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Abstract

Predictive inference is one of the oldest methods of statistical analysis and it is based on observable data. Prior infor-
mation plays an important role in the Bayesian methodology. Researchers in this field are often subjective to exercise
noninformative prior. This study tests the effects of a range of prior distributions on the Bayesian predictive inference for
different modelling situations such as linear regression models under normal and Student-t errors. Findings reveal that
different choice of priors not only provide different prediction distributions of the future response(s) but also change the
location and/or scale or shape parameters of the prediction distributions.
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1. Introduction

The posterior distribution for parameters of a set of observations is typically the major objective of the Bayesian statistical
analysis. A posterior distribution also implies a marginal density known as prediction distribution of any future obser-
vations from a model. Predictive inference is one of the oldest and useful methods of statistical inference. A prediction
density of future response(s) can be derived from various statistical models. In general, predictive inference uses the ob-
served responses from a performed experiment to make inferences about the behavior of the unobserved future response(s)
of a future experiment (Aitchison & Dunsmore, 1975). A detail of predictive inference methods and applications of pre-
diction density can be found elsewhere (Geisser, 1993; Rahman, 2008, Rahman et al., 2010; Rahman & Upadhyay, 2015;
Rahman & Harding, 2016).

Various methods can lead to prediction density and different researchers considered different approaches in prediction
problems. General prediction problems have been discussed by Jeffreys (1961), Aitchison and Sculthorpe (1965), and
Faulkenberry (1973). Goldberger (1962), Wilson (1967) and Hahn (1972) studied prediction problems by the classical
method. Fraser and Haq (1970) obtained the prediction distribution by using the structural density function, and later on
Haq (1982) develops the structural relations approach. Most of these authors have contribution in prediction problems
under the independent normal errors assumption. Some researchers have been discussed the prediction problems and its
applications in many areas from the Bayesian viewpoint (Zellner & Chetty, 1965; Aitchison & Dunsmore, 1975; Zellner,
1976; Sutradhar & Ali, 1989; Geisser, 1993; Rahman, 2008). Unlike others Rahman (2009, 2011) obtained prediction
distribution using the Bayesian method for a range of statistical models under the t errors assumption. In many practical
situations when the underlying distributions have heavier tails, models with Student t-errors are most appropriate.

A prior distribution of unknown parameters is an essential component in the Bayesian predictive inference. The prior
distribution describes researcher’s subjective belief about unknown parameter(s) before observing given data. When the
distributions of data and the prior information are significantly different from each other, an inferential conflict exists
between the sources of information. For example, the posterior distribution may be strongly affected by the prior informa-
tion for models under the normal distribution assumption (O’Hagan & Forster, 2004). Some conflicts may cause by the
data (for instance, outliers) or by the prior knowledge. In such situations, if the models are with a light-tailed distribution,
the conflict may strongly influence the posterior distribution and potentially lead to inappropriate statistical inferences
(Andrade & O’Hagan, 2006). A number of researchers suggest using models under heavy-tailed distributions such as
Student-t distributions (e.g., see Dawid, 1973; O’Hagan, 1979; Fernandez et al., 1995; Le & O’Hagan, 1998; Haro-Lopez
& Smith 1999).
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In the Bayesian predictive inference an important issue is how to define the prior distribution and examine its effect on
statistical inference. In a model when both the prior and posterior distributions come from the same family of distributions,
the prior distribution is considered as conjugate (Seber & Lee, 2003). That means, a conjugate prior is one for which
application of Bayes’ technique results in a posterior having the same family of distributions as prior. On the other hand,
if there is no prior information available for the unknown parameters researchers want a prior distribution with minimal
influence on the inference. Such a prior is called a noninformative prior or uniform prior (Bernardo & Smith, 1994).

Kass and Wasserman (1996) stated two different interpretations of noninformative priors: i) noninformative priors are for-
mal representations of ignorance; ii) there is no objective, unique prior that represents ignorance, instead noninformative
priors are chosen by agreement. In the second interpretation, noninformative priors are the default to use when there is
insufficient information to otherwise define the prior. However, nowadays the first interpretation is somewhat useless, so
focus on considering different priors to see if any is preferable in some sense.

Box and Tiao (1973) define a noninformative prior as a prior which provides little information relative to the experimen-
t. Pericchi and Walley (1991) have a quite different view. They say that no single probability distribution can model
ignorance satisfactory, therefore large classes of distributions are needed. They use the first interpretation of Kass and
Wasserman (1996) but they realise that a single distribution is not enough. Therefore noninformative priors are also
classified as vague prior, flat prior, and reference prior etc (e.g. see Berger & Bernardo, 1989).

The common form of noninformative prior is also known as the Jeffreys’ prior (Jeffreys, 1946) which is based on the
Fisher information criterion. For a model with parameter space Θ ⊆ R, the Fisher information is I(θ) = Eθ

(
d log( f (x|θ))

dθ

)2

where f (x | θ) is the sampling distribution and the expectation is taken over f (x | θ). Under regularity conditions,

I(θ) = −Eθ
(

d2 log( f (x|θ))
dθ2

)
. In such a setting, the Jeffreys prior for θ is defined by

g(θ) ∝ I(θ)1/2

to be proportional to the square root of the Fisher Information at θ. In general the Jeffreys prior may be improper. If θ has
the Jeffreys prior and h is a monotone differentiable function of θ, the prior induced on h(θ) by the Jeffreys prior on θ is

g(h(θ)) = g(θ)
∣∣∣dh
dθ

∣∣∣−1 ∝ I(θ)1/2
∣∣∣dh
dθ

∣∣∣−1
= I(h(θ))1/2.

So the Jeffreys priors are invariant under reparameterization. If the prior favors values of θ for which I(θ) is large, the effect
is to minimise the effect of the prior relative to the information in the data. In this sense the Jeffreys prior as attempting to
be noninformative about θ.

This study examines the effects of a range of prior distributions on predictive inference for different modelling situations
under the normal and Student-t errors. It is obvious that different choice of priors not only provides different prediction
distributions but also changes the location and/or scale or shape parameters of the prediction distributions. Ultimately
these also affect on measures of Bayesian credible intervals for the predictive inference.

The remainder of paper is organised as follow. In Section 2, the prediction densities of a future response have been derived
using the Bayesian approach under different situations of the conjugate prior distributions. In Section 3, the prediction
distribution has been obtained under the non-conjugate prior information. In Section 4, the prediction densities of a single
and a set of unobserved responses have been produced for the simple linear regression model with the Normal errors and
the S tudent − t errors. Finally, a summary of the significant results and the concluding remarks are provided in Section 5.

2. Prediction Under Conjugate Prior

The probability function of prior information is called prior distribution which illustrates the subjective belief of a re-
searcher about unknown parameter(s) before observing data. In the Bayesian inference when both the prior and posterior
distributions come from the same family of distributions, the prior distribution is regarded as conjugate prior. Let f (x|θ)
be the probability model, f (x|θ) be likelihood function for the observed data x given the unknown parameter(s) θ, g(θ)
be the prior distribution model for θ and f (θ|x) be the posterior distribution model for θ given x. If g(θ) and f (θ|x) both
belong to the same distributions family then they are called conjugate distributions, and g(θ) is the conjugate prior for
f (x|θ). The term conjugate priors and its application appeared in a study by Raiffa and Schlaifer (1961). Before them the
same theory was developed by Barnard (1954) as considered the distributions involved as being closed under sampling.
If there exist, conjugate priors are often used for its computational convenience (Seber & Lee, 2003), and they provide
the most transparent view of the relationship between prior and posterior. This section analyses the effects of a conjugate
prior on predictive inference under various modelling situations.
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2.1 Unequal but Known Variances

Let Y j|µ ∼ N(µ, σ2
1) for j = 1, 2, ...., n; µ ∼ N(µ0, σ

2
0); and σ1, µ0 and σ0 are known. That is

p(y|µ, σ1) ∝ e
− 1

2σ1
2

∑n
j=1(y j−µ)2

is the likelihood function for a set of observations y = (y1, y2, .., yn)′ and

g(µ|µ0, σ0) ∝ e
− 1

2σ2
0

(µ−µ0)2

is a prior density function of the parameter µ. The posterior density function of µ given y can be obtained from the
relationship

p(µ|y) ∝ p(y|µ, σ1)g(µ|µ0, σ0)

∝ e
− 1

2

[
1
σ2

0
(µ−µ0)2+ 1

σ1
2

∑n
j=1(y j−µ)2

]
. (1)

The enclosed exponential term 1
σ2

0
(µ − µ0)2 + 1

σ1
2

∑n
j=1(y j − µ)2 = ξ(say) can be expressed as more convenient form

ξ = ξ1 +

 n
σ1

2 +
1
σ2

0

 µ − nȳσ2
0 + µ0σ

2
1

nσ2
0 + σ

2
1

2

, (2)

where ȳ = 1
n
∑n

j=1 y j, s2 = 1
n−1

∑n
j=1(y j − ȳ) and ξ1 =

µ2
0

σ2
0
+ 1
σ1

2 {(n − 1)s2 + nȳ2} does not contain the unknown parameter µ.
Using expression (2) in (1) the posterior density function of µ becomes

p(µ|y) = Ψ(n, σ0, σ1)e
− 1

2 ( n
σ2

1
+ 1
σ2

0
)
(
µ−

nȳσ2
0+µ0σ

2
1

nσ2
0+σ

2
1

)2

;−∞ < µ < ∞ (3)

where the normalizing constant is given by, Ψ(n, σ0, σ1) =
( n
σ2

1
+ 1
σ2

0
)

1
2

√
2π

.
Let m′ and s′2 are the mean and variance of the posterior distribution of µ. Then

µ|y ∼ N

m′ = nȳσ2
0 + µ0σ

2
1

nσ2
0 + σ

2
1

, s′2 =
 n
σ2

1

+
1
σ2

0

−1 .
The posterior mean m′ can be expressed as

m′ =

1
σ2

0

n
σ2

1
+ 1
σ2

0

× µ0 +

n
σ2

1

n
σ2

1
+ 1
σ2

0

× ȳ

i.e., the posterior mean equals the weighted average of the prior mean and ȳ where the weights are the proportions of the
posterior precision. In addition, the posterior variance s′2 has a relationship 1

s′2 =
n
σ2

1
+ 1
σ2

0
i.e., the posterior precision

equals the precision of ȳ plus the prior precision.

Consider a future response y f from the same normal model with mean µ and known variance σ2
1 i.e., y f |µ ∼ N(µ, σ2

1).
Then the pd f of y f is

p(y f |µ) =
1

σ1
√

2π
e
− 1

2σ2
1

(y f−µ)2

;−∞ < y f < ∞. (4)

Using the Bayesian method the prediction distribution of y f for a given y can be derived as

f (y f |y) =

∫
µ

p(µ|y)p(y f |µ)dµ

= C
∫
µ

e−
1
2 ξ f dµ, (5)

where C = 1√
2πσ1

( n
σ2

1
+ 1
σ2

0
)

1
2

√
2π

and ξ f = ( n
σ2

1
+ 1
σ2

0
)
(
µ − nȳσ2

0+µ0σ
2
1

nσ2
0+σ

2
1

)2
+ 1
σ2

1
(y f − µ)2 come from equations (3) and (4). Now, ξ f

has a convenient expression

ξ f = M +
n + 1
σ1

2 +
1
σ2

0


µ − Q(

n+1
σ1

2 +
1
σ2

0

)


2

(6)

33



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 5, No. 5; 2016

where M =
y2

f

σ2
1
+

(
nȳ
σ2

1
+
µ0
σ2

0

)2

(
n
σ2

1
+ 1
σ2

0

) + Q2(
n+1
σ1

2 +
1
σ2

0

) which does not contain µ, and Q = y f

σ2
1
+

nȳ
σ2

1
+
µ0

σ2
0
. Using equation (6) in (5) and then

integrating over µ we get,

f (y f |y) = C
√

2π
n + 1
σ1

2 +
1
σ2

0

− 1
2

e−
1
2 M =

[
nσ2

0+σ
2
1

σ2
1{σ2

1+(n+1)σ2
0}

] 1
2

√
2π

e−
1
2 M . (7)

Applying the convenient form M = b(y f − a)2 where a = nȳσ2
0+µ0σ

2
1

nσ2
0+σ

2
1

and b = nσ2
0+σ

2
1

σ2
1{σ2

1+(n+1)σ2
0}

, the prediction density of y f can
be written as

f (y f |y) = Ψ f (.)e
− 1

2

[
nσ2

0+σ
2
1

σ2
1 {σ

2
1+(n+1)σ2

0 }

](
y f−

nȳσ2
0+µ0σ

2
1

nσ2
0+σ

2
1

)2

;−∞ < y f < ∞ (8)

where Ψ f (.) = Ψ f (n, σ0, σ1) =

[
nσ2

0+σ
2
1

σ2
1 {σ

2
1+(n+1)σ2

0 }

] 1
2

√
2π

is the normalizing constant.

Hence the prediction density of a future response y f follows a normal distribution with mean equals to the posterior mean
nȳσ2

0+µ0σ
2
1

nσ2
0+σ

2
1

and with variance
[

nσ2
0+σ

2
1

σ2
1{σ2

1+(n+1)σ2
0}

]−1
, that is greater than the posterior variance

[
n
σ2

1
+ 1
σ2

0

]−1
.

2.2 Equal but Unknown Variances

This subsection consider the common unknown variance σ2 for both the model and prior distribution. Let Y j|µ, σ ∼
N(µ, σ2) for j = 1, 2, ...., n; that is, the likelihood function for y is p(y|µ, σ) ∝ σ−ne−

1
2σ2

∑n
j=1(y j−µ)2

. Consider a normal
prior for the location parameter µ with known mean µ0 and common unknown variance from the model such that µ|σ ∼
N(µ0, σ

2), and g(µ, σ|µ0) ∝ σ−1e−
1

2σ2 (µ−µ0)2
is a joint prior density function of the parameters µ and σ. Thus the joint

posterior density function of µ and σ can be expressed as

p(µ, σ|y) ∝ σ−(n+1)e−
1

2σ2

[∑n
j=1(y j−µ)2+(µ−µ0)2

]
. (9)

The normalizing constant of (9) can be obtained by integrating the joint density function with respect to σ and µ. If the
normalizing constant is denoted by Ψ(c) then we have

Ψ−1(c) =
2

n
2−1Γ( n−1

2 )Γ( 1
2 )

(n + 1)
1
2 [(n − 1)s2]

n−1
2

1 + n
n+1 (µ0 − ȳ)2

(n − 1)s2

− n−1
2

where ȳ = 1
n
∑n

j=1 y j and s2 = 1
n−1

∑n
j=1(y j − ȳ)2.

The integration of equation (9) with respect to σ yields the marginal posterior density function of µ as

p(µ|y) = Ψ1(.)

1 + (n + 1)(µ − nȳ+µ0
n+1 )2

(n − 1)s2
{
1 +

n
n+1 (µ0−ȳ)2

(n−1)s2

}

− n

2

;−∞ < µ < ∞ (10)

where the normalizing constant is given by

Ψ1(n, s2, ȳ) =
Γ( n

2 )

Γ( n−1
2 )Γ( 1

2 )
(n + 1)

1
2

[(n − 1)s2]
1
2

1 + n
n+1 (µ0 − ȳ)2

(n − 1)s2

− 1
2

.

Let U =

 (n+1)(µ− nȳ+µ0
n+1 )2

s2

{
1+

n
n+1 (µ0−ȳ)2

(n−1)s2

}


1
2

then U has a Student-t distribution with n − 1 d f i.e., U ∼ tn−1.

Now if y f |µ, σ be a future response from N(µ, σ2) i.e., p(y f |µ, σ) = 1√
2πσ

e−
1

2σ2 (y f−µ)2
. Then the prediction distribution of

y f for given y can be obtained from the following equation

f (y f |y) =
∫
µ

∫
σ

p(µ, σ|y)p(y f |µ, σ)dσdµ. (11)
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Using appropriate integration over σ and µ we get the density function of future response as

f (y f |y) = Ψ f (.)

1 +
n+1
n+2 (y f − nȳ+µ0

n+1 )2

(n − 1)s2
{
1 +

n
n+1 (µ0−ȳ)2

(n−1)s2

}

− n

2

;−∞ < y f < ∞ (12)

where

Ψ f (n, s2, ȳ) =

√
n + 1
n + 2

Γ( n
2 )

Γ( n−1
2 )
√
π

1

[(n − 1)s2]
1
2

1 + n
n+1 (µ0 − ȳ)2

(n − 1)s2

− 1
2

is the normalizing constant.

If V f =

 n+1
n+2 (y f−

nȳ+µ0
n+1 )2

s2

{
1+

n
n+1 (µ0−ȳ)2

(n−1)s2

}


1
2

, then V f ∼ tn−1.

In this case, although the joint posterior distribution follows a normal distribution, the marginal posterior distribution of
location parameter µ and the prediction distribution of a future response y f both have a Student-t distribution with n−1 d f

and the same location nȳ+µ0
n+1 , but different scales such as (n+1)

s2

{
1 +

n
n+1 (µ0−ȳ)2

(n−1)s2

}−1
and (n+1)

(n+2)s2

{
1 +

n
n+1 (µ0−ȳ)2

(n−1)s2

}−1
respectively.

3. Prediction under Nonconjugate Prior

This section deals with the predictive inference of normal model under noninformative prior information (Jeffreys, 1961).

Let Y j|µ, σ ∼ N(µ, σ2), for j = 1, 2, ...., n. A nonconjugate prior distribution of parameters µ and σ is p(µ, σ) ∝ 1
σ
. Hence

the joint posterior density function of parameters is as follows,

p(µ, σ|y) ∝ σ−(n+1)e−
1

2σ2
∑n

j=1(y j−µ)2
;−∞ < µ < ∞, σ > 0

and the normalizing constant say Ψ−1(.) can be expressed as a relation,

Ψ(.) =
∫
µ

∫
σ

(σ2)−( n+1
2 )e−

1
2σ2

∑n
j=1(y j−µ)2

dσdµ.

Now after taking integration over σ we get

Ψ(.) = 2
n
2−1Γ(

n
2

)
∫
µ

 n∑
j=1

(y j − µ)2

−
n
2

dµ.

Again by taking integration over µ we have the following result,

Ψ(.) =
2

n
2−1

Γ( n−1
2 )

√
π

n
[(n − 1)s2]−

n−1
2

where s2 = 1
n−1

∑n
j=1(y j − ȳ)2.

Now if y f |µ, σ ∼ N(µ, σ2) and p(y f |µ, σ), then the prediction distribution of y f for given y can be obtained from the
following equation

f (y f |y) =
∫
µ

∫
σ

p(µ, σ|y)p(y f |µ, σ)dσdµ.

Using appropriate integration with respect to σ and µ we get the prediction density of future response y f as

f (y f |y) = Ψ f (.)
1 + n

n+1 (y f − ȳ)2

(n − 1)s2

− n
2

;−∞ < y f < ∞ (13)

where ȳ = 1
n
∑n

j=1 y j, and Ψ f (.) =
√ n

n+1
Γ( n

2 )
Γ( n−1

2 )
√
π

1

[(n−1)s2]
1
2

is the normalizing constant.

Hence t f =
√ n

n+1
(y f−ȳ)

s is a Student-t variate with n − 1 d f . That is, under the noninformative prior the prediction density
of a future response y f has a Student-t distribution with n − 1 d f .
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4. Simple Linear Regression Model

The simple linear regression model involves a single explanatory variable (x) to a single response variable (y) linearly in
the parameters. The model can be represented as

y j = β0 + β1x j + e j for j = 1, 2, ...., n

where y j is the jth observation on the response variable, x j is the jth observation on the explanatory variable, e j is the jth
error term associated with y jth response, and β0 and β1 are the intercept and slope parameters respectively. This linear
model can be expressed as a convenient form

y = Xβ + e (14)

where β = (β0, β1)′, a 2× 1 dimensional parameters vector; y and e, both are n× 1 dimensional response and error vectors
respectively; and X, a n × 2 dimensional design matrix of explanatory variable.

4.1 Prediction under the Normal Distribution Error

Assume e j is identically and independently distributed as a normal variable with mean zero and variance σ2 for j =
1, 2, .., n, that is, e j|σ ∼ N(0, σ2). Then, e|σ ∼ N(0, Inσ

2). The likelihood function of the response vector y is

f (y|β, σ) ∝ σ−ne−
1

2σ2 (y−Xβ)′(y−Xβ)

Consider a noninformative prior distribution of unknown parameters β and σ as p(β, σ) ∝ 1
σ
. Thus the joint posterior

density function of parameters for given y can be expressed as

p(β, σ|y) ∝ σ−(n+1)e−
1

2σ2 (y−Xβ)′(y−Xβ);−∞ < β < ∞, σ > 0

with the normalizing constant say Ψ−1(.), and it can be obtained from the equation

Ψ(.) =
∫
β

∫
σ

σ−(n+1)e−
1

2σ2 (y−Xβ)′(y−Xβ)dσdβ

Integration with respect to σ yields the result as

Ψ(.) =
Γ( n

2 )

2−
n−2

2

∫
β

[(y − Xβ)′(y − Xβ)]−
n
2 dβ, (15)

Now

(y − Xβ)′(y − Xβ) = (y − Xβ̂)′(y − Xβ̂) + (β − β̂)′X′X(β − β̂)

= [(n − 2)s2]
1 + (β − β̂)′X′X(β − β̂)

(n − 2)s2

 (16)

where s2 = 1
n−2 [(y − Xβ̂)′(y − Xβ̂)] and β̂ = (X′X)−1X′y.

Using (16) in (15) and then integrating over β we get Ψ(.) = Γ(
n−2

2 )π[(n−2)s2]−
n−2

2

2−
n−2

2 |X
′X|

1
2

. Hence the normalizing constant of the joint

posterior density function of parameters is as follows

Ψ−1(.) =
|X′X| 12 [(n − 2)s2]

n−2
2

2
n−2

2 πΓ( n−2
2 )

.

Moreover, the future simple linear regression model can be expressed as

y f = Xfβ + e f (17)

where β = (β0, β1)′, a 2 × 1 dimensional parameters vector for future response; y f and e f , both are 1 × 1 dimensional
response and error values respectively; and Xf , a 1 × 2 dimensional design matrix of future model explanatory variable.
Also in future model we assume that e f is identically and independently distributed as a normal variable with mean zero
and variance σ2 that is, e f |σ ∼ N(0, σ2). Thus, the pd f of y f given β and σ is

f (y f |β, σ) =
σ−1

√
2π

e−
1

2σ2 (y f−Xfβ)′(y f−Xfβ). (18)
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Now the prediction distribution of y f for given y,X and Xf can be obtained from the following equation

f (y f |y,X,Xf) =
∫
β

∫
σ

p(β, σ|y)p(y f |β, σ)dσdβ

=
Ψ−1(.)
√

2π

∫
β

∫
σ

σ−(n+2)e−
1

2σ2 [(y−Xβ)′(y−Xβ)+(y f−Xfβ)′(y f−Xfβ)]dσdβ (19)

By integrating with respect to σ provides the result as

f (y f |y,X,Xf) =
Ψ−1(.)
√

2π

Γ( n+1
2 )

2−
n−1

2

∫
β

[D]−
n+1

2 dβ (20)

where, D = (y − Xβ)′(y − Xβ) + (y f − Xfβ)′(y f − Xfβ). Now D can be expressed as a convenient form

D = (y − Xβ)′(y − Xβ) + (y f − Xfβ)′(y f − Xfβ)
= y′y + y2

f + β
′Qβ − 2β′(X′y + X′fy f )

= A
[
1 + (β − P)′Q1(β − P)

]
(21)

where A = y′y+ y2
f − (y′X+ y f Xf)Q−1(X′y+X′fy f ) is free from unknown β, Q = X′X + X′fXf , P = Q−1(X′y+X′fy f ) and

Q1 = QA−1.

Using (21) in (20) and then integrating over β, we obtain the following prediction density function of y f as

f (y f |y,X,Xf) = Ψ f (.)
1 + z′f w1z f

(n − 2)s2

− n−1
2

;−∞ < y f < ∞ (22)

where z f = (y f − Xf β̂), w1 = (1 − XfQ−1X′f) and Ψ f (.) =
Γ( n−1

2 )|w1 |
1
2

Γ( n−2
2 )[π(n−2)s2]

1
2

is the normalizing constant.

Moreover, according to the same approach as considered above the prediction density function of a set of future response
yf = (y1, y2, ...yn f )

′ for given y,X and Xf can be obtain as

f (yf |y,X,Xf) = Ψn f (.)
[
1 +

zf
′w2zf

(n − 2)s2

]− n+n f −2
2

;−∞ < y f < ∞ (23)

where zf = (yf − Xf β̂), w2 = [Inf − XfQ−1X′f] and Ψn f (.) =
Γ(

n+n f −2
2 )|w2 |

1
2

Γ( n−2
2 )[π(n−2)]

n f
2 (s2)

1
2

is the normalizing constant, with s2 =

1
n−2 [(y − Xβ̂)′(y − Xβ̂)], β̂ = (X′X)−1X′y, and Q = X′X + X′fXf .

4.1 Prediction under the Student-t Error

Assume that each of the n components in e for the simple linear regression model in (14) is uncorrelated but not indepen-
dent of the others and has the same univariate Student-t distribution with location 0, scale σ > 0 and ν degrees of freedom.
Therefore, the joint pd f for the n elements of e|σ is an n-dimensional multivariate Student-t distribution

f (e) ∝ (σ2)−
n
2

[
ν +

1
σ2 e′e

]− ν+n
2

.

Here E(e) = 0, and Cov(e) = νσ2

(ν−2) In for ν > 2. Thus the elements of e and hence those of y are uncorrelated but not
independent. Therefore the probability density function of the realized vector y becomes

f (y|β, σ2, ν) ∝ (σ2)−
n
2

[
ν +

1
σ2 (y − Xβ)′(y − Xβ)

]− ν+n
2

. (24)

Let a single response from the future model in equation (17) follows the assumption that e f |σ has univariate Student-t
distribution with ν degrees of freedom i.e., e f |σ ∼ t1(0, σ, ν). Hence, the realized error e and the future error e f have
been combined to form a (n + 1) dimensional multivariate Student-t distribution with ν degrees of freedom. Accordingly
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the joint density function of the combined responses y from the performed experiment and y f from the future experiment
becomes

p(y, y f |β, σ2) ∝ (σ2)−
n+1

2

[
ν +

1
σ2 (Qy + Qy f )

]− ν+n+1
2

(25)

where Qy = (y − Xβ)′(y − Xβ) and Qy f = (y f − Xfβ)′(y f − Xfβ).

Let a noninformative joint prior distribution of unknown parameters β and σ2 be p(β, σ2) ∝ σ−2. It is assumed that the
degrees of freedom of the error distribution are given and the elements of β and log σ2 are independently and uniformly
distributed. Combining the prior information with the joint density function in (25) by means of Bayes’ Theorem, we
have the following joint posterior density of β and σ2 for y and y f

p(β, σ2|y, y f ) ∝ p(y, y f |β, σ2)p(β, σ2) ∝ (σ2)−
n+3

2

[
ν +

Q
σ2

]− ν+n+1
2

(26)

where Q = Qy + Qy f .

The prediction distribution of a future response can be obtained by solving the following integral

f (y f |y) ∝
∫
β

∫
σ2

p(β, σ2|y, y f )dσ2dβ. (27)

That means in this case we can obtain the prediction distribution of future response(s) from the joint posterior density
of unknown parameters for combined responses generate from both the performed and future models. Now the joint
posterior density in (26) can be expressed as the following convenient form

p(β, σ2|y, y f ) ∝ (σ2)
ν
2−1

[
Q + νσ2

]− ν+n+1
2 (28)

Using a transformation as Q + νσ2 = t−1 we have the Jacobian of the transformation |J| = 1
νt2 with the range of t from 0

to Q−1. Hence equation (28) can be written as

f (y f |y) ∝
∫
β

∫ Q−1

0

[
1
ν

(
1
t
− Q

)] ν
2−1 [

1
t

]− ν+n+1
2 1
ν

(
1
t

)2

dtdβ

∝ ν−
ν
2

∫
β

∫ Q−1

0
[1 − Qt]

ν
2−1t

n+1
2 −1dtdβ. (29)

If we put z = Qt, then the joint pd f in (29) becomes

f (y f |y) ∝
∫
β

[Q]−
n+1

2 ν−
ν
2

∫ 1

0
z

n+1
2 −1[1 − z]

ν
2−1dzdβ. (30)

Equation (30) confirms that z has a beta distribution and hence z ∼ B
(

n+1
2 ,

ν
2

)
. After integrating with respect to z, the

above equation become to the following form

f (y f |y) ∝
∫
β

[Q]−
n+1

2 dβ. (31)

Now, Q = Qy + Qy f can be expressed as the convenient quadratic form of the parameters vector β, i.e., Q = A + (β −
B)′M(β − B). Where M = X′X + X′fXf , B = M−1(X′y + X′fy f ) and A = y′y + y2

f − (y′X + y f Xf)M−1(X′y + X′fy f ). It is
noted that A is free from the unknown regression parameters’ vector β.

Using thethe convenient form of Q, the probability density function in (31) can be expressed as

f (y f |y) ∝
∫
β

[A + (β − B)′M(β − B)]−
n+1

2 dβ.
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The prediction density for y f can be obtained by integrating the above equation with respect to the elements of β using
the multivariate Student-t integral. Hence the prediction distribution of y f given a set of observed responses y is obtained
as

f (y f |y) ∝ [A]−
n−1

2

∝ [y′y + y2
f − (y′X + y f Xf)M−1(X′y + X′fy f )]−

n−1
2 (32)

Now, y′y + y2
f − (y′X + y f Xf)M−1(X′y +X′fy f ) = y′(1 −XM−1X′)y + y′f (1 −Xf M−1X′f)y f − y′XM−1X′fy f + y f Xf M−1X′y

= y′(1 − XM−1X′)y − y′XM−1X′f(1 − Xf M−1X′f)
−1Xf M−1X′y + [y f − (1 − Xf M−1X′f)

−1Xf M−1X′y]′(1 − Xf M−1X′f)[y f −
(1 − Xf M−1X′f)

−1Xf M−1X′y].

But using appropriate simplification we can obtain (1−Xf M−1X′f)
−1 = [1+Xf(X′X)−1X′f] and then (1−Xf M−1X′f)

−1Xf M−1 =

Xf(X′X)−1. So the expression in (32) becomes y′(1 −XM−1X′)y − y′XM−1X′fXf(X′X)−1X′y + (y f −Xf(X′X)−1X′y)′(1 −
Xf M−1X′f) (y f − Xf(X′X)−1X′y).

Applying the OLS estimate β̂ = (X′X)−1X′y we get y′(1−XM−1X′)y−y′XM−1X′fXf β̂+(y f−Xf β̂)′(1−Xf M−1X′f)(y f−Xf β̂)
=y′[1−X(M−1 +M−1X′fXf(X′X)−1)X′]y+ (y f −Xf β̂)′(1−Xf M−1X′f)(y f −Xf β̂) =y′[1−X(X′X)−1X′]y+ (y f −Xf β̂)′(1−
Xf M−1X′f)(y f − Xf β̂). Also since y′[1 − X(X′X)−1X′]y = y′y − y′Xβ̂ = (y − Xβ̂)′(y − Xβ̂) = (n − 2)s2, the expression in
(32) becomes the convenient form as (n − 2)s2 + (y f −Xf β̂)′(1 −Xf M−1X′f)(y f −Xf β̂). Thus, using the ultimate form the
prediction distribution of a single future response y f is obtained as

f (y f |y) = Ψ f (.)
[
(n − 2) + (y f − Xf β̂)′H(y f − Xf β̂)

]− n−1
2 (33)

where H = (1−Xf M−1X′f )
s2 , β̂ = (X′X)−1X′y, s2 = 1

n−2 [(y − Xβ̂)′(y − Xβ̂)] and Ψ f (.) =
Γ( n−1

2 )|1−Xf M−1X′f |
1
2

Γ( n−2
2 )[π(n−2)s2]

1
2

is the normalizing

constant.

Therefore, under the Student-t errors the prediction distribution of a future response has an univariate Student-t distribution
of n − 2 d f , with location Xf(X′X)−1X′y and variance (n−2)s2

(n−4)

(
1 − Xf M−1X′f

)−1
. It is also revealed that the d f of the

prediction distribution does not depend on the d f parameter ν of the t-distribution for error terms.

Furthermore, employing the same procedures the prediction distribution of a set of future responses yf = (y1, y2, ...yn f )
′

from simple linear regression model [i.e., yf = Xfβ + ef , with ef |σ ∼ tn f (0, σ, ν)] for the given y,X and Xf can be obtain
as

f (yf |y) = Ψn f (.)
[
(n − 2) + (yf − Xf β̂)′H(yf − Xf β̂)

]− n+n f −2
2 (34)

for H = (Inf−Xf M−1X′f )
s2 , β̂ and s2 are same as of (33) and Ψn f (.) =

Γ( n+n f −2
2 )|Inf−Xf M−1X′f |

1
2

Γ( n−2
2 )

[
πn f (n−2)s2

] 1
2

.

Therefore, under the Student−t errors a set of future responses yf has the prediction density of an n f -dimentional Student-t
distribution with n − 2 d f . This indicate that the shape parameter of the prediction distribution dependents on the size of
the observed sample n and the dimension of regression parameters β. The location and scale of the prediction distribution

are Xf β̂ and
{
s−2

(
Inf − Xf M−1X′f

)}− 1
2 respectively. This result coincides with that of Zellner (1971) and Hahn (1972),

where they had considered the normal error terms and obtained the distribution using the classical method. Consistant
results had also obtained for the normal errors regression model by using the structural distribution (Fraser & Haq, 1970)
and structural relations of the model (Fraser & Ng, 1980) approaches instead of the Bayesian approach. So, the prediction
density is unaffected by departures from the model with independent and normal errors to the Student-t errors under the
classical, structural distribution, structural relations of the model and Beyasian methods.

5. Conclusion

The posterior distribution for parameters of a set of observations is typically the major objective of the Bayesian statistical
analysis. A posterior distribution implies a marginal distribution known as prediction distribution for outcomes of any
future sample observations from a medel, and prediction distributions have many applications in statistical inference. In
this paper, the effects of a range of conjugate and non-conjugate prior distributions on the Bayesian predictive inference
have been tested. The prediction distributions for future response(s), conditional on a set of observed responses have
been also derived for the simple linear regression model with the normal and Student-t errors situations. Findings reveal
that if a conjugate prior for the normal error model with known but unequal variances are used, then the joint posterior
distribution of parameters, the marginal posterior distribution of the location parameter µ and the prediction distribution
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of future response y f all have normal distributions. The mean of the prediction distribution is same as the posterior mean
and the variance is greater than the posterior variance.

In another case, when we have considered a conjugate prior with the same unknown variance in the model the joint
posterior distribution of parameters has revealed a normal distribution. However, the results have clearly demonstrated
that the marginal posterior density of location parameter and the prediction distribution of future response both have a
Student-t distribution with n − 1 d f , and with the same mean but different scale. In this specific situation, the variance of
the prediction distribution is much smaller (i.e., at the minimum of four times smaller) than the variance of the marginal
posterior distribution of µ. And if we use a noninformative prior for the unknown parameters of the model, the finding
reveals that the prediction density of future response follows a Student-t distribution with n − 1 d f .

Moreover, the results for the simple linear regression model show that conditional on a set of realised responses, the
prediction distribution of a future observation has an univariate Student-t distribution with n − 2 d f , and with mean
Xf(X′X)−1X′y and variance (n−2)s2

(n−4)

(
1 − Xf M−1X′f

)−1
for both of the Normal and Student-t errors situations. It is also

obvious that the d f of a prediction distribution does not depend on the degrees of freedom parameter ν of the t-distribution
of disturbance terms. Similarly, under the Bayesian method with the uniform prior, a set of future responses yf has the
prediction distribution of an n f -dimentional multivariate Student-t distribution with n−2 d f . This indicates that the shape
parameter of the prediction distribution dependents on the size of the observed sample n and the dimension of β. The
location and scale of the prediction distributions are same for the model under the Normal errors and the Student-t errors
situations.

In conclusion, findings reveal that the prediction distributions of a single future response and a set of future responses
from the simple linear regression model unaffected by departures from the model with the Normal errors to the Student-t
errors distribution. The prediction distributions by the Bayesian method are also coincide with the results derived by the
classical, structural relations of the model and structural distribution approaches. Ultimately, the prediction distribution
depends on the observed responses and the design matrices of the realized model as well as the future model. The shape
parameter of the prediction distribution depends on the size of the realized sample and the dimension of parameters vector
of the model, but it is completely independent to the degrees of freedom of the error’s distribution of the model.
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