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Abstract

From the view point of constructing a composite possessing the largest possible common covariability with all of its
constituent tests, the concept of the best equi-covariable composite (BEC) has been introduced. When the covariance
matrix of the constituent tests are so structured that its row (column) totals are all equal, the corresponding BEC is shown
to be reducible to simple aggregated (or averaged) test. Under the purview of congeneric tests, it is shown that there
exists a special form termed tau-proportionate congeneric form in which case the simple aggregated (or averaged) test is
not only the BEC but also the most reliable composite. Statistical techniques of the estimation of parameters, testing and
goodness-of-fit of the such structure are considered with the aid of an illustrative example.

Keywords: congeneric tests, most reliable composite, Cronbach’s alpha, goodness-of-fit indices, structural equation
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1. Introduction

In classical test theory, it is assumed that the score obtained by an examinee in a test is the sum of a true score and
error score where those are uncorrelated. For a set of p tests purportedly aiming at measuring the same trait, the scores
x1, x2, · · · , xp with corresponding true scores τ1, τ2, · · · , τp is said to be congeneric if every pair of true scores τg and τh

has unit correlation. Such a set of observed test scores is represented in a vector form as (Jöreskog, 1971, Sec.2)

X = µ + βτ + e (1)

where X = (x1, x2, · · · , xp)′ is the vector of p scores, β = (β1, β2, · · · , βp)′ is a vector of regression coefficients, e =
(e1, e2, · · · , ep)′ is the vector of error scores, τ is a random varible without any loss of generality scaled to zero mean and
unit varince, providing βgτ as the true score for any typical test g. The error scores e1, e2, · · · , ep are assumed random
variables having zero expectations and zero correlations with τ and as well as within themselves. They may have possibly
different variances, say ψ11, ψ22, · · · , ψpp. Thus, τ and the components of X and e are all regarded as random variables
for a populations of examinees (Zimmerman, 1975). The p-component vector µ is treated as the mean score vector of X.
Typically for any two tests g and h, τg = βgτ, τh = βhτ, v(τg) = β2

g = cov(xg, τ), v(τh) = β2
h = cov(xh, τ) and cov(τg, τh) =

βgβh implying corr(τg, τh) = 1 (as assumed for congenericity of tests). The covariance matrix Σ = ((σgh))p × p under
congeneric model (1) is given by

Σ = ββ′ + ψ (2)

where ψ = diag(ψ11, ψ22, · · · , ψpp). The precision, more clearly the reproducible capacity of the test g, is quantified by
reliability coefficient(ρgg) being defined as the proportion of the observed score variance ‘accounted for’ by the true score
variance (Miller, 1995):

ρgg =
β2

g

β2
g + ψgg

. (3)

As the true score variance remains unknown, ρgg is obtained by constructing another test having the form “parallel” to the
test g (say, test h) and applying upon the same group of individuals and finally correlating the two series of scores due to
the fact that the correlation between xg and xh has the same expression as (3).The notion of parallel forms of a test aims
at “ making no difference which is used”. The statistical criterion of parallelity is to have “equality of means, equality of
variances and equality of covariances of the tests” (cf. Gulliksen, 1950, Ch.14). Parallel tests can be used interchangeably.
They have equal reliabilities and equal validities in predicting a given criterion.The requirement of equal means will not
be considered in this paper. The covariance matrix (Σ) arising from a group of p parallel forms of the typical test g would
take the form

Σ = β2
0Ep + ψ00Ip. (4)
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Such structure (4) is otherwise called “uniform” or “intraclass” structure (ICS) (Geisser, 1964; Srivastava, 1965). Here,
V(xg) = β2

0 + ψ00 and Cov(xg, xh) = β2
0, g , h. Ep is the (p × p) matrix with all elements unity. Ip is the identity matrix

of order p. (4) is a positive definite matrix involving only two parameters β2
0 and ψ00. The reliability of the test g under

parallel form of tests (PFT) is thus

ρgg/PFT =
β2

0

β2
0 + ψ00

. (5)

Sometimes the forms of the tests are considered less restrictive compared to parallel forms, e.g., tau-equivalent tests as
well as essentially tau-equivalent tests have equal true score variances but possibly different error variances. Thus, here
βg’s are equal while ψgg’s are different. Such tests cannot be used interchangeably. The test with smallest error variance
(smallest ψgg) is the most reliable test and each test however indicates a different validity in predicting a given criterion.
The corresponding covariance matrix for tau-equivalent tests would have the structure

Σ = β2
0Ep + ψ. (6)

The congeneric model (1) may be looked upon as an equivalence to the factor analytic model arising from Spearman’s
unifactor theory. The true score (τ) is treated as an unknown latent variable ( f ), called “common” factor (trait) assumed
to be a random variable. The vector of error scores (e) has the components called “unique” or “specific” factor — another
random variable associated with the individual test score, but uncorrelated with f . The coefficients β1, β2, · · · , βp are
rather called “factor loadings” amounting the importance of f to explain the test scores. Thus the unifactor model is

X = µ + β f + e. (7)

with the assumptions on f and e analogous to those as stated in (1), providing with the same covariance matrix Σ as
expressed by (2). The reliability of any test g as defined in (3) is rather interpreted as the common factor’s contribution to
the test variance being termed communality of the test g (Jöreskog, 1971, Sec.2).

As the reliability of a test cannot be determined from a single test administration, it requires the use of a parallel form.
More often than not, parallel forms are not available. In such situations, a common practice is to obtain indirect infor-
mation by calculating the lower bound of the reliability with an implication that when the lower bound is high enough,
the reliability is adequate (Ten Berge & Socan, 2004). Keeping in view the unifactor theory, when a battery of tests
(items) focuses on a single idea or construct (factor), instead of assessing reliability of a test, the quality of the composite
formed by the tests conforming the battery is measured by what is called “internal consistency reliability”. Cronbach’s
alpha coefficient(1951) is generally used for this purpose indicating indirectly the degree of interrelatedness among the
tests (items) measuring different substantive areas within a single construct (unifactor) (Cortina, 1993; Zinbarg, Yovel,
Revelle, & Mcdonald, 2006).

Cronbach’s alpha(α) =
p

p − 1

∑∑
g,h

σgh/
∑

g

∑
h

σgh (8)

where σgh is the (g, h) element in the covariance matrix (Σ) by p test (item) scores x1, x2, . . . , xp.

Instead of a single test, when a number of tests is administered to a group of students, the main problem is to have an
appropriate method of combining their scores in terms of a linear composite. The weights used in constructing a linear
composite depend upon the type of judgment or criterion fixed up beforehand. As a common practice, however, simple
aggregation or average of the test scores(AVT) is used as a composite possessing two simple properties. One, it attaches
no special weightage to any particular test among p tests. Two, it does not take into account the structure of covariability
among p tests.

Optimum property of the AVT such as minimum variance with unbiasedness, is found to hold so long as the PFT is
undertaken. As the associated covariance matrix under PFT has the intraclass covariance structure (ICS), the variance of
the AVT would be equally affected no matter which one of the p constituent tests is removed from the composite.

The tests belonging to a battery are most often combined into a suitably weighted composite aiming at increasing the
reliability. The AVT under PFT set-up is the “most reliable” composite (MRC) attaining the reliability

ρx̄x̄/PFT =
β2

0

β2
0 + (ψ00/p)

(9)

while under the congeneric model (2),

ρx̄x̄/CON =
β̄2

β̄2 + (ψ̄/p)
(10)
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where β̄ =
∑

g βg/p and ψ̄ =
∑

g ψgg/p.

The present investigation aims at searching the situation where the AVT (x̄) may be claimed to be the “most reliable”
composite amongst all linear composites.

In Section the present investigation, the concept of equi-covariability as well as of the best equi-covariable composite
(BEC) is introduced. It is established that the AVT may be BEC when (2) is restricted to equal row (column) sums(ERS).
Another restricted congeneric model, termed tau-proportionate congeneric one, has been developed. The AVT under such
model is shown to be not only the most reliable composite (MRC) but also the best equi-covariable one (BEC). The
performance of the internal consistency reliability as measured by alpha is compared with that of the reliability of the
MRC within the purview of ERS congeneric tests. A statistical test has been forwarded to check a ERS Σ from a sample
data set. The maximum likelihood estimation of the parameters involved in tau-proportionate congeneric structure of Σ,
is considered along with some related results. An illustrative example, based on real data, is put forward showing the
compatibility of tau-proportionate congeneric structure , followed by some discussion finally.

2. Equi-covariable Composite

Definition: 1. A linear composite y = γ′X is said to have the property of equi-covariability with respect to a random
vector X = (x1, x2, · · · , xp)′ if Cov(y, x1) = Cov(y, x2) = · · · = Cov(y, xp).

Construction: The coefficient vector γ of y = γ′X is the solution to the system of linear equations Σγ = cJ where the
scalar c is the common covariance of y with the variables and Σ is the covariance matrix of the random vector X. J is the
p-component vector of ones. Under the assumption of positive definiteness of Σ, γ = cΣ−1J. A class of equi-covariable
composites may be demarcated for various choices of the scalar c(> 0). The “best” equi-covariable composite (BEC) is a
member belonging to this class, indicating the largest covariability which happens when c is chosen as the variance of y.
On fixing c = Var[(cΣ−1J)′X], the optimum value of c would be (J′Σ−1J)−1 providing the expression of BEC as

y0 =
J′Σ−1

J′Σ−1J
X (11)

Once the entries of Σ are so structured that its row (or column) sums are all equal (ERS), ΣJ ∝ J as well as Σ−1J ∝ J
giving rise to the BEC composite (y0) being simply reducible to x̄. Thus, the averaged test would be the BEC if and only
if Σ is ERS. For instance, for an ICS Σ (vide (4)), the corresponding BEC is no other than x̄.

It appears that for a congeneric ERS covariance matrix,

βg =
T0 − ψgg√
p(T0 − ψ)

, g = 1(1)p (12)

where ψ = the average of ψ11, · · · , ψpp and T0 = common value of row or column total. More explicitly,

Σ =
1

p(T0 − ψ)

(
T0 − ψ11, · · · ,T0 − ψpp

)′ (
T0 − ψ11, · · · ,T0 − ψpp

)
+ ψ (13)

involving only (p + 1) parameters. It is interesting to note further that if the test score variances (σgg
,s as the diagonal

elements of Σ) along with T0 are numerically specified, ψgg
,s can be determined by a convergent iterative scheme [vide

Appendix]. For such congeneric model (13), BEC composite (11) simplifies to averaged test (x̄).

Note: In the theory of statistical estimation where there is a number of competent estimators estimating the same pa-
rameter unbiasedly, their optimum unbiased linear combination having the least variance is termed best linear unbiased
estimator (BLUE). Eventually, the expression (11) would be identical to BLUE when all the test means are equal.

Noting that V(y0) = (J′Σ−1J)−1 and V(x̄) = (J′ΣJ)/p2, the extended Cauchy-Schwarz’s inequality (cf.Johnson & Wichern,
1996, Ch.2) would establish that V(x̄) ≥ V(y0). The equality holds when Σ is a ERS. Thus unless Σ satisfies ERS condition,
y0 would not be reducible to x. Conversely, unless the test means are all equal, a BEC x would no longer become BLUE.

Reliability of BEC under Congeneric Set-up

Under congeneric set-up, the variance and the reliability of any typical (linear) composite y = γ′X are given by

V(y) = (γ′β)2 + γ′ψγ (14)

ρyy =
(γ′β)2

(γ′β)2 + γ′ψγ
.
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As the ratio (γ′β)2

γ′ψγ would attain its maximum when γ ∝ ψ−1β, the “most reliable” composite (MRC) would be expressible
as ym = k(ψ−1β)′X where k is a positive constant. Consequently,

V(ym) = k2[(β′ψ−1β)2 + β′ψ−1β] (15)

and ρymym =
β′ψ−1β

1 + β′ψ−1β
.

In the context of equi-covariability criterion, the best equi-covariable composite (BEC) y0 as expressed in (11), would
have

V(y0) =
1

J′ψ−1J − (J′ψ−1β)2

(1+β′ψ−1β)

(16)

and ρy0y0 =
(J′ψ−1β)2

(1 + β′ψ−1β)[(1 + β′ψ−1β)(J′ψ−1J) − (J′ψ−1β)2]
.

Clearly, ρy0y0 ≤ ρymym . The equality holds if and only if β ∝ J, i.e., iff βg’s are all equal (say, β0) in which case the
corresponding composite would be the most-reliable-cum-best equi-covariable composite (MRBEC) being expressible as

ym0 =
J′ψ−1

J′ψ−1J
X (17)

having V(ym0 ) = β2
0 +

1
J′ψ−1J and ρym0 ym0

=
β2

0(J′ψ−1J)
1+β2

0(J′ψ−1J)
.

β2
0 signifies the common true score variances of each of p tests, indicating a special situation, called essentially tau-

equivalent congeneric tests in the sense of Lord & Novick(1968). Such composite (17) is obtainable when each component
of X is given a weight inversely proportional to its error variances (ψgg’s) that are usually different (Jöreskog, 1971, Sec.2).

Now, as a natural query, what situation could make the AVT(x̄) MRC? On equalizing the reliability formulae correspond-
ing to x̄ and ym (vide (10) and (15)).

β′ψ−1β =
β′JJ′β
J′ψJ

. (18)

Applying the generalized Cauchy-Schwartz inequality ( Johnson and Wichern, 1996, Ch.2), (18) would hold when β ∝ ψJ.
Consequently, the covariance matrix would have the following structure.

Σ = k0ψJJ′ψ + ψ (19)

Thus the structure (19) may be revealed to stem from such congeneric tests as would have the key feature that the covari-
ance of any constituent test (xg) with the averaged test (x̄) is proportional to its error variance (ψgg). Such tests may be
termed “tau-proportionate” congeneric tests.

As the reliability (ρgg) of any gth test is k0ψgg

1+k0ψgg
, the function ρgg

(1−ρgg)ψgg
(being equal to k0) will remain invariant in respect

of any gth test belonging to tau-proportionate congeneric tests.

If additionally, (19) possesses the ERS feature, corresponding MRC averaged test would be lifted to MRBEC averaged
test. Clearly, the MRBEC averaged test would be available when (ψ−1J) ∝ J (vide (17)) in which case (19) is reducible to
a ICS structure indicating the parallelity of the congeneric tests.

3. Internal Consistency Reliability and MRC under ERS Congeneric Set-up

Recalling Cronbach’s alpha (vide (8)) as a measure of internal consistency reliability,

α =
pb

a + (p − 1)b
(20)

where a = average of the variances and b = average of the covariances.

In the case of ERS congeneric tests (vide(13)), a and b would take the expression as follows.
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a = ψ +
T0 − ψ

p
+

s2
ψ

p(T0 − ψ)
(21)

b =
T0 − ψ

p
−

s2
ψ

p(T0 − ψ)
(22)

where s2
ψ =

1
p
∑p

g=1(ψgg − ψ)2. Correspondingly,

α =
1 − ψ

T0
−

s2
ψ

(p − 1)T0(T0 − ψ)
(23)

Clearly, for more variations among ψgg’s, a would be expected larger while b and, in effect, α would be expected smaller.

In view of maximum possible reliability of any composite (MRC) under ERS congeneric tests, let us recall (15) and obtain

ρymym =
1 − ψ

T0
+
ψ − ψh

T0 − ψ
(24)

where ψh denotes p/Σp
g=1(1/ψgg), the harmonic mean of ψgg’s. It is to be noted that ψ ≥ ψh and that more the variations

among ψgg’s, more would be the quantities ψ−ψh and s2
ψ producing larger ρymym but smaller α due to second terms of (24)

and (23) respectively. Thus, for a fixed value of ψ̄, α, as a lower bound indicator of reliability, would never exceed 1−ψ
T0

while ρymym of the related MRC would be at least 1−ψ
T0

. Clearly, their equality would be possible when ψgg’s are all equal
implying trivially a ICS structure of Σ.

4. A Statistical Test for the Tenability of ERS Σ

A statistical test procedure may now be forwarded to test the tenability of ERS structure of Σ under the assumption of
multinormality of the score vector X(p × 1) comprising p scores obtained by an individual when treated by p congeneric
forms. Let S be the data covariance matrix based on the (p × n) data set comprising the score vectors of n individuals.

As J/√p is necessarily an eigenvector of any ERS matrix, the tenability of ERS structure of Σmay be assured equivalently
by the tenability of J/√p as an eigenvector of Σ. Following the testing procedure by Mallows(1961), an F-statistic is
computed by the expression as follows.

F =
(

n − p
p − 1

) 
(
∑

g

∑
h

sgh)(
∑

g

∑
h

sgh)

p2 − 1

 (25)

where sgh and sgh are the typical elements of S and S−1 respectively. If the computed value of F is less than Fα(p−1, n− p),
the tenability of a ERS Σ is asserted at 100α% level of significance.

Consequently, the common row total (T0) of ERS Σmay be estimated by noticing that the variable (J/√p)
′X is distributed

as univariate normal with variance T0. Considering the joint distribution of n such variables in respect of n individuals,
the maximum likelihood estimate (MLE) of T0 may be obtained as

T̂0 =
p
n

n∑
i=1

(
x̄i − ¯̄x

)2 (26)

where x̄i is the average score obtained by ith individual while ¯̄x is the overall averaged score ( 1
n
∑n

i=1 x̄i).

Noticeably, the least squares estimate of T0 based on p row totals of S would be found as 1
p
∑

g
∑

h sgh which is reducible
to T̂0.

ML Estimation of Tau-proportionate Congeneric Structure and Some Related Results

Under usual multinormality assumptions, the maximum likelihood estimates (MLE) of (p + 1) parameters, e.g. k0 and
ψ11, · · · , ψpp as involved in (19) are obtained by solving the following likelihood equations.
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|Σ|−1 ∂ |Σ|
∂k0
+ tr

(
S
∂Σ−1

∂k0

)
= 0 (27)

and

|Σ|−1 ∂ |Σ|
∂ψgg

+ tr
(
S
∂Σ−1

∂ψgg

)
= 0, g = 1, 2, · · · , p (28)

where S is the sample covariance matrix with the divisor n, the sample size. Noting that

Σ−1 = ψ−1 − k0JJ
′

1 + k0J′ψJ
and |Σ| = |ψ|

(
1 + k0J

′
ψJ

)
,

(27) and (28) are reducible to following implicit equations.

k0 =

∑p
g=1(cg − ψgg)

(
∑p

g=1 ψgg)2
(29)

and ψgg =

√
1 + 4k0sgg − 1

2k0
, g = 1, 2, · · · , p (30)

where cg is the gth column total in S. Starting with suitable trial solutions for k0 and ψgg’s, (29) and (30) may be solved
by iterations. Keeping ∧ mark over any parameter as a generic notation to indicate its MLE, some straight forward results
are furnished below.

i) diag(Σ̂) = diag(S), diag( ˆΣ−1S) = diag(1 + k̂0(ψ̂gg − cg

c̄
ˆ̄ψ), g = 1, 2, · · · , p) where c̄ = average of cg’s.

ii) tr(Σ̂) = tr(S), tr(Σ̂E) = tr(SE) and tr( ˆΣ−1S) = p.

iii) α̂ = p
p−1 (1 − trS

tr(SE) ), ρ̂x̄x̄ = ρ̂ymym = 1 − trψ̂
tr(SE) , ρ̂x̄x̄ ≥ α̂.

iv) ˆVar(x) = tr(SE)
p2 , ˆCov(x̄, xg) = [ tr(SE)

p2 ] ψ̂gg

ψ̂
, g = 1, 2, · · · , p where ˆ̄ψ is the average of ψ̂gg’s.

v) J√
p is a characteristic vector of ψ−1Σ with corresponding characteristic root 1 + pk0ψ whose MLE is 1 + pk̂0

ˆ̄ψ.

It may be noted that the above results are rather trivial when Σ̂ = S which happens for a non-structured Σ. But in the case
of a structured Σ, as the number of independent parameters is less than the number of non-duplicated elements, Σ̂ would
no longer be equal to S. As such, the findings as furnished above are quite structure-dependent. Some one or more may
likely to hold for any other structure(s) also.

In practice, sample covariance matrix (6) is used in the computation instead of its population counterpart, which is es-
sentially never available. It is well-known that model-based estimated covariance matrix such as Σ̂, can be more efficient
compared to S (Bentler, 2009).

5. Analysis of Bock’s Vocabulary Data

To study the evolution of the vocabulary of children, the relevant data were drawn by Bock (1975) from the test results on
file in the Records Office of the Laboratory School of the Chicago. They consist of scores, obtained from a cohort of pupils
from the 8th through 11th grade levels, on alternative forms of the vocabulary section of the Co-operative Reading test.
For a sample of 64 (n) pupils scaled scores (after suitably changed origin and unit) are shown in the form of (64× 4) array
in Härdley and Hlávka (2007). Table 1 shows the computed covariance matrix (S). As the scores under consideration are
concerned with the measurements of the same trait (vocabulary) through various grade levels, the present analysis aims at
studying the nature of congenericity of the tests.

6
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Table 1. Covariance matrix of Bock’s Vocabulary data

X1 X2 X3 X4

X1 3.5654
X2 3.3082 4.7980
X3 3.5503 3.6659 4.7035
X4 2.8523 3.1248 3.3886 3.7075

Recalling Mallows test (vide Section 5), computed F statistic has the value 2.2184 which is less than F.05(3, 60) having
the value 2.7580 leading to acceptance (tenability) of ERS general structure of the covariance matrix of Bock’s vocabulary
data. However, for a rigorous study on ERS structure in a congeneric reference formula, we consider various hypothesized
structures of Σ in connection with congenericity, e.g., intraclass (ICS) reflecting the parallelity of the tests, tau-equivalent
congeneric, tau-proportionate congeneric, Equal-row-sum congeneric (ERS congeneric) being selected as the variants of
congenericity. It may be noted that ERS-congeneric one is also a special case of equal-row-sum structure of the covariance
matrix (ERS general, vide Sec.2). In Table 2, these structures are arranged in accordance with the number of involved
parameters in increasing order. The involved parameters are all estimated by the method of maximum likelihood (ML)
under the assumption of multinormality of the data. The most of the likelihood equations are not explicitly solvable.
However by iterative procedure (vide Appendix), the convergent ML solutions are obtained. For testing the tenability
of the hypothesized structures, the conventional likelihood ratio criterion provides the test statistic (n − 1)log( |Σ̂||S| ) being
distributed asymptotically as a chi-square with appropriate degrees of freedom (d.f.) (ν), Σ̂ and S being respectively
the MLE of Σ and the sample covariance matrix. The columns 3, 4 and 5 of Table 2, show respectively the computed
chi-square, d.f. and P-value. On comparing the P-values with 5% level of significance, it is clear that except intraclass
structure (ICS), all other structures are tenable.

In order to critically judge the competency of the structures, the assessment of their goodness-of-fit is now to be used to
supplement the chi-square test (Hu & Bentler, 1998).

A high goodness-of-fit index value may be an encouraging sign that the structure is useful even when it fails to fit exactly
on statistical ground and/or there stands a number of competent structures tenable.

Table 2. Goodness-of-fit measures of different hypothesized structures for Bock’s data

Hypothe- No.of Obs. d.f. P GFI AGFI AD RMR SRMR
sized para- χ2 (ν) value

Structure meters

1. Intraclass 2 15.890 8 0.044 0.867 0.834 0.304 0.411 0.102
2. τ-equi.cong. 5 9.254 5 0.099 0.915 0.830 0.594 0.686 0.180
3. τ-prop.cong. 5 9.954 5 0.077 0.995 0.991 0.100 0.133 0.032
4. ERS cong 5 7.506 5 0.186 0.888 0.776 0.259 0.382 0.094
5. ERS general 7 6.627 3 0.085 0.868 0.560 0.267 0.378 0.092
6. Cong.general 8 1.600 2 0.449 0.999 0.998 0.036 0.040 0.010

Among many, the most widely used goodness-of-fit indices proposed by Jöreskog and Sörbom (1981) are computed by
the following formulae.

GFI = 1 −
tr(Σ̂

−1S − Ip)2

tr(Σ̂
−1S)2

and adjusting the degrees of freedom (ν) of the hypothesized structure modified version of GFI,

AGFI = 1 − p(p + 1)
2ν

(1 −GFI).

According to a recommended thumb rule (Hu & Bentler, 1998), computed GFI and AGFI both exceed the “cut-off” point
0.90 (vide Table 2) for only two hypothesized structures,e.g. congeneric and tau-proportionate congeneric indicating their
closeness of fit to a greater extent compared to other structures.

7
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We further consider the measures of goodness-of-fit based on the deviations between the elements Σ̂ and S. Those are
Average Deviation (AD) by Werts, Pike, Rock and Grandy (1981), Root-mean-square Residual (unstandardized) (RMR)
by Jöreskog and Sörbom (1981) and Standardized Root-mean-square Residual (SRMR) by Bentler (1995) having the
following expressions.

AD =

p∑
i=1

p∑
j=1

|si j − σ̂i j|/p2

RMR = [2
p∑

i=1

p∑
j=1
j≥i

(si j − σ̂i j)2/p(p + 1)]
1
2

S RMR = [2
p∑

i=1

p∑
j=1
j≥i

(
si j − σ̂i j√siis j j

)2

/p(p + 1)]
1
2

where σ̂i j and si j are the (i, j) elements of MLE Σ̂ and S respectively. The corresponding computed figures are shown in
the last three columns of Table 2, amongst which too low values lie along the rows of congeneric and tau-proportionate
congeneric structures. In particular, a cut-off value close to 0.08 (as recommended by Hu & Bentler,1998) for SRMR
selects out both the structures. Although both the structures fit the data equally well, to break the tie, the tau-proportionate
structure is preferable as it is more restricted with larger degrees of freedom (Forster,1998; Graham,2006; Kenny,Kaniskar
& McCoach, 2011).

Table 3. ML Estimation of Alpha and Reliability of the Averaged Test

Hypothesized Alpha(α̂) Reliability of the Maximum
Structure Averaged Tests Possible Reliability

(ρ̂x̄x̄) of a Composite(ρ̂ymym )

1. Intraclass 0.93786 0.93786 0.93786
2. τ-equi. Cong. 0.94869 0.94869 0.95548
3. τ-prop. Cong. 0.93779 0.93954 0.93954
4. ERS Cong 0.93782 0.93800 0.94657
5. ERS General 0.93786 - -
6. Cong. General 0.93768 0.93935 0.94784

Using the ML estimates of the parameters of the hypothesized structures, the ML estimates of the Cronbach’s alpha, ρ̂x̄x̄

and ρ̂ymym are shown in the columns of Table 3. All the entries are recorded to five places of decimal after computing
them up to six places for a vis-a-vis comparison. The column of alpha indicates the lower bound estimate of the internal
consistency reliability for any structure. For the tau-equivalent congeneric structure, the averaged test has the reliability
equal to corresponding alpha and thus is the “least reliable composite”. Contrarily, for tau-proportionate congeneric
structure, the situation is reverse indicating that the averaged test is the “most reliable composite”. For parallel form
of tests providing the intraclass structure, the averaged test is trivially a unique composite as its reliability meets the
maximum and alpha both.

6. Discussion

The main concern in this article is to search for constrained congeneric test/item set due to which the aggregated/averaged
test (AVT) (sometimes termed scaled score (Kano & Azuma, 2003) or, a composite with unit weights (Bentler, 2004)
formed from the set would be the most reliable composite (MRC). Determination is indeed exclusively within the frame-
work of classical test theory (CTT). In the case of intraclass covariance structure arising from parallel form of tests (PFT),
Cronbach’s alpha estimates exactly the reliability of the AVT with an attainment of the maximum possible reliability for
any composite. However, in the case of (essential) tau-equivalent structure arising from ‘weak’ PFT, corresponding alpha
although estimates the reliability of the AVT exactly, that tends to underestimate the test reliability as such (Novick &
Lewis, 1967). Present investigation indicates that there may exist a composite which is most reliable but different from
AVT (e.g.,ym of (15)). The set of tau-proportionate congeneric tests is, of course, a set of constrained congeneric tests
establishing AVT as not only the MRC but also as the best equi-covariable composite (BEC).
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Present inversigation is confined to the classical test theoretic reliability estimation based on measurement models such as
“parallel” and “(essential) tau-equivalent” stemming from congeneric set-up. Keeping in view the single factor analytic
model, congeneric set-up would be more meaningful when one considers subject-centered scalable tests/items (Drewes,
2009). When the tests/items are so demonstrated that the corresponding scores achieved by the individuals are continuous
and a linear function of factor scores, the situation would be quite conducive to assessing reliability by coefficient alpha
(Graham, 2006).

Although reliability analysis is an old topic, it is still given much attention, particularly after the invention of Cronbach’s
alpha (1951). Limitations of CTT with reference to reliability are studied by many authors. The violation of CTT as-
sumptions highly affects alpha (Green & Hershberger, 2000; Zimmerman, Zambo, & Lalonde, 1993). Raykov (1997)
studied the violation of essential tau-equivalence condition that is necessary and sufficient for alpha to equal scale relia-
bility by quantifying alpha’s discrepancy (Slippage) from scale reliability with fixed congeneric measures when errors are
uncorrelated (Lord & Novick, 1968). As an alternative to coefficient alpha, structural equation modeling (SEM) method
to estimate reliability is currently in use (Bentler, 2009). In correlated error situation, alpha is no longer a lower bound of
the true reliability. As an alternative, use of Bollen’s formula (Bollen, 1980), on reliability is highly recommended. Kano
and Azuma (2003) developed an web-based program termed STERA aiming at STEPwise Reliability Analysis with the
help of factor analysis and SEM. Accurate estimate of reliability using SEM is more likely under well-constructed scales
and critically assessing model fit (Yang & Green, 2010).
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Jöreskog, K.G.(1971). Statistical Analysis of sets of congeneric tests. Psychometrika, 36(2), 109-133.
http://dx.doi.org/10.1007/BF02291393
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Appendix

i) τ-equivalence Congeneric Model

Σ = β2
0JJ′ + ψ

Likelihood equations are given by (p + 1) simultaneous equations as follows.

β2
0 =

∑
h

∑
k

(
shk

ψhhψkk
) −

∑
h

(
1
ψhh

)

(
∑

h

1
ψhh

)

ψgg = sgg +
β2

0

1 + β2
0(
∑

h

1
h

)
[1 − 2

∑
h

(
sgh

ψhh
) + β2

0

∑
h

(
1
ψhh

)], g = 1, 2, · · · , p

ii) τ-proportionate congeneric model

Σ = k0ψJJ′ψ + ψ
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Likelihood equations are given by (p + 1) simultaneous equations as follows.

k0 =

∑
h

∑
k

shk −
∑

h

ψhh∑
h

ψ2
hh

ψgg =

√
1 + 4k0sgg − 1

2k0
, g = 1, 2, · · · , p.

iii) ERS Congeneric model

Σ = δδ′

d + ψ

where δ = (T0 − ψ11 T0 − ψ22 · · · T0 − ψpp)′.

T̂0 =
p
n

n∑
i=1

(xi − x)2

Likelihood equations for ψgg’s are given by p-simultaneous equations as follows.

ψgg = (sgg − ψ2
gg) +

(αg + ψgg)2 − 2(αg + ψgg)
p∑

h=1

(
sghαh

ψhh
)

d +
p∑

h=1

α2
h

ψhh

+ (
αg + ψgg

d +
∑

h

α2
h

ψhh

)2
∑

h

∑
k

(
αhαk skh

ψhhψkk
)

where d = p(T0 − ψ) and αg = T0 − ψgg, g = 1, 2, · · · , p.
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