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Abstract 

In this paper, data on road traffic casualties by age groups, from 2009 to 2013, will be used. Using published road traffic 

casualty statistics from the National Road Safety Commission of Ghana, a 2  8 contingency table is used to determine 

whether road traffic casualty and age group are independent. A one factor analysis of variance tests shall be used to 

conduct a comparative analysis of the rate of road traffic fatalities per 100 casualties across the various age groups in 

Ghana. A multiple comparison test, using the Fisher least significance difference (LSD) method, shall be conducted to 

determine which pairs of age groups are significantly different. 

The study will show that road traffic casualty is not independent of age group. The analysis of variance will show that 

there are significant differences in road traffic fatality indices (fatality per 100 casualties) among various age groups in 

Ghana. The risks of dying in a road traffic accident among children under 6 years and older population who are over 65 

years are both significantly higher than those of other age groups. This points to the fact that, although smaller number of 

children under 6 years and older population who are over 65 years die in road traffic accidents each year, more and more 

people as a proportion of the recorded number of casualties, are being killed through road traffic accidents among these 

two categories of age groups. Thus, the probability of being killed in a fatal road traffic accident is significantly high in 

each of these two age groups.  
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1. Introduction 

The European Economic Commission (EEC) and the World Health Organization (1979) have recommended a definition 

for a road traffic accident fatality. This includes only deaths which occur within 30 days following a road traffic 

accident while road traffic casualties refer to road traffic accident victims injured or killed within 30 days of the 

accidents. A number of countries have not yet adopted this definition. For example, in some countries, a road traffic 

fatality is recorded only if the victim dies at the site or is dead upon arrival at a hospital. In order to make comparison of 

accident statistics between countries reasonable, figures obtained from countries which have not adopted the 30-day 

fatality definition, should be properly adjusted.  No adjustment is required for figures from countries such as Ghana, 

U.S.A and Great Britain, which have adopted the standard fatality definition. 

Casualties of road traffic accidents in Ghana by age groups, from 2009 – 2013, are given in Table 1. Unlike many fatal 

diseases, road traffic accidents kill people from all age groups, including young and middle-aged people in their active 

years. A cumulative total of 10 555 fatalities is recorded over the 5-year period. The highest fatalities during the period 

were in the 26 – 35 year old. Table 1 also shows that the active age group, 16 – 45 years, was the most vulnerable in 

road traffic fatalities, representing 63.2% of the total fatalities in the 5-year period. 

According to the National Road Safety Commission (NRSC) of Ghana 2013 annual report, one key national Road 

Traffic Fatality index (F. I.) required for characterization and comparison of the extent and risk of road traffic fatality is 

fatalities per 100 casualties (see Hesse and Ofosu, 2015). In Table 1, the distribution of the rate of road traffic fatalities per 

100 accidents by age groups from 2009 – 2013 are also computed.  
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Table 1. Age distributions of fatalities and injuries from road traffic accidents from 2010 to 2013 

  Casualties 

  Persons Killed Persons Injured 

  2013 2012 2011 2010 2009 Total 2013 2012 2011 2010 2009 Total 

A
g
e 

g
ro

u
p

s 
(Y

ea
r
s)

 

0 – 5   97 113 126 136 130 602 214 241 276 389 401 1521 

6 – 15 148 170 212 217 250 997 529 789 846 962 1112 4238 

16 – 25  315 335 365 269 388 1672 2172 2509 2723 3110 3245 13759 

26 – 35  531 661 658 577 609 3036 3871 4458 5070 5297 5861 24557 

36 – 45  359 441 400 379 383 1962 2162 2753 3009 2932 3138 13994 

46 – 55 188 236 209 184 222 1039 1001 1334 1374 1399 1512 6620 

56 – 65  149 159 126 129 141 704 472 621 493 563 618 2767 

Over 65 111 125 103 95 109 543 190 296 229 266 246 1227 

 Total 1898 2240 2199 1986 2232 10555 10611 13001 14020 14918 16133 3994 

 

It can be seen, from Table 2, that the F. I. increased from 24.5 to 31.2 among children under  6 years from year 2009 to 

2013, whilst that of the „over 65‟ age groups increased marginally from 30.7 to 36.9 over the same period. In very 

simple terms, these changes imply that the chance of at least one casualty dying as a result of road traffic accident has 

increased over the period. It can be observed that, over the 5 year period, the „over 65‟ continues to be the age group 

with the highest national fatality rate. For instance, in 2013, about 37% of all road traffic casualties who were over 65 

years lost their lives while 31% of casualties who were 5 years old or less died as a result of road traffic accidents.  

 

Table 2. Rate of fatalities per 100 casualties (fatality indices) 

 

  0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 

 

  1 2 3 4 5 6 7 8 

2013 1 31.2 21.9 12.7 12.1 14.2 15.8 24.0 36.9 

2012 2 31.9 17.7 11.8 12.9 13.8 15.0 20.4 29.7 

2011 3 31.3 20.0 11.8 11.5 11.7 13.2 20.4 31.0 

2010 4 25.9 18.4 8.0 9.8 11.4 11.6 18.6 26.3 

2009 5 24.5 18.4 10.7 9.4 10.9 12.8 18.6 30.7 

mean  29.0 19.3 11.0 11.1 12.4 13.7 20.4 30.9 

The number of road traffic fatality victims in Ghana can be classified according to two criteria, of a set of entities, 

namely casualty and age group. Casualty has 2 levels (i.e. fatalities and injured) while age group has 8 levels. These 

form a 2  8 contingency table as shown in Table 3.   

 

Table 3. Road traffic accidents victims from 2010 to 2013 

  
Age Group  

  
0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 Total 

ca
su

a
lt

y
 

Fatalities 602 997 1672 3036 1962 1039 704 543 10555 

Injured  1521 4238 5759 24557 13994 38551 2767 1227 92614 

 

Total 2123 5235 7431 27593 15956 39590 3471 1770 103169 

In this study, we wish to know whether road traffic casualty and age group are independent. If they are independent, 

then we would expect to find the same proportion of fatalities across various age groups. We also propose the use of the 
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completely randomized single factor experiment to determine if there are significant differences in road traffic fatality 

index rates among the various age groups.  

2. Method 

Table 4 shows an r  c contingency table where  
ijO  is the observed frequency for level i of the first method of 

classification and level j of the second method of classification, where 
1

c

i ij
j

R O


   is the marginal total for row i and 

1

r

j ij
i

C O


   is the marginal total for column j. Note that 
1 1

,
r c

i j
i j

R C n
 

    where n is the total sample size. 

 

Table 4. An r × c contingency table 

 Columns  

 1 2 …  c Total 

1 11O  12O  … 1cO  1R  

2 21O  22O  … 2cO  2R  

                . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

r 1rO  2rO  … rcO  rR  

Total 1C  2C  … cC  n 

We are interested in testing the null hypothesis 

 0:H  the row-and-column methods of classification are independent 

against the alternative hypothesis 

 1:H  the row-and-column methods of classification are not independent.  

The test statistic is given by (see Cramér (1946) and Birch (1964)). 

   

2

1 1

( )r c ij ij

i j ij

O E
H

E 


                                       (1) 

were ijE  is the expected cell frequency for the (ij)th cell. It can be shown that, if 0H  is true, then: 

   
(column total) (row total)

.
grand total

i j
ij

R C
E

n

 
                             (2) 

It can also be shown that, for large n, the statistic H has an approximate chi-square distribution with (r – 1)(c – 1) 

degrees of freedom if 0H  is true (see Ofosu and Hesse (2011)). Therefore, we would reject the hypothesis of 

independence if the observed value of the test statistic H is greater than the critical value 
2

, ( 1)( 1)r c  
 , where  is the 

size of the test. An extensive treatment of the chi-square distribution can be found in the book by Lancaster (1969). 

If we reject the null hypothesis, we conclude that there is some interaction between the two criteria of classification.  

3. Results 

3.1 Test of Independence 

The null and the alternative hypotheses are: 

 0:H  Casualty is independent of age group.  

Rows 
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 1:H   Casualty is not independent of age group.  

We first find the expected cell frequencies. These are calculated by using Equation (2). Table 5 shows the expected cell 

frequencies of Table 3 using Equation (2). For example, 10555  2123
11 103169

217.200.E    

 

Table 5. Expected cell frequencies of Table 3 

  

Age Group  

  

0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 Total 

ca
su

a
lt

y
 Fatalities 217.200 535.582 760.250 2822.981 1632.424 4050.368 355.111 181.085 10555 

Injured  1905.800 4699.418 6670.750 24770.019 14323.576 35539.632 3115.889 1588.915 92614 

 

Total 2123 5235 7431 27593 15956 39590 3471 1770 103169 

Note that the expected frequencies in any row or column add up to the appropriate marginal total. The test statistic is  

22 8 (   )
.

1 1

ij ij

ij

O E
H

E
i j




 
   

When 0H  is true, H has the chi-square distribution with 7 [i.e. (2 – 1)(8 – 1)] degrees of freedom. We reject 0H  at 

0.05 level of significance when the computed value of the test statistic is greater than 2
0.05,7 14.07.   Substituting 

both the observed values in Table 3 and their corresponding expected values in Table 5 into 
2(   )

,
O Eij ij

ij Eij


   we 

obtain the cells in Table 6.  

 

Table 6. Calculations of the observed test statistic 

 

1 2 3 4 5 6 7 8 Total 

1 j  
245.97 213.55 497.18 14.95 55.36 8727.95 172.90 241.22 10169.08 

2 j  
97.35 50.24 144.35 1.85 7.76 235.23 43.99 106.75 687.52 

Total 343.32 263.79 641.53 16.79 63.12 8963.18 216.89 347.97 10856.59 

 

Thus, the observed value of the test statistic is  

  
22 8 (   )2

1 1

10856.59.
O Eij ij

Eiji j



 

     

Since.10856.59 14.07 , we reject the hypothesis of independence and conclude that casualty is not independent of age 

group. 

3.2 Completely Randomized Single Factor Experiment 

Table 2 is a typical data of a single-factor experiment with 8 levels (age groups) of the factor, where the factor is the 

effect of age on F. I. We wish to determine if there are significant differences between the average F. I. across the 8 age 
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groups. In Table 2, let ijy represent the thi observation taken under the thj age group and  

5 8 5

. . . .. .. ..
1 1 1

,     21,    ( 1,  2,  ...,  8),    ,     40.j ij j j ij
i j i

y y y y j y y y y
  

        

Let j  represent the true mean of the thj  age group and ij  the experimental error. The model for the completely 

randomized single factor experiment is    

,     ( 1,  2,  ...,  8,  1,  2,  ...,  5).ij i ijy j i                                 (3) 

The one-way analysis of variance model assumes that the observations are normally and independently distributed with 

the same variance for each region or factor level (see Ofosu et al. (2014)).  

3.2.1 Validation of Normality and Homogeneity of Variances Assumptions 

We check the normality assumption, using the Shapiro-Wilk W test. The null hypothesis is 

0:H  observations under each region are normally distributed 

against the alternative hypothesis 

1:H   observations under each region are not from a normally distributed population   

The value of the Shapiro-Wilk W test statistic for each of the eight age groups is given in Table 7 below. 

 

Table 7. Observed values of the W test statistic 

Test Statistic 0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 

oW  0.802 0.883 0.864 0.930 0.871 0.951 0.836 0.925 

0H  is rejected at the 5% level of significance if the computed value of W is less than 0.762, the tabulated 5% point of 

the distribution of the Shapiro-Wilk test statistic. For each of the 8 age groups, we fail to reject 0H  and therefore 

conclude that there is not enough evidence of non-normality of these samples. 

Levene's test (Levene 1960) is used to test if 8 samples have equal variances. We wish to test  

2 2 2
0 1 2 8: ...H        against  

2 2
0: i jH        for at least one pair (i, j). 

In Table 2, let ijy represent the thi observation taken under the thj age group and  

5 5 8

. . . .. .. ..
1 1 1

,      5,     ( 1,  2,  ...,  8),     ,      40.j ij j j ij
i j i

y y y y j y y y y
  

        

t = number of treatments = 8 

in  = number of observations from treatment (region) i  

1 2 9...N n n n     = overall size of combined samples = 40, 

ij ij iD y y   absolute deviation of observation j from treatment i mean 

iD   average of the in  absolute deviations from treatment i 

D   average of all N absolute deviations 

The Levene‟s test statistic is given by  

  
   

8 8 22

1 1

    

7 32
.

i i i ij i
i i

n D D n D D

LeveneF  

  
                               (4) 

When 0H  is true, LeveneF  has the F-distribution with 4 and 40 degrees of freedom. 0H  is rejected at significance 

level 0.05 when the observed value of LeveneF  is greater than 0.05, 7, 32 2.33.F   Since the observed F-ratio, 1.332, is 

less than the critical F-value, 2.33,  we fail to reject the null hypothesis at the 0.05 level of significance and conclude 

that there are no significant differences among the ten variances. 
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3.2.2 One-way Analysis of Variance 

Since the normality and homogeneity of variances assumptions are validated, we can use the one-way analysis of 

variance to determine if the fatality indices across age groups vary significantly. We wish to test the hypothesis 

 0:H  The mean fatality indices are the same across the 8 categories of age groups,   

against the alternative hypothesis 

 1:H  The mean fatality indices are not the same for at least 2 of age groups. 

The total corrected sum of squares is given by  
8 5

2
40

1 1

2
..  2374.360.

y
ij

j i

SST y
 

                                    (5) 

The sum of squares among treatments is  

2 2. ..
8

5 40
1

  2193.712.
jy y

j

SSA


                                     (6) 

The within treatment sum of squares, ,SSW can be obtained from the equation  

180.648.SSW SST SSA                                     (7) 

The analysis of variance results, based on the data in Table 2, are summarized in Table 8 below. 

Table 8. Analysis of variance table 

Source of variation Sum of squares Degrees of freedom Mean square F-ratio 

Among treatments 2193.712    7 313.387 

55.513 Within treatments  180.648 32     5.645 

Total 2374.360 39 

  
The test statistic is  

among treatments mean square

within treatments mean square
.F   

When 0H  is true, F has the F-distribution with 7 and 32 degrees of freedom. We reject 0H  at significance level 0.05 

when the observed value of F is greater than 0.05, 7, 32 2.33.F   From Table 8, the computed value of F is 55.513. 

Since the observed F-ratio, 55.513, is greater than the critical F-value, 2.33, we reject the null hypothesis at the 0.05 

level of significance and conclude that there are significant differences among the fatality indices across the 8 age 

groups.  

4. Discussion 

4.1 Multiple Comparison Method 

Since the analysis of variance indicates that the null hypothesis should be rejected, it means that there are differences 

among the 8 treatment means. But as to which of the means are significantly different, the analysis does not specify. 

Obviously, in such a situation, we need a different method for comparing individual treatment means. One such 

methods is the multiple comparison test. 

Over the years, several methods for making multiple comparison tests have been suggested. Duncan (1951, 1952, 1955) 

has contributed a considerable amount of research to the subject of multiple comparisons. Other multiple comparison 

methods in use are those proposed by Tukey (1949, 1953), Newman (1939), Keuls (1952), and Scheffé (1953, 1959). 

The advantages and disadvantages of the various multiple comparison methods are discussed by Bancroft (1968), 

O‟Neill and Wetherill (1971), Daniel and Coogler (1975), Winer (1971) and Ofosu et al. (2014). Daniel (1980) has 

prepared a bibliography on multiple comparison procedures.  

The oldest multiple comparison method, and perhaps the most widely used, is the least significant difference method of 

Fisher, who first discussed it in the 1935 edition of his book “The design of experiments” (see Ofosu et al. (2014)). To 

use this method, we first calculate the least significant difference, (LSD), for the given data. This is given by 
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 1
2

2
,

   ,MSW
N k n

LSD t
 

                                     (8) 

where the level of significance 0.05, 40, 5, 8N n k      and 5.645.MSW   This gives  = 3.068.LSD  

The observed difference between each pair of means is compared to the LSD. If the observed numerical difference is 

greater than 3.068, then the road traffic fatality indices of the two age groups are significantly different. The values of 

the observed numerical differences between pairs of means of the 8 age groups are given in Table 9.  Pairs of age 

groups with fatality indices not significantly different are highlighted in Table 9. 

 

Table 10. Observed numerical differences between pair of means of road user classes 

 

 

0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 

   29.0 19.3 11.0 11.1 12.4 13.7 20.4 30.9 

0 – 5   29.0   9.7 18.0 17.9 16.6 15.3 8.6 1.9 

6 – 15 19.3     8.3 8.2 6.9 5.6 1.1 11.6 

16 – 25  11.0       0.1 1.4 2.7 9.4 19.9 

26 – 35  11.1         1.3 2.6 9.3 19.8 

36 – 45  12.4           1.3 8.0 18.5 

46 – 55 13.7             6.7 17.2 

56 – 65  20.4               10.5 

Over 65 30.9                 

 
For example, from Table 9, it can be seen that, the observed numerical difference between the mean fatality indices for 

the age groups „0 – 5‟ and „26 – 35‟ is 17.9. Since 17.9 is greater than 3.068, it follows that there is a significant 

difference between the two age groups with respect to F. I.  It is obvious that the road traffic fatality index for „0 – 5‟ age 

group is significantly higher than that of other age groups except for „Over 65‟. This means that, the risk of dying in a 

road traffic accident among „0 – 5‟ and „Over 65‟ are both significantly higher than those of other age groups, recording 

an average rate of 29.0 and 30.9 deaths per 100 casualties, respectively. 

5. Conclusion 

We‟ve shown that road traffic casualty level depends on age group of victims involved using a 2  8 contingency 

analysis.  

The analysis of variance revealed that there are significant differences in road traffic fatality indices (fatality per 100 

casualties) among various age groups in Ghana. The risks of dying in a road traffic accident among children under 6 

years and older population who are over 65 years are both significantly higher than those of other age groups. This 

points to the fact that, although smaller number of children under 6 years and older population who are over 65 years 

die in road traffic accidents each year, more and more people as a proportion of the recorded number of casualties, are 

being killed through road traffic accidents among these two categories of age groups.  Thus, the probability of being 

killed in a fatal road traffic accident is significantly high in each of these two age groups. This may be due to higher 

fragility of children and older population of road users.    

These findings are consistent with a related study by Loughran et al. (2007), in which they reported that older drivers 

are more than twice as likely as middle-aged drivers to cause an accident. The research revealed that drivers and 

passengers riding in cars driven by older drivers are nearly seven times likelier to die in an auto accident than are 

passengers and drivers riding in cars driven by middle-aged drivers. This statistic suggests that older individuals are 

much likelier than middle-aged individuals to die in a car accident. Given these trends, the research suggests that public 

policy should focus more on improving the safety of automobile travel for older drivers and less on screening out older 

drivers whose driving abilities have deteriorated unacceptably. 
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