brownian motion to a quadratic boundary is obtained independently by Salminen
(1988) and Groeneboom (1989), while Novikov et al. (1999) manage to derive the hitting time density of Brownian
motion to a square root boundary, but the numerical evaluation is quite involved in both cases, requiring infinite series
of roots of combinations of Airy functions or confluent hypergeometric functions. By integrating these first passage
time densities, the corresponding survival probabilities can be derived, though the integration is not actually performed
by the mentioned authors and is far from trivial. Scheike (1992) provides a closed form solution for the survival
probability of Brownian motion in infinite time when the boundary consists of two successive linear functions of time
but cannot explicitly compute the corresponding integral in finite time. There are also a few closed form results for a
Brownian motion (Daniels, 1996; Wang and Pétzelberger, 2007), an Ornstein-Uhlenbeck process (Choi and Nam, 2003;
Wang and Pé6tzelberger, 2007) and a growth process (Wang and Potzelberger, 2007), that involve very specific forms of
the boundary and thus have limited use in practice, although they are quite valuable to test numerical algorithms.

This paper provides new results for the survival probability of Brownian motion. The problem raised by Scheike (1992)
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is reformulated, extended and analytically solved. The extension with regard to the existing literature can be
summarized as follows :

- cumulative distribution functions are provided, i.e. the integration of the first passage time densities is performed

- results are provided for generalised Brownian motion (whether arithmetic or geometric Brownian motion), i.e. the
underlying stochastic dynamics include drift and volatility coefficients

- sequences of up to three general affine boundaries (in the case of arithmetic Brownian motion) or exponential
boundaries (in the case of geometric Brownian motion) are handled

- sequences of two-sided piecewise affine or exponential boundaries are also tackled, under the assumption that the
growth rate of the boundary is identical on the downside and on the upside, i.e. the upper and the lower sides of the
boundary are parallel curves

Only distributions in finite time are considered, as they are the ones used in practice in the various mathematical
sciences. The choice of affine and exponential boundaries is because they allow to model a reasonably large variety of
time-dependent conditions for real life problems, while preserving analytical tractability. There are potentially many
applications, for example in the valuation and risk management of various path dependent financial options or insurance
contracts as well as in structural models of credit risk (see, e.g., Jeanblanc et al., 2009).

Section 2 of this article states a closed form formula for the survival probability of an arithmetic or a geometric
Brownian under or above a sequence of three different one-sided affine or exponential boundaries over a finite time
interval and provides a few numerical results, then outlines a proof omitting cumbersome computations, and finally
discusses generalization to higher-dimensional boundaries. Section 3 of this article states a closed form formula for the
survival probability of an arithmetic or a geometric Brownian motion under and above a sequence of two different
two-sided, parallel, affine or exponential boundaries over a finite time interval, provides a few numerical results and
outlines the proof.

2. Survival Probability of an Arithmetic or a Geometric Brownian Motion under or Above a Sequence of
One-sided Affine or Exponential Boundaries over a Finite Time Interval

2.1 Definitions

Let 1 beareal constant, o be a positive real constant, and {B(t) b > 0} be a standard Brownian motion defined

on a probability space with measure P . Let {X1 (t),t > O} be an arithmetic Brownian motion driven, under P,
by :
2.1
dx, (t) = pdt + o dB(t) 1)
Let {X2 (t),t > O} be a geometric Brownian motion driven, under P, by :
2.2
0X, (t) = pX, (t)dt + o X, (t)dB(t) @2)
A finite time interval [O,T } is considered and divided into a partition II of n subintervals |#, = 0, Htl,t2 ],
L 'n—=1""n

t t =T } , which are not necessarily of equal length, with ¢ >1¢ , >..>1 >1t,. Let 1 denote the

indicator function. For a given n € N, two piecewise affine absorbing boundaries g, (t) and g, (t) are defined as

follows :

g (t)=>"(a, b (t =t ), o (t).0; €Rb €R, i€ {L2.,n} (2.3)
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g2<t)=i(ai o) I, (t) s g €R b ER, ie{l2.,n} (2.4)
i=1 o

The difference between gl(t> and g, (t) is that gl(t> is time-homogeneous.

Similarly, we have the two following piecewise exponential boundaries :

(t) = S (0)exp(a, + b, (t 1)) T, () o € R . b eR, ie{L2un) 2.5)
i=1 '

hz(t):iX@)exp(ai +00) T, (), o €R b €R, i€ {12.,n} (2.6)
1=1

Consider the cumulative distribution function of a sequence of n maxima or n minima and n endpointsin II in

the two following cases :

- the absorbing boundary is defined either by g, (t) or g, (t) and the process under consideration is X,

- the absorbing boundary is defined either by 7, (t) or h, (t) and the process under consideration is X,

Such a function is often referred to as a survival probability. As shown by Wang and Pé&tzelberger (1997), its value can

be approximated by a Monte Carlo simulation scheme drawing on the Markovian nature of X, and X, in the

following manner : the endpoint values of X, and X, in each time subinterval [t t ] are randomly drawn at

i-1Y
each performed simulation; if the relevant conditions at each ¢, are met, then a cumulative variable records the product

of the conditional probabilities that the boundary has not been crossed in each (tFl?tz' ) , which admit simple analytical

formulae (Siegmund, 1986). This is obviously much more efficient and accurate than discretizing the whole path of the
process at each run. For n > 1, the survival probability under consideration does not admit any known closed form
formula. Although it does not seem possible to come up with an explicit and compact formula for any n € N, one can

actually solve the problem analytically in “moderate” dimension. In this paper, the case n = 3 is tackled. More

specifically, let P[] ( 1,0, al,a2,a3,bl,b2,bg,k1,k2,k3,t1,t2,t3) be defined as one of the following eight cumulative

distribution functions :

2.7
B (100005, By by by by b 1) 0y € R (b by by by ) € RS 2.7)
(X () <ay A BV <t <t )N X () <k O (X (1) <ay by (t—t),VE <t <t)
CNX () <k N (X () <ay+by(t—1,),Vt, <t <t)NX (L) <k
(2.8)

8
P avg] (10,01 0y, 05,005, b5 Ky Ky ity ) 0 € R (ay,0,0,05, 05, k1, Ky iy ) € R

(X, (t) <a +0t,¥0 <t <t )N X () <k N (X (t) <ay+bt,VE <t <t)
NX, () <k 0 (X (8) < ay + btV <t <ty)N X (L) <k
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; 2.9
Brauon) (1400125, by by, by by ey 8y ) (g By by ) € R (g, 08,0y ) € RO 29)
X, (t) < X, (0)exp(ay +bt), VO <t < 1) N X, () <k
=P|N(X,(t) < X, (0)exp(ay + b, (t —#,)),Vt, <t <t,)
NX, (1) <k N(X,(t) < X,(0)exp(ay +by(t —1,)),Vt, <t <t;)NX,(t;) <k
; (2.10)
PG (1:0.ay, 0y, 05,by, 0y, b5, by by Kyt 1 ), (g, Ky ey ) € R (ag,04,8,05,05 ) € R
X, (t) < X, (0)exp(ay +bt), VO <t <t,)N X, () <k
=P|N(X,(t) < X, (0)exp(ay + byt),Vt, <t <t,)
NX, (L) <k N(X,(t) < X,(0)exp(ay + byt ),Vt, <t < 1) N X, (t;) <k
s @2.11)
Pana) (100,005,050, by by Ky By Byt 8 ) g € R (ay, 05,0, 8,05, K Ky By ) € R
(X () > e A BV <t <t )N X () > k0 (X (E) > ay + by (E =),V <t <)
CNX () >k N (X () > ay + by (E— 1)Vt <t <t )N X (L) > ky
s (2.12)
P o] (160501, 0,053,805, b5, i by Byt 1 ) 0y € R (ag,05,0y,by, by Ky By by ) € R
(X () > bV <<t )N X () >k 0 (X () > 0y + btV <t < t)
CNX () >k N (X () > ay + btV <<t )N X () > Ky
3 ; (2.13)
Para) (100,01, 0y, 05,00, by by Ky By gttty ) 0y € R (K ky k) € RY 0y, 05,080 ) € R
X, (t)> X, (0)exp(a, + bt),VO<t <t )N X, (t) >k
=P|N(X,(t) > X, (0)exp(ay + b, (t —#,)),Vt, <t <t,)
NX, (1) >k N(X,(t) > X, (0)exp(ay + by (t —1,)),Vt, <t <t;)N X, (t;) >k
(2.14)

X, (0)exp(a, +bt),VO <t <t )N X,(t) >k
X, (0)exp(ay, +byt), ¥t <t <t)
ky N (X, () > X, (0)exp(ag + byt ), Ve, <t <t;)N X, (ty) > ky

In other words, taking n = 3,

- Pauy is the probability that an arithmetic Brownian motion will remain under the piecewise affine time-homogeneous

boundary g, (t) defined by (2.3) and under the successive endpoints k,k,, &,

- P[ AU2) is the probability that an arithmetic Brownian motion will remain under the piecewise affine

time-inhomogeneous boundary g, (t) defined by (2.4) and under the successive endpoints £, k,, k;
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- P[GU1] is the probability that a geometric Brownian motion will remain under the piecewise exponential

time-homogeneous boundary 5, (t) defined by (2.5) and under the successive endpoints £, k,, k;

- P[GUQ} is the probability that a geometric Brownian motion will remain under the piecewise exponential

time-inhomogeneous boundary h, (t) defined by (2.6) and under the successive endpoints k;, k,, k;

- P[ AL is the probability that an arithmetic Brownian motion will remain above the piecewise affine boundary g, (t)

defined by (2.3) and above the successive endpoints £, k,, k,

- P{ AL2] is the probability that an arithmetic Brownian motion will remain above the piecewise affine boundary g, (t)

defined by (2.4) and above the successive endpoints £, k,, k,

- P[Gm] is the probability that a geometric Brownian motion will remain above the piecewise exponential boundary

hy (t) defined by (2.5) and above the successive endpoints &, &, &,

- P{GLQ] is the probability that a geometric Brownian motion will remain above the piecewise exponential boundary

hy (t) defined by (2.6) and above the successive endpoints &, k,, &,

2.2 Statement of Formula 1

Formula1 Let P (11,0,a,,05,a5,b,by,b5.k, ky kst 15,1 ) be defined as in Subsection 2.1. Then,

(2.15)
B (Maa’alv%va3’b1’b27bgakpkwkgvtptwts)

z = bty — iy 92 — bty =ty _“2@2 _tl) 923 = byty — ity _“2<t2 _t1)_“3(t3 _t2>.

9 O-\/g ) O-\/g )

0

o\t
Vb [Nt [t

:q)3

A — bt, —2a) — 92— byty —2a; — ity — 1y (1, — 1)
oo oy |

A
_Cxp[;]q)i* 2y — bty — 20—ty — iy (t, — 1) — gy (s — 1)
o g3 Osls 1~ b Tl ) T M 2L ettt
3 1 29 2 3
a\/tg

pA” bty — b + 21t 02— byty — 205 + ity — 4y (t1 + tg)

31 2y — Doty — 20, + pyt, — o (b, 1) — pa (t, — ¢
g3 sl 2 110\/%<1 2) 3(3 2>;*\/t1/t27\/t2/t3
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02’

L bt — 20 — ity + 20t 9 2y = bty =205 +2a) + pty — 4y (tl + t2)
A

+exp| — U\/Z , G\/t—z

P,
02] 3 9z3 — byty — 20, + 20, +ﬂ1ti/7N2<tl +t2)*”3<t3 7t2);7 /tl /t271/t2 /t3
O\l

gl — bty — b + 2p5t 92— byty — ity — iy (1 — 1) + 2pgty
A " ’

>\4
Cxp[;]q)3 zg — bty — 205 + iyt +N2<t2 —t ) Ns t +t
0 T ./ %
3

5 = bt — 20 +2p5t — ity 92— byty —2a, — ity — 4y (tz - tl) + 245ty

0 , ,
+ex s 0] G\/t—l U\/_
p02 P\ 2z byty — 205 + 20y + gty + iy (f — ) — U3t+t
0 Nty
oty
7 = bt = 25t + 2t — it 92— byty — 205 + pyty — 4y (tl + tz) + 2p3t
+ exp ﬁ]q) O'\/Z U\/g
3
0,2 02:37()3153720(34’20(27,leltl+lu2<t1+t2)7ﬂ3(t2+t3).7m7 ; /t
TN b 3

o\lty

L~ b — 20 = 2pty + 20ty — ity

2y = byty — 20 + 2a; + it — (t1 + tQ) + 2p4t,

A 0 ;
exp[—Z] o, O'\/g

o 9z3 — bty — 205 + 20 — 2a; — it —l—,u2<t1 —l—tQ)—ug(t? +t3).

Z

- tl/t27_ t2/t3

where the function @ is a convolution of gaussian densities defined, forany » € N, by :

o [ml,...,:z?n;pl,...,pnfl]

2 n-l 2
% (yi+1 - pﬂh)
exp|—-+ — R (2.16)
P s e,
= Y,,---dy,

n—1
v (2m)'* TL1 = 2
D" = ]foo,xl] X }7OO,I2}...X]7OO,IH}, 7, ER, p, € }—1,1[ , 1€ {1,...,n}

The «a; terms, i € {2,3},in (2.15) are given by :

=a,|l +1 +1 +1
% % [ {P[...]:P[Auz]} {P[...]:P[Glrz]} {P[...]:P[ALZ]} {P[...]:P[GLZ]} }

124



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 5, No. 4; 2016

+a - b{"tl)[ﬂ{ﬂu-]:f’uw]} T e} TR =R T H{P[-»FP[GU]}]
= I I I I
043 a3[ {P[...]:P[AUZ]} + {P[...]:P[GUZ]} + {P[...]:P[ALZ]} + {P[...]:P[GLZ]}]

+(ay — byt [1[ +1 +1 +1 ]
(a5 = bt {P=Rae} T {Ra=Reent T R R} T {R=Re )

The X terms, i€ {1,2,3,4,56,7} ,in(2.15) aregivenby:
A= 20,
N = 205 — 2oty + 205
Ny = 20, + 20900 — 40, — 20t + 2405t
Ay = 20505 + 2M§t2 = 241y izt — 2411 (tz - t1)
Ny = 2p0 + 20, — ey + 2p5ty — 20t — 241 (tz - tl)
2 2
o = 2505 + 20y — A0y +2(py — )t 2 (= )+ 2085 (1 — 1) = 2 (1, — 1)
2 2
A =20y + 20 — Ay + 20 + 2y — gy ) 4+ 205 (8 — 1)
=2ty (t2 - tl) + 2(:“3 - “2)(2‘11 + M1t1)
The 2z terms, i€ {1,2,3} ,in (2.15) are given by :

2 = min(a1 + bltl,kl,aQ)H{ + Inin(a1 + btk a, + thl)]I{

P[...]:P[AUQ]}

PT...]:P[AUI]}

+min(a; + bt;,In(k /XQ(O)),%)]I{ + min(a, + bt;,In(k / X,(0)).a, + thl)]I{

P[...]:P[GUI]} P[...]:P[GUQ]}

+Inax<a1 + bltl,kl,aQ)H{ } + Inau((a1 + btk a, + thl)H{

P[...]:P[ALl] P[...]:P[ALZ]}

+max(a, + bt,In(k / X,(0)),a,)I + max(a; + bt In(k / X,(0)),ay + byt, )1
{ J {

P[...]:FTGLI] P[...]:P[Gm]}

2y = min(a2 + b, (t2 — tl)’kz’a:‘)]l{lj[__]:%ul]} + rnin(a2 + b, (t2 — tl),ln(k;2 /X, <O)>’a3)ﬂ{ﬁ...]:f’[cu1]}

+min (a, + byty, ky,a, +b3t2)11{ ) + min(a, + byt,,In(k, / X,(0)),a, +b3t2)]l{

P[...]:P[AUQ] P[...]:P[GUQ]}

+max(a2 + b, (t2 -1 ),1{:2,(13 >]I{P[...]:P1Au]} + max(a2 + b, (t2 -t ),1n(k2 / X, (O)),a3 )]I{P[...]:P[GLI]}

+max (a, + byly, ky,a; + bth)H{ )+ max (a, + byty,In(k, / X, (0)),a; + b3t2)]1{

P[...]:P[ALZ] P[...]:P[(;Lz]}
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2y = min(a, + b, (¢, ftQ),kS)]I{PT ) +min(ay + by (t; — 1, ),In(k, /XQ(O)))I[{

P[...]:P[Gl:l]}

...]:P[Am]

+min<a3 + b3t3,k3)1[{ } + rnin(a3 + b3t3,1n(k3 /X2(0>>)]I{

P[...]:P[AUZ] 1:'[.”]:13[(“}2]}

+max(a3 +b3(t3 ftQ),k?))H{PT } + rnax(a3 + 173(153 — tQ),1n<k3 /X2(0>>)]I{

P[...]:PTGLI]}

...]:P[Am]

+max(a3 + b3t3,k3)1[{ } + max(a3 + l)ng?),ln(k3 /XQ(O)))H{

P[...]:P[A\Lz] P[...]:P[GLQ]}

The g, terms, i€ {1,2,3},in (2.15) are given by :

= (,u B bl)[ﬂ{f’[...]:f’[m]} + ]I{P[...]:P[ALI]} + I[{P[...]:P[Am]} * H{P[...]:P[ALZ]}]

~Z |1 +1 +1 +1 ]
K 2 1][ {P[...]:P[Gm]} {P[...]:P[GLI]} {P[...]:P[GUQ]} {P[...]:P[GLQ]}

MQ - <'u - b2 )[H{P[...]:P[Am]} + ]I{P[...]:P[ALI]} + ]I{P[...]:P[AUZ]} * ]I{P[...]:P[ALZ]}]

~Z |1 +1 +1 +1 ]
a 2 2 [ {P[...]:P[GUI]} {P[...]:P[GLI]} {P[...]:P[GUQ]} {P[...]:P[GLZ]}

Hy = (,u B b3) H{P[__]:ij]} + I[{P[...]:P[ALI]} + H{P[...]:P[AUZ]} + ]I{P[...]:P[AI_Z]}]

~Z |1 +1 +1 +1 ]
a 2 3 [ {P[...]:P[GUl]} {P[.”]:P[CLI]} {P[...]:P[CUZ]} {P[...]:P[GLZ]}

0 isgiven by :

0=1|1 I I I
1[ {P[...]:P[AUI]} + {P[...]:P[AL'Z]} + {P[...]:P[GUI]} + {P[...]:P[GL'Z]}]

—1|I +1 +1 +1 ]
[ {P[...]:P[ALI]} {P[...]:P[ALZ]} {P[...]:P[Gm]} {P[...]:P[GLZ]}
End of Formula 1.

From a numerical perspective, Formula 1 raises the question of the evaluation of the function ®;. A straightforward
calculation yields the following integration rule :

¥ exp(—yg /2)

(1)3[1’1,172,1’3;,01#2]: f \/%

Yg=—0C

N Ty — PYs I3 — Pl

Vi=p | [N1-p

where the function N [ ] is the univariate standard normal cumulative distribution function.

N

dy, (2.17)

Using (2.17), the numerical evaluation of the function ®; is easy by means of a classical adaptive Gauss-Legendre
quadrature. Alternatively, the following identities can be verified :

2.18
<I>3{:r1,x2,:r3;\/t1/tQ,VtQ/t3]:N3[$1,:c2,x3;\/t1/tQ,\/tl/t:;,\/tQ/t3] @19
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2.19
(1)3{5”1@27“73?_\/’51/t2v_\lt2/t3]:N3[$175”2=$3§_\/t1/t27\/t1/tsv_\/tQ/tg] @19
2.20
(Ps{mlvavxg?_\ltl/t2v\/t2/t3]:N3[$1vx275”3;_\/t1/th_\/tl/t:w\/tQ/tg} 220
2.21
(1)3{5”1@27“73?\/’51/t27_\/t2/t3]:N3[$1vx275”3§\/t1/t2=_\/t1/t3=_\/t2/t3} 22D

where the function N, [.,.,.;.,.,.} is the trivariate standard normal cumulative distribution function, the numerical

evaluation of which can be performed with double precision and computational time of approximately 0.01 second using
the algorithm by Genz (2004).

A few numerical results are reported in Table 1, in which the P aui] survival probability is computed for increasing

levels of the volatility coefficient o and other parameters fixed as follows : p = 0.01, ¢ =0.25, &, =0.5,
=1, k=0, k=002, k=003, aq =022 b =-012 , a =a +bt , b =016,

as = ay + b, (t2 -t ) , by = —0.24 . Notice that the absorbing boundary here is continuous at times # and %, , but

non-continuous boundaries can be handled just as easily. Formula 1 is implemented using the algorithm by Genz (2004)
for the computation of the trivariate standard normal cumulative distribution function. The results are compared with
those obtained using the semi-analytical Monte Carlo algorithm devised by Wang and Pé&tzelberger (1997), denoted by
WP simulation algorithm, that enables to draw only the endpoints of the time subintervals at each run, which is
dramatically more efficient and accurate than a basic Monte Carlo simulation. Random numbers are drawn by the
Mersenne Twister generator.

For all computed values, a 5-digit convergence can be observed between Formula 1 and the WP algorithm, on condition
that a total of 100,000,000 stochastic simulations are performed. The latter method requires a computational time of 411
seconds on an i-7 4GHz personal computer. This is cut to 42 seconds when only 10,000,000 simulations are performed,
which achieves 5-digit convergence in 2 cases out of 3 and 4-digit convergence in one case. The numerical computation
of Formula 1 takes approximately 0.2 second. The efficiency of the implementation of the WP algorithm could probably
be improved, for instance by resorting to low discrepancy sequences instead of a pseudo random number generator, but
this is not the subject of this article.

Table 1. Numerical evaluation of the survival probability of an arithmetic Brownian under a one-sided piecewise affine,

time-homogeneous, absorbing boundary, as a function of volatility

Formula 1 WP WP
simulation algorithm simulation algorithm
10,000,000 runs 100,000,000 runs
Volatility = 20% 0.275332974 0.275318288 0.275387164
Volatility = 50% 0.257810712 0.257763484 0.257885116
Volatility = 80% 0.191728749 0.191718319 0.191716445

2.3 Proof of Formula 1
Only sequences of upper boundaries are tackled, since the results for sequences of lower boundaries ensue by symmetry

of Brownian paths.

Let us deal with process X, first. Let us denote by p the sought probability when the boundary is defined by g, (t)
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in (2.3). The random variables X, (tl ) , X (t2 ) and X, (tg ) are absolutely continuous random variables that admit
known Gaussian density functions. At time ¢, X; must be located below a, + b, k, and a,, in order not to be
absorbed; at time ,, it must stand underneath the points a, + b, <t2 -1 ),k2 and a,; at time {,, it must end below
as + b, <t3 -1, ) and k; . Hence, by conditioning with respect to X, <t1 ) , X (t2 ) and X, (t3 ), and by using the

weak Markov property of {X1 (t) > O} , one can come up with the following integral formulation of the problem :

f f f t)eds )N (X, (t)<a +btV0<t<t)) (2.22)

| =—00 Ty =—00 Ty =—00

P((X,(ty) € day ) V(X () < ay + by (t— 1),V <t <1)| X, (1)) € duy)

P((X,(t;) € duy) N (X, (1) < ag +by(t—1),Vty <t <)X, (t) € day ) dagdayda
2 =bty z—=biy z3—bit
- f f f Hi(o ) f (2, ) £ (2,25 ) dogdayda, (2.23)

IIZ*OO IZ =—00 13:700

where the functions fl(xl), f2<5()1,$2) and f3(;1:2,x3) are defined by :

fi(z) = P[Y(tl) € dx,, sup Y(t) <aq

(2.24)
0<t<t,

Jg(zl,xQ)_IP’[Y(tQ)Gd:L’Q, sup Y(t)<a2 bt1|Y Gd::;1 (2.25)

t <t<t,
i (@2 ) = P[Y(t3) € day, sup Y (t) < ay — byt |V (t,) € da, (2.26)

t,<t<t,

and the process {Y(t),t > O} is defined by :

(2.27)

pdt + 0dB(t),V0 <t < t,

dY (t) = { mydt + 0dB(t), Vt; <t <,
pydt + odB(t), Vi, <t <t

= p—0b i€ {1,2,3}

The function f| (ml) is obtained by differentiating the classical formula for the joint distribution of the maximum of

Brownian motion with drift and its endpoint over the closed time interval [ 0,1, ] (see, e.g., Karatzas and Shreve, 1991).
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To obtain the functions f2<561,$2) and f3(;v2,x3),the following lemma is introduced.

Lemma 1 Let {Y(¢),t >0} be an arithmetic Brownian motion with constant drift , € R and volatility
o € R, under a given probability measure P . Let ¢ and t be two non-random times such that
t, >t >t = 0.

Then,if z,, =z, and & are real constants with z, <h and z; <h ,wehave, attime ¢,

P|Y(t) < :rl.,Y<tj) <, sup Y(t)<h (2.28)
4, <t<t
N A e [2ﬂh] g+ pt, T = 2h -ty
= N. - l, Al | T — | ) ) "
2 0\/157 J\/tj t P o2 ? 0\/157 ‘7\/7]' ¢

where the function N, [xl,xQ;p] is the bivariate standard normal cumulative distribution function with upper bounds
r, and =z, and correlation coefficient p

Proof of lemma 1

tjgt,gr/]

= } }.P(Y(ti) € dy,Y(%) € dz)IP sup Y(t) < h|Y(t7,) c dy,Y(tj) c dx

t<t<t

dydz (2.29)

The pair (Y(ti),Y(t].)) is bivariate normal with correlation coefficient equal to ./t /tj . The conditional

cumulative distribution function of sup Y(t) is given by Wang and Potzelberger (1997) and can be written as
t<t<t,

follows :

P| sup Y(t) < h|Y(ti) € dy,Y(tj) € dz

=1—exp
t<t<t,

Q(h—y)(z—h)] (2:30)
o’ (t, — 1)

One can then solve the integration problem in (2.29) to obtain (2.28).

Differentiating the right-hand side of (2.29) and dividing by the density function of Y ( t, ) , one can obtain :

¢ (2@, hpo.t,t ) = PIY (1) € du;, sup Y (&) < h|Y(t,) € da,

tjgtgf,]
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) 2.31)
B _1 Ij—%—li(tj—ti) -
= exp 5 o’\/(tj = ti) ] /(01/27r(tj tt))
( ) 2h + (t, =) ’
B 2ulh —z; _lxj— T, —plt, =t —
exp[—a2 exp| —o o'\/(tj 7tl.) ] /(o,l?w(tj ti))
Plugging :
2.32
fz(%“’é) = ‘b(%mz’% - bzt1v“2vaat1’t2) (232
(2.33)

f:a(%vx?)) = ¢<x2,$3,a3 - b3t2,,u3,a,t2,t3)

into (2.23), the rest of the proof, whose details are omitted, then consists in performing the necessary calculations to
solve the triple integral in (2.22) and obtain the linear combination of eight trivariate cumulative distribution functions

given by Formula 1. Elementary modifications provide the survival probability when the boundary is defined by the

function 92<t> in (2.4). A basic application of Ito’s lemma to ln(X2(t> / X2(0>) shows that the survival
probability of the process X, is given by the formula for the survival probability of the process X, with the two

following adjustments : the drift coefficients become p, = p—b, — 02 /2, ic {1,2,3} and %k  becomes

In(k / X,(0)).

O
2.4 Generalization to Higher Dimension

Similar exact formulae can be derived for n > 3 but they become more and more cumbersome. In general, for any

n € N, they will involve a number 2" ofthe n — variate cumulative distribution functions of Gaussian type given by

(2.16). For an arithmetic Brownian motion subject to the absorbing boundary g, (t) , the integration problem to solve is

the following :
(2.35)

n—1
f [T im0 = bitip g ontotiy ) do,d, ...do,
pn =0

where z, = 0 and

D" = —oo,min(a1 + bt Ky, a, )] X }—oo,min(a2 + byty, by, ag )] X .o X }—oo,min[an_1 +0b, 4t, 1k, H

The main issue is numerical rather than analytical : evaluating the Gaussian integral given by (2.16) in high dimension is
not easy. Rewriting it in terms of the standard normal cumulative distribution function of order 7 , as was done in (2.18)

—(2.21) for n = 3, does not solve the numerical issue, as there does not exist an algorithm capable of evaluating the
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n — variate standard normal cumulative distribution function with arbitrary precision in “reasonable” time as soon as
n = 4 . For more background on this topic, the reader may refer to Genz and Bretz (2009).

However, for n = 4, it can be verified that the following integration rule holds :

. (2.36)
(I)4 [%Jga%a%#p%»ﬂg
T3~ Y2
Ty \ll—pg 9 5
_ f f iexp[_@? + y3) N Ty — P1Ys N T, — pgy1— ngg — P3P2Ys dy, dy
o 3 5 20Ys
Y =—00 Y3=—00 2m 2 \/1 - P \/1 - p3

More generally, the actual numerical dimension of the function ®  can always be reduced by a factor of 2 by using :

q)n [5517-T27--~,$n71,$n;p1,~--,pn727l)n71}

Ty Ty Ty (2.37)
_ f f N Ty — PiYs N Ly Pn1Yn—1
Yp=—00Y3=—00 Y, ;=-0 V- p12 Vi- pf”*l
€xp *ﬁféwﬁfpzygf"-*;(y 17 Pp_oY 2)2
2 2(1-p3) 21—p2, )" T

dy,dy,...dy, _,
n—2

n—2
s (1-p2)(2m) 2

Given the smoothness of the integrand in (2.37), it should be possible to attain a combination of accuracy and efficiency
that would be satisfactory for all practical purposes in “moderate” dimension, roughly speaking, by applying adaptive
Gauss-Legendre quadrature combined with a Kronrod rule (Kronrod, 1964; Calvetti et al., 2000) to reduce the number
of required iterations. These are standard numerical techniques and it is easy to find available code or built-in functions
in the usual scientific computing software. The dimension n at which the use of a closed form formula analogous to
Formula 1 ceases to be “competitive” with regard to a conditional Monte Carlo scheme should be numerically
investigated. It must be emphasized that, even in “high” dimension, where Monte Carlo simulation becomes the method
of last resort, exact formulae valid in lower dimension remain useful in two ways : they provide benchmarks with
respect to which the accuracy of the numerical algorithms can be checked, and they can be used as control variates that
substantially reduce the variance of the Monte Carlo estimates.

3. Survival Probability of an Arithmetic or a Geometric Brownian Motion under and above a Sequence of
Two-sided affine or Exponential Boundaries over a Finite Time Interval

3.1 Definitions
Let us consider a finite time interval [to,tz} divided in two subintervals [tU,tl] and {tl,t2 ] , by >t >1t, =0. The
absorbing boundary now consists of two parallel upper and lower curves in each time interval, these curves being line

segments when dealing with process X, or exponential curves when dealing with process X, . More specifically, let

P[] ( T, al,a2,a3,a4,b1,b2,k1,k2,tl,t2) be defined as one of the following four cumulative distribution functions,

where k and £, are real constants
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3.1
P[AULI](u,o,al,aZ,ag,a4,b1,b2,kl,kQ,tl,tQ), a, €R 0, € R, (ag,a4,b1,b2,kl,k2) € R®, 3.1)

ag > 04,03 > 0y + 01,8, >t >4, =0
- (X, (t) <a +0t,V0 <t <t )N (X (1) >a, +btVO<t <t )N X (1) <k
CN(X (t) <ag by (t— 1)V <t <t)N (X (E)>a, b, (t—1), YV <t <1,)NX () <k

3.2
P[AULQ](,u,a,al,aQ,a3,a4,bl,b2,k1,k2,t1,t2), a € R+,a2 eR (a3,a4,bl,b2,k1,k2) € R, (3-2)

ag > a4,a3 + bty > ay + 01,4, >t >4, =0
5 (X, () <a +0t,V0 <t <t )N (X (1) >a, +bEVO<t <t )N X (1) <k
N(X (1) <ay+bt,Vt <t <t,)N (X (1) >a, + btV <t <t,)NX (L) <k

33
P[GULI] (u,o,al,aZ,a3,a4,b1,b2,kl,kQ,tl,tQ), a, €R 0, € R, (ag,a4,b1,b2,kl,k2) € R®, (3-3)

ag > 04,03 > 0y + 01,8, >t >4, =0

(X, (t) < X,(0)exp(a, +bt),¥0 <t <t )N (X,(t)> X,(0)exp(a, +bt),¥0 <t < t,)
=P|NX, (4 ) <k N(X,(t) < X,(0)exp(ag +by(t—1,)),¥t <t <t)
N(X,(t)> X, (0)exp(ay, +b,(t —1)),Vt, <t <t,)N X, (1) <k
34
P[GULQ](,u,a,al,aQ,a3,a4,bl,b2,k1,k2,t1,t2), a €R 0, €R_, (a3,a4,bl,b2,k1,k2) € R, (3.4)
ag > a4,03 + bty > ay + 01,4, >t >4, =0

(X, (t) < X, (0)exp(a, +bt),¥0 <t <t )N (X,(t)> X,(0)exp(a, +bt),¥0 <t < t,)
=P|NX, (4 ) <k N(X,(t) < X,(0)exp(ag +byt), ¥Vt <t <t)
N(X,(t) > X, (0)exp(a, +byt), ¥Vt <t <1, )N X, (t,) <k,
3.2 Statement of Formula 2

Formula2 Let B 1(11,0,0y,ay,a5,a,,b,by,ky,ky, 1,1, ) be defined as in Subsection 3.1. Then,

B (:“7‘7"117“27“3’a4vb1vb2vk1vk2vt17t2)

(3.5)

-y 3 e

2
m=—00 n=—00 g

2 2
as mb —|—ﬁn¢]
o2
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ﬁ1_2
2

mo + ﬁ3—2m9—2n¢+/\2

o\

_N2

By —2mb + N B; —

14

o\

—N.

o\t

By —2mb + N\ B, —2mb —2n¢ + A,
2

)

2m9—2n¢+)\2 t‘

1

[V}

o\t

+N,

o\t

bl

|

mﬂ- |Hﬂ

0
SY Y e

m=—0o00 n=—00

B, —2mf + A, B, —2m0 — 2né + A, zﬂ

o\t

2
Ml ml + —= hiar ] (ﬁ4 — n¢—2m0) —l—%(,uQ — ,ulu2)t

v \ﬁ1—2m0+/\3 By — 20, + 2mb + 2n¢ + A
2 )

g

o\t

_N2

B, —2ml + A, B, —

o\t

26, +2mb + 2n¢ + A

.. b
) t2

o\t

1 /t_l]
b
t2

N By, —2ml + Ay —B, +2mb + 2ng + A\,
e o\t
By —2mO + \; —B, +2mb + 2n¢ + A
+N2 9
20

—Z Zexp

m=—00 n=—00

=l

o\t

—mf)]

[
b t2
+2%[n¢}]

N B, — 2a, +2mb + N By — 2a, +2mb — 2n¢p + A,
2 )

b
ty

=

N By —2ay +2mb + N\ B —
2

oty

t—w

20

2a2—|—2m0—2n¢+)\2 tﬂ

20

t.

[V}

oty

—2a, +2mf — 2n¢p + A, tﬂ

t

N B, —2ay, +2m0 + A B,
2
20
52 -
+N.
2 U\/t_1
+ Z Z exp L21<a2 9)—!—2&

g
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m

where the following notations hold :

B, —2ay +2mb + A\, By — 2ﬁ4+2a2+2nq5—2m9+)\

A B —~

N, By — 2a2+2m9+)\3’ﬁ3—2ﬁ4+2a2+2n¢—2m9+)\ ’
" "

N, 61—2a2+2m9+)\7—ﬁ4+2a2+2n¢—2m9+/\ \/til
U\/a U\/7 .

N, ﬁ2—2a2+2m9—|—)\, ﬁ4—|—2a2—|—2n¢—2m0+)\’ t}
o\t a\lt, t

'ul - <'u B bl)[H{P[...]:P[AULI]} * ]I{P[...]:P[AULZ]}] *

'UQ - (,U B b2 )[]I{P[...]:P[AULI]} * ]I{P[...]:P[AULZ]}] *

B, = (min(a, + bt ky,ay) — bltl)ﬂ{a“’:P[AUm
+(min(a, + b, In(k / X,(0)),ay) fbltl)ll{
+(min(a, + bt;,In(k / X,(0)),a5 +byt, ) — bltl)]l{

By, = (max<a2 + bltl,a4) — b1t1>[11{

—|—(max(a2 +bt,a, + th1> - bt )[H{

By

+(min(a3 + b, (t2

= (min(a3 + 122(152 - tl)ka) - bth)]I{

0_2

-2 b
S

0=a —a,

¢ =ay —ay

+(min<a3 + thz,ln(k2 /XQ(O))) - bth)]I{

P[...]:P[AULI]

P[...]:P[GULI]}

P[...]:P[AULI]} * ]I{P[...]:P[GULI]}]

t, ),hl(kg / X, (O))> = byl )H{PT_.;:P[GULI]}

P[ .]:P[GULQ]}

P[...]:P[GULQ)}

P[...]:P[AULZ]} + H{P[...]:P[GULZ]}]

)+ (min(ay + byty,ky ) — b2t2)]I{

:

N

4
t

2

)+ (min(a, + btk ay + byt ) — bltl)]l{

1 ][H{P[...]P[Gum]} + ]I{P[...]:P[GULZ]} ]

P[...]:P[AULQ]}

P[.,,]:P[AULQ]}

ﬂ4 - <a4 B thl)[I[{P[...]:P[AULI]} + ]I{P[...]:P[GUI_I]} ] + a4 []I{P[...]:P[AULZ]} + ]I{P[...]:P[GL'LZ]}]

A=t Ay =t

End of Formula 2.

_:“2(tz _t1)’ A

= =t + 2t A =ty

= 2ty

— Hy (t2

_tl)

A few numerical values are reported in Table 2 for various levels of volatility and other parameters fixed as follows :

=001, t =025,

t, =05, t, =

3_1’

k=0,

k, =002, a =036,
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b, =015, a; =a +bt, by =012, a, =a, +bt; , b = —0.12. A comparison is made with results

obtained using the algorithm by Pétzelberger and Wang (2001), denoted by PW, specifically designed for two-sided
boundaries. The infinite double series in Formula 2 is truncated to summation operators ranging from m = —4 to
m =4 and from n = —4 to n = 4, since adding more terms does not modify the obtained numerical results at
least up to the 8" digit. Computational time is approximately 0.3 second. In general, the infinite double series can be
truncated in a simple manner by setting a convergence threshold such that no further terms are added once the

difference between two successive finite sums becomes smaller than that prespecified level.

Table 2. Numerical evaluation of the survival probability of an arithmetic Brownian under a two-sided piecewise affine,

time-homogeneous, absorbing boundary, as a function of volatility

Formula 2 PW simulation algorithm  PW simulation algorithm
10,000,000 runs 100,000,000 runs
Volatility = 20% 0.377958716 0.377923023 0.377971427
Volatility = 50% 0.12468422 0.124786191 0.124625324
Volatility = 80% 0.02140513 0.021276911 0.021382631

3.3 Proof of Formula 2

Let us consider the calculation of P[ ALl Since the upper and the lower sides of the boundary grow at the same rate in
each time interval, i.e. at the rate b, both from below and from above in [to, 12 ] and at the rate b, both from below

and from above in [tl,tQ] , the same technique can be applied as in the beginning of the proof of Formula 1, i.e. the

initial boundary crossing problem is turned into one where the boundary and the drift of the process become piecewise
constant. Hence, denoting by p the sought probability, the problem can be formulated as follows :

8, By (3.6)
p:ff fl(:L’I)fQ(J:l,xQ)d:L’Qd:L’l
5, B,
where the functions fl(xl) and f2<:171,:r2) are defined by :
fi (:1;1) = IP’{ sup Y(t) < a,, inf Y(t) > a2|Y<t1> € dz, (3.7)
0<t<t, 0<t<t,
J;(xl,%):p{ sup Y (1) < ay — by inf V(1) > a, — bt ¥ (1) < ¥ (1) € da 538)
t<t<t, Ltst
and the process {Y(t),t > 0} is defined by :
[ mdt +odB(t), V0 <t <t
o )_{Mth+adB(t),\1tl <t <t (39
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po=p—b, ie{12}
The function f (ml ) results from the differentiation of the classical formula for the joint distribution of the maximum,

the minimum and the endpoint of a Brownian motion (see, e.g., Cox & Miller, 1965). To obtain f, (xl,xQ ) , the
following lemma is introduced.

Lemma 2  Let Y(t) be an arithmetic Brownian motion with constant drift © € R and volatility o € R under

a given probability measure P. Let ¢ be the conditional probability defined, at time #, = 0, by :

(3.10)
g = P| sup Y(t)gb, inf Y(t)>aY( )<:17]|Y del.

t<t<t; L St<t;

where z;,z;, o and b are real constants such that: b >a, b >z, >a, b>1; >a,and ¢, and ¢, aretwo

non-random times such that : tj > tj > (0 . Then,

X, —z—u(t t7) (b—a)}
N[ . L 3.11)
L D
i _N[a—aji— ( tt) (b—a ]
a\t; -,
r; —2a +x; — pll —t7)+2n(b—a>
B o0 2u(a—x7—n(b—a)) o\t; — 1,
n;mexp o? B —a+xt—u<tj—tt)+2n(b—a>
O'\/tj -t
Proof of lemma 2
(3.12)
P Y(tl.) < :ci,tjsgltlgth t) <o, n;rtl;]Y< ) > a,Y(t]) <
f f IP’ G dy,Y ( ) € dz)IP’ sup Y(t) <b, inf Y(t) > a|Y(tZ-) € dy,Y(tj) € dz |dzdy
y=az=a Lst<t LSt
The following result can be found in Guillaume (2010) :
(3.13)
P| sup Y(t)gb inf Y >a|Y Gdy,Y(tj)Gdz
f,jgtgf,} 2‘<f<2‘

[o¢]

= 3 exp

n=—0o0

2n<b —a)(z —y —n(b —a))] ~exp

GQ(tj—ti)

2<b —y —n(b — a))(z -b+ n(b — a))]
o’ (t, — 1)
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Plugging (3.13) into (3.12) yields :

PIY(1) <50 sup Y(0) <5, inf, (1) 2 0¥ (5) <3,
= i ex 2”M(b _G)J N T, — /“2,‘ Ij - 277,([) — (l) — 'utj. t_L (314)
n=—o00 P 0'2 ? J\/t: ’ U\/ITJ. 3 tj

a— pt, T; an(bfa)f,utj. t.

T, — a72n(b—a)—,utj

t.
) ; —|—N.

,Nz

~ |

a — ut. a72n(67a>futj t.
N, |—F, N
? U\/tj o\/tj t;
00 QM(a — n(b - a))} T, + pt, T —2a +2n(b — a) — Ht; t.
- N, | =
71;mexp 02 ’ 0-\/?1 O—\/?j tj
z; + pt; fa+2n<bfa)futj. ¢, a+ put, xj72a+2n<bfa)futj.

7N2

2

4 |k
U\/t7 ’ 0\/?]. 7 tj 0'\/1?1.’ 0\/?]. ’ t]w

a+ ut; —a+2n(b—a)—ptj.7 4
0\/157’ o\/tj ’ t;

The interchange between summation and integral is a straightforward application of Tonelli’s theorem to non-negative

+N,

measurable functions, where the measures are the counting measure on Z and the Lebesgue measure on R . Lemma
2 ensues by differentiating (3.14) and dividing by the density function of Y(ti ) .

O

Applying Lemma 2, the function f, (ml,mQ) can be plugged in (3.6). Then, performing the necessary calculations,

Formula 2 can be obtained.
O
4. Conclusion

In this paper, new formulae were obtained for the probability of absorption of generalised Brownian motion through
sequences of affine or exponential one-sided or two-sided boundaries. It was shown that the method could be applied to
higher numbers of successive one-sided boundaries. However, such an extension may not be commendable in the case
of two-sided boundaries, as the resulting analytical formulae will involve a quickly increasing number of summation
operators, thus slowing down the process of numerical convergence.
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