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Abstract

One of the numerically preferred methods for fitting a function to noisy data when the underlying function is known to
be smooth is to minimize the roughness of the fit while placing a limit on the sum of squared errors. We show that the
fit can be formulated as a solution to a convex program. Since convex programs can be solved by various methods with
guaranteed convergence, our formulation enables one to use these methods to compute the fit numerically. Numerical
results show that our formulation is successfully applied to the problem of sensitivity estimation of option prices as
functions of the underlying stock price.
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1. Introduction

We consider the problem of fitting a function g : [a, b)→ R to noisy data when the underlying function f∗ : [a, b)→ R is
assumed to satisfy a certain smoothness condition. We presume that we observe m noisy measurements Yi1, . . . ,Yim of f∗
at each xi ∈ [a, b) for 1 ≤ i ≤ n, and that

Yi j = f∗(xi) + ϵi j,

for 1 ≤ i ≤ n and 1 ≤ j ≤ m, where ϵi1, . . . , ϵim are independent and identically distributed (iid) with a mean of 0 and a
variance of σ2

i < ∞. We are particularly interested in the case where the underlying function f∗ is known to be k times
differentiable (for k ≥ 2) and its kth derivative is square integrable. This situation naturally arises when the (k − 2)th
derivative of f∗ is observed to be smooth, and hence, one tries to find the fit g by minimizing the roughness of the (k−2)th
derivative of the fit g. Since the “roughness” of a function f : [a, b) → R is measured by

∫ b
a

{
f (2)(x)

}2
dx, the roughness

of the (k−2)th derivative of g is measured by
∫ b

a

{
g(k)(x)

}2
dx. While minimizing the roughness

∫ b
a

{
g(k)(x)

}2
dx, one needs

to ensure that the fitted function is close enough to the estimated values of f∗. This can be done by imposing a limit on
the sum of squared distances between the fitted function and the estimates of f∗ as follows:

n∑
i=1

(Y i − g(xi))2/n ≤ S

for some positive constant S > 0, where Y i =
∑m

j=1 Yi j/m for 1 ≤ i ≤ n. This leads to the following formulation for
computing the fit:

Minimize
∫ b

a

{
g(k)(x)

}2
dx subject to

n∑
i=1

(
Y i − g(xi)

)2
/n ≤ S (1)

over g ∈ Dk, where

Dk =

{
f : [a, b)→ R : f is k times differentiable and

∫ b

a

{
f (k)(x)

}2
dx < ∞

}
.

Formulation (1) was introduced by Schoenberg (1964) and was studied extensively in the numerical analysis community
by a number of authors including Reinsch (1967), Reinsch (1971), Wahba (1975), and Gander (1980). Formulation (1) is
often contrasted, in the statistics literature, with the following formulation:

Minimize
n∑

i=1

(
Y i − g(xi)

)2
/n + λn

∫ b

a

{
g(k)(x)

}2
dx (2)
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over g ∈ Dk for a sequence of nonnegative real numbers (λn : n ≥ 1). In Formulation (2), the term
∫ b

a

{
g(k)(x)

}2
dx

measures the roughness of the fit g and the term
∑n

i=1

(
Y i − g(xi)

)2
/n measures the sum of squared errors. The parameter

λn controls the trade-off between the roughness and the goodness-of-fit.

One of the advantages of Formulation (1) over Formulation (2) is that a good estimate of S is easily provided in For-
mulation (1), while the performance of Formulation (2) is highly sensitive to the choice of (λn : n ≥ 1) and selecting
(λn : n ≥ 1) is not straightforward. For this reason, Formulation (1) is preferred in the numerical analysis community.
A good estimate of S in Formulation (1) can be obtained using the laws of large numbers as follows. By the weak law
of large numbers,

∑m
j=1 ϵi j/

√
m converges in distribution to N(0, σ2

i ) as m increases to infinity, where N(µ, σ2) denotes a
normal random variable with a mean of µ and a variance of σ2. Hence, ϵ2i , where ϵ i = (1/m)

∑m
j=1 ϵi j, can be approximated

by (N(0, σ2
i ))2/m for m sufficiently large. By applying the strong law of large numbers in n,

∑n
i=1(N(0, σ2

i ))2/n can be
approximated as

∑n
i=1 σ

2
i /n for n sufficiently large. Therefore, the following approximation is possible

1
n

n∑
i=1

(
Y i − f∗(xi)

)2
=

1
n

n∑
i=1

ϵ2i ≈
1

nm

n∑
i=1

(N(0, σ2
i ))2 ≈ 1

nm

n∑
i=1

σ2
i

for n and m sufficiently large. The symbol ≈ is used to informally express “approximate equality.” In practice, σ2
i is

estimated by the sample variance S 2
i of Yi1, . . . ,Yim for 1 ≤ i ≤ n; i.e., S 2

i =
∑m

j=1

(
ϵi j − ϵ i

)2
/(m − 1). A good estimate of

S is thus
∑n

i=1 S 2
i /(nm).

Despite its practical importance, there exist few numerical procedures that compute the solution of Formulation (1) with
guaranteed convergence. Traditionally, the solution of (1) is computed as follows. For each S > 0, there is a unique
λn = λn(S ) such that the solution of (2) for this λn is the solution of (1). Furthermore, the solution of (2) for this λn,
denoted by gλn , satisfies

∑n
i=1

(
Y i − gλn (xi)

)2
/n = S . Since (2) can be solved by solving a set of linear systems (pages

410–412 of Györfi et al., 2002), λn(S ) can be computed iteratively by means of the Newton procedure starting from an
initial guess of λn(S ). This procedure does not guarantee global convergence to the solution of (1); see Reinsch (1971).

In this paper, we show that (1) can be reformulated as a convex program (Proposition 1). Convex programs can be solved
using various methods that guarantee global convergence to the solution; see the Lagrangian method on page 217 of
Zangwill (1969) for an example of methods that solve convex programs. Our formulation thus enables one to compute the
solution of (1) with guaranteed convergence by using those methods and powerful software packages that are designed to
solve convex programs.

This paper is organized as follows. Section 2 describes the proposed formulation in detail. Numerical results in Section 3
illustrate that our formulation is successfully applied to the problem of sensitivity estimation of option prices as functions
of the underlying stock price. Concluding remarks are included in Section 4.

1. Proposed Formulation

In this section, we describe how Formulation (1) can be reformulated as a convex program. We first present some prelim-
inary results.

A spline function with degree r > 1 with knots x1, . . . , xn, where a < x1 < . . . , < xn < b, is a function s : [a, b) → R
having the following two properties: (a) In each of the intervals [a, x1), [x1, x2), . . . , [xn−1, xn), [xn, b), s(x) is given by
some polynomial of degree r or less, and (b) s(x) is r − 1 times continuously differentiable on [a, b). We denote the set
of spline functions with degree r by Sr([a, b)). Even though Sr([a, b)) seems to be infinite dimensional, it turns out to
be finite dimensional with the dimension equal to r + n + 1. We describe one of the bases for Sr([a, b)), which is the
set of B-splines; the B-splines are preferred in numerical studies since they have bounded supports, and hence, produce
well–conditioned numerical settings. We introduce additional knots x−r, . . . , x0, xn+1, . . . , xn+r+1 so that

x−r < x−r+1 < · · · < x0 < a < x1 < · · · < xn < b < xn+1 < · · · < xn+r+1.

The B-spline Bi,r of degree r is defined recursively by

Bi,0(x) =
{

1, if xi ≤ x < xi+1
0, otherwise (3)

for i = −r, . . . , n + r and x ∈ R and

Bi,l(x) =
x − xi

xi+l − xi
Bi,l−1(x) +

xi+l+1 − x
xi+l+1 − xi+1

Bi+1,l−1(x) (4)
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for i = −r, . . . , n+ r− l, l = 1, . . . , r, and x ∈ R. By Theorem 14.1 on page 262 of Györfi et al. (2002),
{
Bi,r : i = −r, . . . , n

}
restricted to [a, b) is a basis of Sr([a, b)). We are ready to present the main result of this paper.

Proposition 1 Assume 2 ≤ k ≤ n. Consider the minimization problem

minimize
∫ b

a

{
g(k)(x)

}2
dx (5)

subject to
1
n

n∑
i=1

(
Y i − g(xi)

)2 ≤ S

over g ∈ Dk for some constant S > 0. Then, there exists a solution ĝn ∈ Dk to Problem (5). Furthermore, ĝn can be
represented as

ĝn(x) =
n∑

i=−(2k−1)

ĉiBi,2k−1(x)

for x ∈ [a, b), where the ĉis are the solution to the following convex program in the decision variables c−(2k−1), . . . ,
cn, y1, . . . , yn ∈ R.

minimize
∫ b

a

 n∑
i=−(2k−1)

ciB
(k)
i,2k−1(x)

2 dx =
n∑

i=−(2k−1)

n∑
j=−(2k−1)

cic j

∫ b

a
B(k)

i,2k−1(x)B(k)
j,2k−1(x)dx

subject to
n∑

i=1

(
Y i − yi

)2
/n ≤ S , (6)

n∑
i=−(2k−1)

ciBi,2k−1(x j) = y j, j = 1, . . . , n.

Proof. We letC =
{
(y1, . . . , yn) ∈ Rn :

∑n
i=1

(
Y i − yi

)2
/n ≤ S

}
. It should be noted thatC is a nonempty, closed and bounded

subset of Rn.

By Lemmas 20.2 and 20.3 on pages 415 and 416 of Györfi et al. (2002), for any y = (y1, . . . , yn) in C, there exists a unique
spline function h of degree 2k − 1 satisfying h(xi) = yi for i = 1, . . . , n and h(l)(a) = h(l)(b) = 0 for l = k, . . . , 2k − 1.
Furthermore,

∫ b
a

{
h(k)(x)

}2
dx ≤

∫ b
a

{
g(k)(x)

}2
dx for any g ∈ Dk satisfying g(xi) = yi for 1 ≤ i ≤ n. Since (Bi,2k−1 :

−(2k − 1) ≤ i ≤ n) is a basis of S2k−1([a, b)) (Theorem 14.1 on page 262 of Györfi et al., 2002), there exists a unique
c−(2k−1), . . . , cn such that h(x) =

∑n
i=−(2k−1) ciBi,2k−1(x) for x ∈ [a, b). The cis are determined by the following linear system

with n + 2k variables and n + 2k linear equations:
n∑

i=−(2k−1)

ciBi,2k−1(x j) = y j

n∑
i=−(2k−1)

ciB
(l)
i,2k−1(a) = 0 (7)

n∑
i=−(2k−1)

ciB
(l)
i,2k−1(b) = 0

for j = 1, . . . , n and l = k, . . . , 2k − 1. By the uniqueness of c−(2k−1), . . . , cn, the linear system (7) is nonsingular, and

hence, the map from y in Dk to
∫ b

a

{
h(k)(x)

}2
dx is continuous. Hence, there exists ŷ = (ŷ1, . . . , ŷn) ∈ C that minimizes∫ b

a

{
g(k)(x)

}2
dx over g ∈ Dk. Let ĥ be the unique spline function satisfying ĥ(xi) = ŷi for i = 1, . . . , n and ĥ(l)(a) = ĥ(l)(b) =

0 for l = k, . . . , 2k − 1. Let ĉ−(2k−1), . . . , ĉn be the solution to (7) when (y1, . . . , yn) = (ŷ1, . . . , ŷn). Obviously, ĥ is a feasible
solution to (6). For any feasible solution c−(2k−1), . . . , cn, y1, . . . , yn of (6),

∑n
i=−(2k−1) ciBi,2k−1(x) belongs toDk, and hence,∫ b

a

(∑n
i=−(2k−1) ciB

(k)
i,2k−1(x)

)2
dx is less than or equal to

∫ b
a

{
ĥ(k)(x)

}2
dx. Thus, the ĉis and the ŷis are the solution to (6). 2

We close this section by describing how to evaluate the B-splines and the integration of the product of their kth derivatives
that appear in (6). The B-splines can be evaluated recursively through Equations (3) and (4). The kth derivative of the
B-spline can be evaluated recursively through the following relation: for a B-spline of degree r,

dBi,r(x)/dx = (r/(xi+r − xi))Bi,r−1(x) − (r/(xi+r+1 − xi+1))Bi+1,r−1(x) (8)
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for i = −r, . . . , n and x ∈ [a, b); see Lemma 14.6 on page 265 of Györfi et al. (2002).

There are a couple of ways to compute the integration in (6). First,
∫ b

a B(k)
i,2k−1(x)B(k)

j,2k−1 (x)dx can be computed by evaluat-

ing B(k)
i,2k−1 using the recursion in (8) and by numerically evaluating the integration. Second, one can use the closed form

formula for the integration of the product of the kth derivatives of the B-splines given by Equation (7) on page 1026 of
Vermeulen et al. (1992) and the closed form formulas for the B-splines (Equation (1.20) on page 8 of Dierckx, 1993) to
directly compute the kth derivatives and the integration of their products.

3. Numerical Results

3.1 A Motivation from Finance

This paper is motivated by the need to estimate the price of a stock option and its derivatives as functions of the underlying
stock price. The first and second derivatives of an option price play an important role when financial institutions manage a
portfolio of stocks and stock options in an attempt to hedge the risks associated with the portfolio. For example, consider
a call option that gives the holder of the option the right to buy the underlying stock by a certain date for a certain price.
Since the price of such a call option depends on the underlying stock price, the option price can be denoted by f∗(x),
where x is the underlying stock price per share. The delta (∆) of the option is defined by the first derivative d f∗/dx of
the option price with respect to the underlying stock price. It is well known that a portfolio consisting of a short position
of the call option and a long position of ∆ shares of the underlying stock is expected to grow at a risk-free interest rate.
Since the value of delta changes as the underlying stock price changes over time, the number of shares of the underlying
stock in the portfolio must be changed periodically to stay in the risk-free position. This step is called rebalancing. When
rebalancing a portfolio, the gamma (Γ) of the option, which is the second derivative d2 f∗/dx2 of the option price with
respect to the underlying stock price, is used since the value of gamma tells us how much delta changes, and hence, how
many shares of the underlying stock should be sold or bought in order to stay in a delta neutral position.

Recently, financial institutions have been issuing stock options with much more complex payoff structures than that of a
call option. For such options, the option price cannot be expressed in a closed-form formula, and hence, one needs to use
simulation to estimate the option price. Simulation of the option price consumes a significant amount of time. In order
to facilitate quick decisions, traders in financial institutions conduct simulations before they actually need to rebalance a
portfolio. Since the underlying stock price in the future cannot be predicted accurately, the traders conduct simulations
for all possible underlying stock prices on the day when rebalancing takes place. The question thus boils down to how
to estimate the option price f∗ and its first and second derivatives, d f∗/dx and d2 f∗/dx2, over a range [a, b) of possible
underlying stock prices using simulation.

One simple strategy for estimating f∗, d f∗/dx and d2 f∗/dx2 for x ∈ [a, b) is to choose various possible values for the stock
price, say x1, . . . , xn, from [a, b), estimate the option price at each xi for 1 ≤ i ≤ n using simulation, use finite differences
of the estimated option prices to estimate delta, and use finite differences of the estimated delta values to estimate gamma.
A serious drawback of this approach is that the estimated delta and gamma values often lead to noisy curves as functions
of the underlying stock price. It is especially frustrating for traders to see gamma values fluctuating around zero because
positive gamma values suggest purchasing additional shares of the underlying stock, while negative gamma values suggest
selling some of the shares. Figure 1 shows an example of the estimated gamma values plotted against the underlying stock
price. The stock prices S 1, S 2, and S 3 are close to one another, but the graph suggests different strategies because the
gamma values are positive, negative, and positive at S 1, S 2, and S 3, respectively. This degree of randomness in the gamma
curve is not acceptable in practice.

To overcome this drawback, we propose fitting a curve g : [a, b)→ R to the estimated values of f∗ so that the fitted curve
has a smooth second derivative. Since the “roughness” of a function f : [a, b) → R is measured by

∫ b
a

{
f (2)(x)

}2
dx, the

roughness of the second derivative of g is measured by
∫ b

a

{
g(4)(x)

}2
dx. While minimizing

∫ b
a

{
g(4)(x)

}2
dx, we want to

make sure that the fitted function is close to the estimated values of f∗ by placing a limit on the sum of squared distance
between the fitted values and the estimated values. This leads to the following optimization problem:

minimize
∫ b

a

{
g(4)(x)

}2
dx

subject to
1
n

n∑
i=1

(
Y i − g(xi)

)2 ≤ S

over g ∈ D4, where Yi j is the jth replication of the estimated value of the option price at xi for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The above formulation is a special case of Formulation (1) with k = 4.
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Figure 1. The horizontal axis is the underlying stock price, and the vertical axis is gamma.

3.2 Applying Our Formulation to Sensitivity Estimation of Option Prices

We consider the case where f∗(x) is the expected payoff of a certain equity-linked security (ELS) when the underlying
stock price is denoted by x. The payoff function of the ELS has the following structure. Suppose that the ELS is issued at
time 0 and matures at time T . We denote the underlying stock price at time t ∈ [0,T ] by S t. There are q days when early
redemption is possible. On each of those days di for 1 ≤ i ≤ q, the ELS expires with a payoff of $ri if S di/S 0 exceeds
some threshold bi. Otherwise, the ELS does not expire until maturity. If there is no early redemption and S t/S 0 does not
drop below a limit b until maturity, then the ELS expires with a payoff of $1 at maturity. Otherwise, the ELS expires with
a payoff of $S T /S 0 at maturity.

We let a = 90, b = 110, and xi = 90 + (20)(i/n) − (10/n) for 1 ≤ i ≤ n. For each xi, a sample path of a geometric
Brownian motion is generated as a trajectory of the stock price between now and maturity, and the corresponding payoff
of the ELS is computed. Yi j is the payoff computed this way in the jth replication of the geometric Brownian motion at xi.
The parameters used for the experiment are T = 365 days, q = 6, d1 = 61, d2 = 122, d3 = 182, d4 = 243, d5 = 304, d6 =

365, b1 = 0.9, b2 = 0.9, b3 = 0.85, b4 = 0.85, b5 = 0.8, b6 = 0.8, r1 = 1.05, r2 = 1.10, r3 = 1.15, r4 = 1.20, r5 = 1.25, r6 =

1.30, and b = 0.7. The remaining time until maturity is 60 days, the annual volatility is 30%, the annual risk–free interest
rate is 5%, and the initial stock price at time 0 is $125.

We set m = 50, so 50 sample paths for the geometric Brownian motion are generated at each xi to compute Yi1, . . . ,Yi50
for 1 ≤ i ≤ n. We compute Y i =

∑50
j=1 Yi j/50 for 1 ≤ i ≤ n and use (x1,Y1), . . . , (xn, Yn) to compute the proposed estimator

ĝn by solving (6) with CVX, a package for specifying and solving convex programs (Grant & Boyd, 2014). The constant
S in Formulation (6) is replaced with

∑n
i=1 S 2

i , where S 2
i is the sample variance of Yi1, . . . , Yim for 1 ≤ i ≤ n.

To measure the accuracy of the proposed estimator, we compute the following integrated mean square error (IMSE) be-
tween the underlying function f∗ and ĝn:

∑n
i=1 (ĝn(xi) − f∗(xi))2 /n, where f∗(xi) is estimated from the average of 400, 000

iid replications of Yi j at each xi. Table 1 reports the averages and the standard deviation of the IMSE, computed based on
200 iid replications of ĝn, for a variety of n values. The IMSE decreases as n increases, which displays the convergence
of ĝn to f∗ as n→ ∞.

Table 1. The averages and the standard deviation of the IMSE when f∗(x) is the price of the ELS.

n 5 10 20 40 80 160

IMSE Average (10−4) 8.6 4.4 2.1 1.1 0.7 0.6
Standard deviation (10−4) 6.1 2.9 1.5 0.8 0.5 0.3

4. Concluding Remarks

In this paper, we study a numerically preferred formulation for fitting a smooth function to noisy data. Numerical results
illustrate that our formulation successfully computes the fit. They also suggest that the fit converges to the true function
as the number of observations in the data set increases to infinity. Future research topics include studies on asymptotic
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properties of the fit when the number of observations in the data set increases to infinity.
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