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Abstract

We present a direct calculation for determining the probability that a rare genetic variant is the cause of an observed
disease, under appropriate assumptions, in terms of the joint prevalence of the disease and of rare variants. Our calcula-
tion provides a resolution of the so-called “variant of unknown (or uncertain) significance” problem, which has plagued
medical genetics researchers.
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1. Introduction

It frequently arises in medical genetics that a patient has a particular disease, and also has a genetic variant which may or
may not be the cause of that disease. The variant is said to be of unknown or uncertain significance if its disease-causing
probability cannot be determined, and this is a common challenge (see e.g. Richards et al. (2008), Cheon, Mozersky, and
Cook-Deegan (2014), Domcheck and Weber (2008), and the references therein). The problem is put succinctly in the
patient guide by Ambry Genetics (2015), which states, “Variants of unknown significance are DNA changes with too little
information known to classify as either pathogenic or benign, and it is unknown whether they contribute to a medical
condition.”

Assessing whether or not the genetic variant did indeed cause the disease is important not only for future medical research
and prevention, but also as a practical guide to whether or not the patient’s family members are also at risk. However, in
the case of a rare variant with little or no previous information available, it is unclear how this assessment should be made.

In this paper, we present a direct calculation for determining the probability that a rare genetic variant is indeed the
cause of an observed disease. Our calculation requires one assumption, namely the natural-seeming “Variant Fraction
Assumption” that in the absence of any other evidence, the probability that a newly observed rare genetic variant of a
gene causes a specified disease is equal to the fraction of all previously-observed rare variants of that gene which did
cause that disease (see Section 4.3 for details). With this one assumption, we are able to compute the desired probability
purely in terms of the disease’s prevalence in the population, and the fraction of rare variants in the general population
and in the diseased population. Our results are described below.

2. Formal Set-Up

To set up our probability model, we make the following assumptions and notations:

• A certain disease D has a known prevalence p in the general population.

• Among the healthy population, a certain known fraction q have some distinct rare variant of a certain gene G.

• Among patients with the disease D, a certain fraction r ≥ q have some distinct rare variant of the gene G.

• Some subset S of the rare variants of G always cause the disease D, i.e. the probability of disease given a rare variant
in S is 1.

• Rare variants of G which are not in S have no effect on D, i.e. the probability of disease given a rare variant not in
S is the same as for patients without a rare variant.

• A new patient X is found to have a never-before-seen variant V of the gene G.
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The question is, given all of the above, if X gets the disease D, then what is the probability that the genetic variant V was
actually a cause of the disease D in X? That is, we wish to compute the conditional probability

P(V ∈ S | X has the disease D) ,

i.e. the probability that X’s variant V is in fact a cause of the disease D in X, given that X has the variant V and also has
the disease D. We describe our calculation of this and related probabilities below.

We first note that since the genetic variant V has never been seen before, it is impossible compute its probabilities without
making some additional assumption. Thus, we also make the Variant Fraction Assumption that in the absence of any other
evidence, the probability that a newly observed genetic variant of a gene G is a cause of D, is equal to the fraction of all
of the previously-observed rare variants of G which were indeed found to cause D. For a more precise statement of this
assumption, see Section 4.3 below.

Remark. In fact, the assumption that r ≥ q follows directly from the other assumptions; see Appendix A2.

3. Main Result

Our main results are as follows. (Below, “unconditional probability” means the probability without conditioning on
whether or not X has the disease D. Also, we write “V is the sole cause of D” to mean that V caused D, and furthermore
patient X would not have gotten D in the hypothetical case that they instead did not have the rare variant V.)

Theorem 1. For the above set-up, for a patient X having a rare variant V of gene G, under the Variant Fraction Assump-
tion, we have the following probabilities, where y = (r − q)/(1 − q), z = p(1 − y)/(1 − py), w = py / [pr + (1 − p)q], and
u = (1 − z)w.
(a) The unconditional probability that the variant V is a cause of the disease D is given by:

P(V ∈ S ) = w .

(b) The unconditional probability that patient X will get disease D is given by:

P(X gets D) = z + u .

(c) Conditional on patient X getting the disease D, the conditional probability that the variant V was the sole cause of D
is given by:

P(X′s disease D was caused solely by V | X has D) =
u

z + u
.

(d) Conditional on patient X getting the disease D, the conditional probability that the variant V is a cause of D is given
by:

P(V ∈ S | X gets D) =
w

z + u
=

r − q
r(1 − q)

.

Theorem 1 thus gives precise probabilities for the relevant possibilities related to patient X and disease D and rare genetic
variant V. In particular, Theorem 1(d) gives a precise estimate of the probability, given that patient X has disease D and
has the rare genetic variant V, that V is in fact a cause of the disease D.

Theorem 1 is proved in the next section. We first consider some numerical examples.

For example, if p = 1/4, 000 is the prevalence of the disease in the general population, and q = 2% = 0.02 is prevalence
of some rare variant of G in the healthy population, and r = 40% = 0.4 is the prevalence of some rare variant of G in
patients with the disease, then conditional on X getting the disease, the probability that the variant V is a cause of the
disease works out to: P(V ∈ S | X gets D) = 0.9699815 � 97.0%, or about 97 percent (i.e., nearly certain).

Or, if p = 1/400 and q = 0.01 and r = 0.4, then P(V ∈ S | X gets D) � 98.5%.

By contrast, if p = 1/50 and q = 0.1 and r = 0.2, then P(V ∈ S | X gets D) � 58.1%, which is much smaller.

Or, if p = 1/400 and q = 0.1 and r = 0.15, then P(V ∈ S | X gets D) � 39.5%.

A plot of other values of P(V ∈ S | X gets D) is presented in Figure 1 as a function of r, with q = 0.1 fixed.

Probabilities for other parameter values can be computed using the above formulae, or using our simple javascript online
calculator available at: www.probability.ca/pathprob
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Figure 1. Disease cause probabilities as a function of r, with q = 0.1 fixed.

As a further check, we note that the formula in Theorem 1(d) gives answers which make sense even for certain extreme
parameter values. For example, if r = 1 (i.e., 100%), then it is computed that the formula gives a value of 1. This makes
sense, since if r = 1, then by the definition of r, every diseased patient has a rare variant of G, which means that the
disease can only be caused by a rare variant of G, so that V must indeed cause D.

Or, if q = 0, then again it is computed that the formula gives a value of 1. This also makes sense, since if q = 0, then by
the definition of q, no healthy patients have rare variants of G, which means that rare variants of G always cause D, so
again V must indeed cause D.

By contrast, if r = q, then it is computed that the formula gives a value of 0. This again makes sense, since if the rate of
rare variants of G is the same for diseased and healthy patients, then the rare variants of G do not cause any additional
disease at all, so none of them cause D.

As a final comment, we note that since u = (1 − z)w, the formula in Theorem 1(c) is smaller than that in Theorem 1(d) by
a factor of (1 − z). This is due to the possibility that V ∈ S but X still “would” have gotten D by chance alone, i.e. that V
does indeed cause D, but X would have gotten D even in the absence of V (e.g. from a variant of some other gene besides
G). Now, usually z will be very small, so the answers in (c) and (d) will be very similar, though not identical.

4. Proof of Theorem 1

In this section, we prove Theorem 1 using a sequence of probability calculations. We break up our argument into several
steps.

4.1 Preliminary Population Prevalence Calculations

We first note that our assumption above that rare variants of G which are not in S have no effect on D, can be written more
formally as

P(X has D | X has a rare variant V < S ) = P(X has D | X has no rare variant) .

From this it follows (see Appendix A1) that

P(X has rare variant V < S | X has D, and no variant in S ) = P(X has some rare variant | X does not have D) .
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We next calculate two population fractions that will be important in our solution.

First, we write y for the fraction of diseased patients who have a rare variant of G which is in S, i.e. which does cause D.
(Thus, y is close to r, but slightly less since even among diseased patients without a variant in S, a fraction q of them will
still happen to have a rare variant not in S by chance alone, just like for the healthy population.)

In terms of y, the set of all diseased patients can be divided into three groups: a fraction y with a rare variant of G which
is in S, a fraction (1 − y)q with a rare variant of G which is not in S, and a fraction (1 − y)(1 − q) with no rare variant of G
at all. Hence, the fraction of diseased patients with some rare variant of G is equal to y + (1 − y)q.

On the other hand, we know that the overall fraction of diseased patients with some rare variant of G is equal to r. For
this to hold, we must have y + (1 − y)q = r. Solving for y, we obtain that y = (r − q)/(1 − q).

Then, since a fraction p of the population is diseased, and a fraction y of diseased patients have a variant in S, it follows
that the fraction of the total population who have a rare variant in S is equal to the product py. And, the fraction who do
not have a rare variant in S is equal to 1 − py.

Next, we write z for the prevalence of the disease D among all people who specifically do not have a variant in S. Then
the fraction of people who have D but do not have a variant in S is equal to (1 − py)z. And, the fraction of people with a
variant in S (who therefore have D) is equal to py. So, the total fraction of the population who have the disease D is equal
to (1 − py)z + py.

On the other hand, we know that the overall prevalence of the disease is equal to p. For this to hold, we must have
p = py + (1 − py)z. Solving for z, we compute that z = p(1 − y)/(1 − py).

4.2 The Prior Probability of Disease

Prior to diagnosis, what was the prior probability that a given patient X, who has some rare variant V, would get the
disease D? That is, what is the conditional probability that X gets D, conditioning (throughout) on the fact that X has a
rare variant V?

To answer this question, let I be the indicator function of the subset S, so I(V)=1 if V ∈ S, otherwise I(V)=0. We know
that the prior probability of X getting the disease D is equal to 1 (i.e., 100%) if I(V)=1, or is equal to z if I(V)=0. So, if
we knew I(V), i.e. if we knew whether or not V causes D, then could write this as:

P(X gets D | I(V)) = z + (1 − z) × I(V) .

In fact we do not know I(V), i.e. it could equal either 1 or 0. So, instead, we use the Law of Total Expectation (that the
expected value of a conditional probability is the unconditional probability). This shows that:

P(X gets D) = E
[
P(X gets D | I(V))

]
= z + (1 − z) × E[I(V)]

= z + (1 − z) × P[I(V) = 1] = z + (1 − z) × P(V ∈ S ) .

This gives a formula for the prior probability that X would get D, in terms of the probability P(V ∈ S ) that V is in S.
However, we do not know P(V ∈ S ), so it must be estimated.

4.3 The Variant Fraction Assumption

To continue, we need to obtain an estimate for P(V ∈ S ), the unconditional probability (in the absence of any other
evidence) that the newly observed variant V of G is in fact a cause of the disease D. Now, since V was never before seen,
there is no way to directly calculate this probability. Instead, as mentioned above, we use the Variant Fraction Assumption
that in the absence of any other evidence, the probability that a newly observed genetic variant of a gene G is a cause of
D, is equal to the fraction of all of the previously-observed rare variants of G which were indeed found to cause D. That
is, we assume that

P(V ∈ S ) =
fraction of the population with a disease-causing rare variant of G

fraction of the population with any rare variant of G
.

This assumption appears to be quite reasonable, in the absence of any other prior information about the new variant V. In
any case, some such assumption must be made, otherwise no probabilities associated with V can possibly be computed.
But under this one assumption, all of the remaining probability calculations can be completed.

4.4 Estimating the Variant Probability

Using the above Variant Fraction Assumption, we are able to compute the desired probability P(V ∈ S ). To do this, we
need to compute the fraction of all of G’s rare variants which are in S. We proceed as follows.
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Since a fraction p of the population is diseased, and since a fraction r of them have some rare variant of G, it follows that
the fraction of the population who are diseased and have some rare variant of G is pr. Similarly, since y is the fraction of
diseased patients who have a variant in S, it follows that the fraction of the population who are diseased and have a rare
variant in S is py. Also, the fraction of the population who are healthy and have some rare variant of G is (1 − p)q.

That is, a fraction pr+ (1− p)q of the population has a rare variant, and a fraction py of the population has a rare variant in
S. So, assuming these rare variants are all distinct, the fraction of all the rare variants of G in the entire population which
are in S is equal to py/[pr + (1 − p)q].

We then estimate the probability P(V ∈ S ) by the above fraction of all the rare variants of G which are in S, i.e. by

P(V ∈ S ) ≈ py / [pr + (1 − p)q] =: w

where w = py / [pr + (1 − p)q], as claimed in Theorem 1(a).

Now, since we earlier derived the prior-to-diagnosis probability P(X gets D) = z+ (1− z)×P(V ∈ S ), it then follows from
the above estimate that

P(X gets D) = z + (1 − z) × w =: z + u

where u = (1 − z)w, as claimed in Theorem 1(b).

4.5 The Cause Probability

The above formula for P(X gets D) can be interpreted as follows: Patient X can get the disease D either without any
influence at all from the gene G (with probability z), or caused by the variant V of G (with probability f ).

Under this interpretation, given that X does in fact have the disease D, the conditional probability that the disease D in X
was caused by the genetic variant V, and would not otherwise have arisen, is given by the second probability divided by
the sum of the two probabilities, i.e. by:

P(X’s disease D was caused solely by V | X has D) =
u

z + u
,

as claimed in Theorem 1(c).

This formula thus gives an estimate of the probability, given that patient X has disease D, that the disease was caused
solely by their rare genetic variant V of the gene G. This is similar to, but not quite the same as, our desired conditional
probability, as we now explain.

4.6 Computing the Conditional Probability

Putting the previous equations together, we can compute the required conditional probability, as follows:

P(V ∈ S | X gets D) =
P(V ∈ S , and X gets D)

P(X gets D)

=
P(V ∈ S )

P(X gets D)
=

w
z + u

.

This gives our first formula claimed in Theorem 1(d).

Finally, through careful algebraic simplification, it is verified directly that in fact w
z+u =

r−q
r(1−q) (which, surprisingly, does

not depend on p), thus giving the second formula claimed in Theorem 1(d).

Remark. The above equations can be combined as follows. We have that

u
z + u

= P( D was caused solely by V | X gets D)

= P(D was caused solely by V) / P(X gets D)

= P(D was caused solely by V | V in S ) P(V in S | X gets D)

= P(D was caused solely by V | V in S )
w

z + u
,

whence
P(D was caused solely by V | V in S) =

u
w
=

(1 − z)w
w

= 1 − z .
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Taking the complementary event,

P(X would have gotten D even without having V | V in S) = z ,

which makes sense since z is the prevalence of the disease in people who do not have a rare variant, corresponding to the
appropriate hypothetical.

Final Remark. After originally completing this research, we became aware of the related recent paper by Ruklisa, Ware,
Walsh, Balding, and Cook (2015). That paper mostly focuses on specific probability estimates for specific diseases and
specific genetic variants. However, it does begin with what they call the “prior odds of pathogenicity”, which appears to
correspond to odds for the event P(V ∈ S | X gets D) considered in Theorem 1(d) above. For that case, they assert that the
odds “might be assumed to be” given by

Burden of rare variants in cases − Burden of rare variants in controls
Burden of rare variants in controls

.

In our notation, this appears to correspond to asserting that

P(V ∈ S | X gets D)
1 − P(V ∈ S | X gets D)

=
r − q

q
,

or equivalently that

P(V ∈ S | X gets D) =
r−q

q

1 + r−q
q

=
r − q

r
.

This last expression is fairly similar to the final formula in our Theorem 1(d), but it differs by a factor of 1 − q. It appears
that the reason for this discrepency is their assertion that “it is reasonable to assume that the burden of benign rare variants
in cases is equal to the burden of rare variants in controls”, which apparently corresponds to assuming that

P(Rare variant not in S | Diseased) = P(Rare variant not in S | Not diseased) ,

which is different from what we believe (for more see Appendix A3).

Appendix: Additional Probability Calculations

We here provide a few additional probability calculations, to further clarify some of the material in the main text. For
these calculations, define a through f to be the proportions of the total population in each of the six categories implied by
the following Table:

Diseased Not diseased
Rare variant in S a d

Rare variant not in S b e
No rare variant c f

A1. We first show that the assumption

P(X has D | X has a rare variant V < S) = P(X has D | X has no rare variant) (∗) .

implies the condition that

P(X has rare variant V < S | X has D, and no variant in S) = P(X has some rare variant | X does not have D) . (∗∗)

In terms of the above Table, condition (∗) is equivalent to saying that b/(b+e) = c/(c+ f ), i.e. that b/e = c/ f . Meanwhile,
condition (∗∗) is equivalent to saying that b/(b + c) = (d + e)/(d + e + f ). On the other hand, our assumption that variants
in S always cause the disease D implies that d = 0. Hence, if b/e = c/ f , then (d + e)/(d + e + f ) = e/(e + f ) = b/(b + c),
thus establishing (∗∗).

57



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 5, No. 4; 2016

A2. We here show that the assumption r ≥ q actually follows from our other assumptions. Indeed, in terms of the above
Table, using as above that d = 0 and e/(e + f ) = b/(b + c), we have that

q = P(Rare variant | Not Diseased) =
d + e

d + e + f
=

e
e + f

=
b

b + c
.

Also
r = P(Rare variant | Diseased) =

a + b
a + b + c

.

The result then follows since

r − q =
a + b

a + b + c
− b

b + c
=

(ab + ac + b2 + bc) − (ab + b2 + bc)
(a + b + c)(b + c)

=
ac

(a + b + c)(b + c)
≥ 0 .

A3. Finally, we consider the quantities which arise in the reference Ruklisa et al. (2015), as discussed in our Final
Remark above, namely

P(Rare variant not in S | Diseased) (&)

and
P(Rare variant not in S | Not diseased) . (&&)

In our notation, (&&) = P(Rare variant not in S | Not diseased) = q which, in terms of the above Table, is equal to
e/(e + f ). By contrast, (&) = P(Rare variant not in S | Diseased) = b/(a + b + c). Hence, assuming (∗), we have
(&) = b/(a + b + c) ≤ b/(b + c) = e/(e + f ) = (&&). Furthermore, we have non-zero equality only when a = 0, which
corresponds to no variants in S, i.e. to the gene G having no effect whatsoever on the disease D. Otherwise, a > 0, and
hence (&) < (&&) (assuming b > 0), leading to a different result from that of Ruklisa et al.
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