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Abstract

Recently there has been a growing interest in joint estimation of the location and scale parameters using combined esti-
mation functions. Combined estimating functions had been studied in Liang et al. (2011) for models with finite variance
errors and in Thavaneswaran et al. (2013) for models with infinite variance stable errors. In this paper, first a theorem on
recursive estimation based on estimating functions is extended to multi-parameter setup and it is shown that the unified
approach can be used to estimate the location parameter recursively for models with finite variance/infinite variance er-
rors. The method is applied for the joint estimation of the location and scale parameters for regression models with ARCH
errors and RCA models with GARCH errors.

Keywords: quadratic estimating functions, information, recursive estimation, joint estimation, ARCH, GARCH
1. Introduction

Estimating function theory is well suited to financial data (see Bera et al. (2006)). Recently, Ghahramani and Tha-
vaneswaran (2009, 2011) have studied GARCH model identification and recursive estimation by combining least squares
and least absolute deviation estimating functions and the method has been applied to identify several financial time se-
ries models. Combined estimating functions had also been studied in Liang et al. (2011) and in Thavaneswaran et
al. (2013,2015) for the multi-parameter setup. Thavaneswaran and Ravishanker (2015) studied recursive estimation for
circular time series models using estimating functions. In this paper, first the combined estimating function method is
applied to obtain joint optimal recursive estimates of the parameters in autoregressive models with t-distributed errors,
then regression models with ARCH errors and RCA models with GARCH errors. Combinations of least squares and
quadratic estimating function, as well as combinations of least squares and LAD estimating functions, are considered.
The following example motivates the use of estimating function theory for recursive estimation of the parameter in certain
time series models with stable errors.

Consider an AR(1) process
Ve =@y-1 + &

where {&;} is an i.i.d. sequence of symmetric stable random variables with characteristic function c(u) = exp (—Iulﬂ) where
0 < 4 £ 2. Closed form representations of the density exist only when 4 = 1 (g follows a Cauchy distribution) or
when 1 = 2 (g, follows a Gaussian distribution). Moreover, the second moments are not finite when 0 < A < 2. Inter-
est centers on estimating the parameter ¢ based on the observations yy, - - - ,y,. Merkouris (2007) recently has proposed
the estimating function approach to estimate the parameter ¢. Recently in Thavaneswaran et al. (2013) joint estimates
of location and scale parameters are derived for a class of autoregressive (AR) models, a class of Random Coefficient
Autoregressive (RCA) models with stable errors, as well as for a class of AR models with stable Autoregressive Condi-
tionally Heteroscedastic (ARCH) errors. Moreover in Thavaneswaran et al. (2013) a fast, on-line, recursive parametric
estimation for the location parameter based on transformed estimating functions is discussed using simulation studies,
and a real financial time series is also discussed in some detail. Recursive (or online) estimation of a parameter where the
estimate of the parameter at time 7+ 1 is the estimate of parameter at time ¢ plus an adjustment is advantageous when there
is a large stretch of data and observations become available successively over time. Recursive estimation of the parameter
based on nonlinear estimating functions had been studied by Thavaneswaran and Heyde (1999) and based on combined
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estimating function in Ghahramani and Thavaneswaran (2012).

This paper is organized as follows. In section 2, recursive estimation of location parameters using nonlinear estimating
functions is discussed. and in section 3 recursive estimation of location and scale parameters are considered.

2. Recursive Estimation using Nonlinear Estimating Functions

Suppose that {y;,# = 1,...,n} is a realization of a discrete-time stochastic process and its distribution depends on a vector
parameter @ belonging to an open subset @ of the p-dimensional Euclidean space. Let (Q, F, Py) denote the underlying
probability space, and let ﬁty be the o-field generated by {yi,...,ys,¢ > 1}. Let h(0) = hy(yi,...,y,0),1 <t <n
be specified g-dimensional vectors that are martingale differences. We consider the class .# of zero mean and square
integrable p-dimensional martingale estimating functions of the form

M = {gnw) FROESY a,_l(e)hfw)},

t=1

where a,_(0) are p X g matrices depending on yi,...,y:-1, | <t < n and the parameter #. The estimating functions g, (6)
.0)| v ]
00 n—1

and E[g,(6)g.(0) Iﬁ v _,] are nonsingular for all # € O and for each n > 1. The expectations are always taken with
respect to Py. Estimators of € can be obtained by solving the estimating equation g,(6) = 0. Furthermore, the p X p
matrix E[gn(a)gn(e)wz{%] is assumed to be positive definite for all @ € @. Then in the class of all zero mean and square
integrable martingale estimating functions ./, the optimal estimating function g} (#) which maximizes, in the partial order

of nonnegative definite matrices, the information matrix

are further assumed to be almost surely differentiable with respect to the components of 8 and such that E

-1
oh,(0
I, (0) = (Z a,_ 1(49)15[ ( ) D [Z E[(a;-1(0)h,(0))(a,1(6)h,(6)) Iﬁ,yll]

y (Z a1 (O)E [ oh.(6) ‘ 7Y D

t=1

is given by

S dh,(0
20 = o, @Oh@ = (E[ LLp D (Elh/@)h,(6) 172, 1) b,
t=1 t=1

and the corresponding optimal information reduces to

- oh,(0 ! , - oh,(0
L®=) (E[ L ﬂ,y_l]) (Eh @17 ,1) " (E[ n 323_1]).
t=1

For the estimating function of the form G(0, TV D=  bio1(0, 77)’ 1)g(m,(ﬁ’ Ty 1)) based on the martingale differences
m;(6, 7" “)) = v — w8, F; 1) the following Theorem prov1des the recursive form of the optimal estimator based on
optlmal estimating fU.IlCthIl in the multi-parameter case. The proof is similar to the theorem in Thavaneswaran and Heyde
(1999) for the scalar parameter case.

Theorem 1. Let u,(6, F; Y ) = ElF ] ” 1 be differentiable respect to 8. Then the recursive estimator for 8 based on the
optimal estimating funcnon G, 7’1 ) is given by

0, =01 +Kb_ 0,1, F Dgm(8,_1,F ),

0g(mi(B,-1, ;)

K; = Ktl( [ O F ) 50

~ -1
a0, F ) ,
+%‘”g<mf@_l,ﬁ_l»} K,_l] ,

where 1, is the identity matrix and b;_, is a function of g, 0 and the observations. If g(x) = x, then

b 06,1, 7 )]0
T T Var@F )
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while for any function g (e.g. if g is the score function, then)

[0 (Br-1, F )/ 061[0g(m (8, F7 )/ 0m;]
Var(glF, ) '

* pa—
bt—l -

For the scalar parameter case where b}_; dose not depend on 6, we have the following corollary as a special case.

Corollary 2. In the class G of all unbiased estimating function g(m,(0, 7”[}_ 1)) based on the martingale difference
m, (6, 7—:{ D)) =y — w6, 7‘:{ ). The recursive estimator for 6 based on the optimal estimating function is given by

" Kb,
1+ [0(B-1, F ) /001K, b7,
K1

Kt = o) y % (2)
1+ [0 (01, F,_ )/ 001K -1 D,

ét = ét—l

§(my(6,7.)))), ey

where b;_, is a function of the observations. If g(x) = x, then

_— 3/1,(9,_1,7‘?_1)/69
U VarglF! )

s

while for any function g (e.g. if g is the score function, then)

[0t (Or—1, F7 )/ 361[0g(m (0, F )/ Om,]

b, = ~
= Var(glF )

Corollary 3 (Thavaneswaran and Abraham (1988)). For the nonlinear time series models of the form

yi=0f(t=1Ly) +e,

where &, is an uncorrelated sequence with mean zero and variance o2, the recursive estimate based on the optimal linear
estimating function ), a;_1(y; — 0f(t — 1, y)) is given by
Kia,_,

L+ f(t =1L, nKia;_,’

@[ = él—l +

where
K

T 1+ f(- LyKea

K,
and a;y_| = —f(t - 1,y)/o2.

We describe recursive estimation of ¢ for known scale c. Based on g (6) in Thavaneswaran et al.(2013), the optimal
estimate is obtained by solving the estimating equation

kuw,d) ) yirsin [u(w%)] =0,

t=p+1
2ue ' : . . : [ ety
where k(u, 1) = m By using vector form of the recursive algorithm (1) and (2) and letting g = sin [u (;)]
c(l —e7lor ¢
and b;_, = k(u, A)y;-1, it is easy to show that the recursive equations for ¢ become
n -1
uk(u, Dy,_1y. - _
K; = {Ip + ( )YZ i Ccos [l/t ()’t ¢;_1YI 1)] K[—l} K1, ©)]
c c

where I, is the p X p identity matrix, and

Y —‘%—1)@—1]]. @)

&z = &t—l + K;k(u, A)y;— sin [M( P
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Recently recursive estimation for location parameters has been studied and applied to real data for infinite variance stable
processes (Thavaneswaran et al. (2013)). Now we show that the results can be obtained as a direct corollary to Theorem
1. Consider the RCA(p) process was defined as y, = (¢’ + b))y,—1 + &, where ¢ = (¢1,--- ,¢,), and b, = (by1,- -+ ,b,p) .
Assume that {&;} is a sequence of i.i.d A-stable random variables with location parameter zero and known scale parameter
c. Assume that the components of {b,} are mutually independent, and are independent of {g,}. Assume that {b,;} is
a sequence of i.i.d A-stable random variables with location parameter zero and known scale parameter 8; = ¢, ;. Let
B =1, ,Bp) =(cpi, - ,cpp) . Then, the distribution of y;, conditional on the past, follows a stable distribution with
location parameter ¢’y,_; and scale parameter c¢;(¢, B8), where variation of the the RCA process ledt = 1By 1t + et

Y=y

Ct

k) Y Y sin [u(y—’ - ‘C”/y"l )] —0.

Ct t

Based on martingale difference sin [ul ( )] the optimal estimate of ¢ is obtained by solving the estimating equation

t=p+1

_ 2uexp(-luh . - - - o Yy N
where k(u, 1) = By using the recursive algorithm (2.5) and (2.6) and letting g = sin [u( < )] and by | =

1—exp(—2ult) *
k(u, )y;—1, Now it is easily shown that the recursive equations become
n -1
uk(u, )y,;_1y’ - _
K, = {Ip + # cos [u (MH KH} K, (5)
Cl Ct

and

(6)

k(u, D)y sin [u (yt - &5;_1%—1 ]]

Ct

¢ =0, +K

Ct

The algorithm described in (5) and (6) gives the new estimate at time ¢ as the old estimate at time ¢ — 1 plus an adjustment.

Given initial values ¢, and Jy, we can compute the estimate recursively. The recursive estimate 53, in (6) is usually

referred to as an ‘on-line’ estimate and it can be mathematically computed in a feasible way, especially when data arise
sequentially.

As a special case of the RCA (p) model with stable errors where b, = 0, the AR (p) model with stable errors is defined as
Vi = ¢'Yi1 + &, where ¢" = (¢1,...,¢,), ¥,_; = (Vi-1,...,Yi—p), and &/s are i.i.d. random variables following a A-stable
distribution with location parameter zero and scale parameter ¢. That is b, = 0 in the RCA model, ¢; = ¢ and in (3) and
(4), the optimal estimate of ¢ is simply obtained by solving recursive equations

1

uk(u, )y;-1y, - ¢y B
K, = {Ip + ( )ir it o [u [yl Prrd: 1)] K,_l} K1, (7)
c

Cc

where I, is the p X p identity matrix, and

&z = (if_] +K; ¥

K Dy [u [yt —d1yi ]] '
C C
3. Joint Recursive Estimation of the Location and Scale Parameters

For the single parameter case, recursive estimation has been studied in Thavaneswaran and Abraham (1988), Tha-
vaneswaran and Heyde (1999), and Ghahramani and Thavaneswaran (2012) by using estimating functions. In this section
we study the recursive estimation of the location and scale parameters for nonlinear time series models with finite variance
and infinite variance error.

Now we consider a real-valued discrete-time stochastic process {y,,f = 1,2, ...} with conditional moments
w6 = E[yl 7], ©)

o7 (60) = Var (y|.7..). (10)

In order to estimate the parameter 6 based on the observations yy, .. ., y,, we consider two classes of martingale differences,
viz., {m; (@) = y, —u(0),t = 1,...,n} and the generalized martingale differences {M;(0) = q(m.(0)) — E[q(m,(a))p@ty_l],t =
1,...,n} such that the quadratic estimating functions and the LS and LAD combinations becomes as special cases. The
quadratic variations of m,(6), M,(0) and, the quadratic covariation of m,(6) and M,(@) are respectively

(m); = Elm}(9)|.F. |1 = 07(0),
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(M), = Elg* (@) ] - (Elg(m@)|.F},1) .
and
(m, M), = Elm/(®)qm(6)|.F), 1.

Here, g is any differentiable function with respect to 8 chosen in a way such that (M), and (m, M), exist. The optimal
estimating functions based on the martingale differences m,(6) and M,(6) are respectively

n

* 61“[(0) my
gmw):—; TR

and

o (L [agom@y| | OE|aem@)F ] M,
g(6) = Z [E[T ‘/’-1] 90 oy,

t=1

Then the information associated with g;,(0) and g),(6) are respectively

_ N0 9u9) 0u(6) 1
OEDY 90 80 (m),

and

" dg(mi(8)) dq(m(6))] .,
Ig;lw):Z(E[ o) i ©)) f,]

t=1

OE| gm0 F7.,| OE [ qm, ) .7, |\ 1
90 09 (M),

Let g1, g» be fixed unbiased estimating functions having finite and positive variances, and such that the expectations of
0g1/00 and 0g, /00 are finite with E[0g;/00] # 0. The following lemma which gives the form of the combined estimating
function as a linear combination of orthogonal estimating functions as well as nonorthogonal estimating functions can be
used to obtain the recursive estimates of the location and scale parameters.

Lemma 4. In the class of all unbiased estimating functions {g = 181 + @282}, the one which maximizes the information
(E[0g/061)?|Var(g) is given:

(a) by a linear combination of non-orthogonal estimating functions as

* _ % *
§ =81+ a8

where
. E[%]var(g) ~E| % | Covigi.82) 0
Var(g)Var(gy) = Cov*(g1,82)
and
. E[%|varten - E[ %y | Covigi.g2) 1)

Var(g)Var(gz) — Cov?(gi,&2)

Cov(gi,82)

(b) by a linear combination of orthogonal estimating functions g, and = g, — Varen) 81 @S
g1 g2 | _ Cov(g1.82) 1 | 981
R el
Var Cov’(g1.82) _ ~Cov*(g1.82) 1 262
®07 Var(g:) + SEEsE - 2558

where a} and o are given by (9) and (10).

For the discrete-time stochastic process {y;}, the following theorem first extends the results in Liang et al. (2011) for
quadratic estimating functions to the combined estimating functions based on the martingale differences m;,(6) and the
generalized martingale differences M;(6), and then provides form of the estimates based on the generalized combined
estimating functions.
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Theorem 5. For the general model in (7) and (8), in the class of all combined estimating functions of the form

Ye = {28c(0) : gc(®) = ) @ 1(O)m(8) + b1 (OM(O)),
t=1

(a) the optimal estimating function is given by

n

ge(6) = > (a,(B)mi(6) + b, (B)M,(6)).

t=1

where
o m, M2\ [ o) 1
a“(‘9)‘(1_<m>,<M>t) (_ 36 (m),
oE (0)| .F
[ [aqwfw» ﬁyl] | 4(m () f_l]] <m,M>f] )
50 - 0 (my (M),
and
. (m, My? )1 (autw) (m, M),
b, @) =|1-
-1©) ( (m) (M), 80 (my(M),
dqm@)| —, | OE[am@NFL]) 1)
+[ [ 20 |7 1} 0 an, |’ (19

(b) the optimal estimating function is equal to g, (0) if

O m, M), =_[E[aq(m,(e)) . } OF | g(m (0)) 7., |

h i
36 (m), 06 |7 20 J’f"’“‘c :

(c) the recursive estimate for @ is given by

8, = 0,1 + K, (a;_,(B-)m(8,-1) + b]_ (B, )M,B,1)), (15)
. . Om(B) 0a (B
K =K [I,, - [a,_l(o,l) 3 0,’ +— ;90 my(0,-1)

OM,(B,_)) .\ b’ (0-1)

+ by, 8-1) o0 50

-1
Mf<9,1)] K,l) , (16)

where 1, is p X p identity matrix, and a;_| and b;_, can be calculated by substituting 0,_, in equation (13) and (14)
respectively.

(d) for the scalar parameter case, the recursive estimate of 0 is given by

6 = 0,1 + K@, (B-))mi(B—1) + b}, (B-)M,(B,-1)), (17)
om, (@ da* (O-)) .
K, = K,l[ ( (0 ’(9’ ) "ae”m,w,_l)
A -1
. OM,(0;_ ob; (0-1) .
+b;_,(6-1) ’(9 ) ’;H”Mi(ez_l)]K,_l] : (18)

Proof. The proof of part (a) and part (b) are somewhat similar to the proof given in Liang et al. (2011). Part (c) and Part
(d) extend the results in Thavaneswaran and Heyde (1999) for the generalized combined estimating function g¢.(6) with
the vector parameter. Detailed proof of the theorem is given in the Appendix A. O
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. . . . . L dge(0
Note 1. The optimal information matrix based on the first i observations is given by —E[ ggg( ) Zv_] and hence, K; ! =
og:.(0, . . . . . . . . S
- gL(gg Y can be interpreted as the observed information matrix associated with the optimal combined estimating

function gg.(6).
3.1 Autoregressive Models with Student’s t Errors

Consider an autoregressive model of the form
Ve =0y + o(O)e,

where o (0) is any differentiable function of 6, and {g;} are uncorrelated random variables having the student t distribution
with density function

g(x) =

L%‘>)(l 2\

-7
+ —) ,—00 < X < 00,
\/ﬂVF(%

v
Then the conditional mean and variance of y; are u,(6) = 6y,_; and 0,2(9) = (’EE—‘?V for v > 2. Maximum likelihood
estimation for this model becomes more complicated and the LAD estimating function method had been discussed Tha-
vaneswaran and Heyde (1999) and combined estimating function method has been discussed in Ghahramani and Tha-
vaneswaran (2009).

We consider two classes of estimating functions generated by the martingale differences {m; = y; — u;,t = 1,...,n} and
{M, = —sgn(m,),t = 1,...,n}. For v > 2, it can be easily shown that the LS estimating function based on m; is given by
(0= 22N -
gm - 0—2(0)1/ £ yt—l t yt—l )

with information .
y—2
I 0) = ——— > i,
8 0'2(9)1/ ; t—1

On the other hand, for any value of v, the LAD estimating function based on M, is given by

F(v+1)
Wﬂvf(g) ;% 1 sgn(y; — 0yi-1),

(=)

2Oy (F (%))2 =1

For v < 2, the LS estimating function is not defined, whereas the LAD estimating function provides an estimate of §. For
v > 2, neither the LS nor the LAD estimating function is optimal. In the class of all combined estimating functions of the
form {gc(0) : gc(6) = X1, (a,1m; + b, M,)}, the optimal estimating function is given by

IMOERS
with information

2
V-1

n

ge(®) = )" (arymy + b M;)

t=1

where

* = —
a,_ =

y—2 ( ZF(%)p ] C1Yr-1
1- 1 =

o= ao—or(z)) T PO

b* _ v—2 4 _ Zr(%l) v _ C2¥Vr-1
LT T e - | Vv -2 Vo (3)¥ =2 Y =6y

where c¢; and ¢, are the constants and p = E [|m,| |3‘11 ] Jo(0) for v > 2.

Furthermore, the conditional information /g (6) is given by

ar(3) -2 ]

1
IO =17 [g"’(9)+ =T Y VoI ( %
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In order to obtain the recursive equations for 6, we first derive the derivatives of al 15 bt 11, My with respect to 6. It is
easily to calculate that

oa;_ 2¢1y,-1 00(6) 0b7 c1yi— 0o () Om om

-1 1Yr-1 -1 1Yr-1 t t

__ ) - _ oy T Z 0y 80y, — By,
09 o3 08 00 o) 06 00 -1 08 Yi-100 Vi-1)

where ¢ is the dirac delta function. Then the recursive estimate of 6 is given by

ét _ éz—l + Kr(cl)’r—l()’t - éz—lyz—l) _ Coyi—15gn(y; — 91‘—1)){—1))

O'z(é,_l) O'(él 1)
K, =K, ](1 +( Zl)ilz_l 2c1yi- ](,:):t_el 1Y 1)60'(91 1)
o*(6i-1) o>(6-1) a0
A A~ A -1
2092 160 = Or-1yi-1)  cayioysgn(yr — B1yim1) 60-(9,_1)) K )
- ~ - ~ t—1
0 (0r-1) a?(6:-1) 90

3.2 Recursive Estimation for Location and Scale Parameters of a Cauchy Distribution

The Cauchy distribution has the probability density function

1 b
fx8.6) =2 [(x—9)2 + b2
where 6 is the location parameter, specifying the location of the peak of the distribution, and b is the scale parameter
which specifies the half-width at half-maximum (HWHM). Now we are interested in how to estimate the parameters 6
and b jointly. Because the parameters of the Cauchy distribution do not correspond to a mean and variance and attempt
to estimate the parameters of the Cauchy distribution by using a sample mean and a sample variance will not succeed.
On the other hand, maximum likelihood can also be used to estimate the parameters 6 and b. However, this tends to be
complicated by the fact that this requires finding the roots of a high degree polynomial, and there can be multiple roots
that represent local maxima. Also, while the maximum likelihood estimator is asymptotically efficient, it is relatively
inefficient for small samples. In order to solve the estimation problem, we use he estimating function method and obtain
the recursive estimates. The advantages of the method include the simplicity of constructing the estimating equations and
the explicit calculation of the estimates.

If Xi,---,X, are independent and identically distributed random variables from the Cauchy distribution, then based on
the martingale differences
hy(6,5) = (sinfu (x; ~ )], cos[ux(x; — 6)] — &)

the estimating function is given by

n oue-bul .
uleb\uH sinfu (x; — 0)]

£'(6,b) = Z Z\lele”’“l‘z_‘e

L\ Al (coslua(x, — 0)] - e7bhel)

For simplicity, let 8 = e~?*!, then the estimating function becomes

n (2l v
g'(0,b) = Z i T sinfu; (x; - 6)]
=1 1‘35!5 (cos[ua(x; — )] - B)

Therefore the recursive equations for 8 and 3 are

|Ll
Al
2u1ﬂ' 12

) 0 —— i si —0,_
( Qt ):( ez—l )+K, lﬁf|ll sin[u; (x; —1)]
B Bi-1

% (cosluax, = -1 Bi1)

and
‘ul |ﬁ|u2| (1 P u,|)
uy =1
o| ¥
1_,ér-|1~z
2lua | (1442, ) cosluz (x=6;-1)] -4z |B,-1
(-8,

gl )
R cos[u(x; — 6;-1)]

_1 1 @
K =K. - 15"
2uu|Biy
l_ﬁrz—l

sinfu; (x; — 91—1 )]

sinfus(x; — 6,-1)]
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3.3 AR(p) Models with Stable Errors

For the AR(p) process given by y, = ¢'y,_| + &, where ¢ = (¢1,...,¢,),¥,_| = (i1, ..

,Yi—p)> and g/ s are i.i.d. random

variables following a A-stable distribution with location parameter zero and scale parameter c. In order to estimate the

vector parameter 6 = (¢’, ¢)’, we consider a class of martingale differences

h,(0) = {Sin [ul ()%,y”)] ,COS [uz ()%,y”)] - exp(—|u2|4),t =p+1,...,

Then the optimal estimating function based on h,(6) is
21416"‘”1‘/I zn: y sin [M (Y!*WY/—I )]
c(l—e"z“l‘l) 1 -1 1 P
2,0 =
2/1|M2‘/l€_‘“2‘1 4 Vi=¢'yi-1 A
_c(1+e"2"2“ 726’2|"2|/l) %‘ {COS [ ( ¢ )] - exp(—|u2| )}
and the corresponding information matrix is

2k exp(—2lug|Y) &

m Z Yt 1Y, 0
I = ,
2,22 ,—2Jus |
Let 2 —Juy |1 2/” |/1 |up ]!
uje ™ up|"e ™
ki(up, ) = ﬁa ko(uz, 1) = 1+ e_puj/l 92l

Therefore the recursive equations for 8 and S are

kl(ttL,ﬂ)Yz-l sin |u; (y,—?fﬁ]y,,] )]

(?’):(?’-1 )+K, e T g\

up, 1P 1Yi-1
Ct Cr-1 _% {COS [u2 (T)] _ exp(—|u2|’1)}
and

Dy, Dp
Dy Dy

Kr_] = K;Jl - (

where

Dy =- 2

ulkl(ul,/l)Yt lyt 1 [ (
uj
t 1

V=@, Y1 )]
Cr-1

Y — ¢;_1Yt—1 )]
Cr1

k L, ADYio1 . - ¢y
Dps = — 1(“12 )¥i-1 sin [”l (yt ?t 1Y: 1)]
¢ Cr—1

6.3

urki(uy, DY -10ve — @,_1yi-1) [ (
cos | u;

t—1

urks(up, )y’ —-¢ v,
D2] __ 2 Z(Az )yt_] sin [Mz (J’z ?l—lyt ])]
¢y Cr-1
k A —-¢ .y,
Dy = —2( z ){cos [Mz (y—l ?l L 1)] —eXP(—qulﬂ)}
Ct 1 Cr-1
urko(uz, V(s — ¢;71Yt—1) . Y — ¢;71Yt71
- pe sin |uy 6—1 .
-

t 1

3.4 Regression Model with ARCH Errors

Consider a regression model with ARCH () errors &, of the form

yi=pxe+ g
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such that E [atlﬂ‘f; 1] = 0, and Var (E,IZ{ 1) =h = ay + alslz_l + ...+ a/sstz,s. In this model, the conditional mean
is y; = x¢'B, the conditional variance is o',2 = h;, and the conditional skewness and excess kurtosis are assumed to be
constants y and «, respectively. It follows from Theorem 1 that the optimal Component quadratic estimating function for
the parameter vector 8 = (B1,...,B,, o, ...,a;) = (B',a’) based on m; = y, — B'x; and M, = m, —h;is

n

1 1 2
B = —— S ||k + 2% - 20 X i
gc(ﬂ) K+2_72 ; /’1[2 [{ /(K )X, t ijI(IJX[ jEr—j | My
+ {h,l/zyxt+22a/jxt_js,_j] Mt]
=1

and

* 1 C 1 1/2 ’
go(@) = mth(h Y&l .. e ) m,

—(l,sf_l,...,st_s) M,).

Moreover, the information matrix for 8 = (8, @’)’ is given by

2 (1
Y Igg  lgo
S ’ 21
( K+2) (Iaﬁ Luo Q1)
where
Low = Zn: X/X; N 4(2;:1 a’jxt—j(‘;t—j) (Z o QX & j) N 2yxq (Z X & ,)
BB hrz(K-i' 2) h,3/2(K 12
(/’11/2’)/X1+22 1 @jXi—jEr- j)(l St 1,_,_,‘9[2_5.)
Ig, = & ’
=1 hi(k+2)
n 2 ., P ,
Is=1, =- (L. 6y (hl/ YX 220 asz—jé‘z—j)
v ’ =1 h(k +2) ’
and
o Y(Lgl el (L el .. el
aa —
=1 htz(K+2)

It is of interest to note that when {g;} are conditionally Gaussian such thaty = 0,k = 0,

E (Z] | X j)(l Sl l,...,stz,s
h2(k +2)

The optimal quadratic estimating functions for 8 and @ based on the estimating functions m, = y, — x,8 and M, = m,2 —hy,

are respectively given by
1 S
gcB = Z h2 [ hexgmy + [Z a’jxtjf'?tj] Mt]
J=1

and
g (O’) = - IE _( I E & ) M
C hz s Cr_1» s Ct—ys t

Moreover, the information matrix for @ = (8, a’)’ in (3.8) has Ige =Ip =0,

h[X[Xt + 2 =1 ajxt_jgt_j) (Z =1 an (9[_])

Ipp = Z 2 ;
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and

1, st free e A, 8, 1""’812—3)
Im,zz " .

t=1

Now we consider the recursive estimation for 8 and @. For g.(B),

. 1 " K
a_ = m [_hr(K +2)x¢ — 2k, 7y Z N

J=1
and
1 12 -
b, =—— _|h X, + 2 X i&—il.
-1 (K+2—72)hr2[t VX JZ_:‘ JR1=j&r-j
Hence,
oa* 1 .
| d
- —2(k +2)x X, &
3B (K+2—')’2)h;2[ ( )t[jz; JT—]IJ]
—6h;1/2‘y [Z a/sz—jSt—j] [Z a/jX;_jSt—j] + 27htl 2 [Z ajxf—jx;—j]] ’
j=1 Jj=1 =1
and
ob;_, 1 -12 .
-1 _ 3yh ' %x ajX;_ &
op (K+2—y2)ht2(yl t; e
+8ht_1 [Z a'thjé‘[j] [Z a'jX;_jgtj] -2 (Z an[jX;_j] ]
j=1 J=1 J=1
Also P
niy Mf , ’
@ = -X,, % =2y, — B'x)X; + 2 ]:Zl a;X;i&-j

therefore, by using the recursive algorithm (2.5) and (2.6), the recursive equations for S are given by

Bt :Bz—l +Kz( [ 1(at—17ﬂf ])mt(ﬂz 1)+b 1(a't I,Bt l)Mt(a't l»ﬂz 1))
am(B,_,) aat,l(at—l»ﬂz—l) P

K, =K. l[ ( a,_ 1(0'1 l’ﬂt 1) ﬂ 8,8 mt(ﬂt—l)
N A -1

A OM (&1, B;_ ab;ﬁ_ -1, By N A
+ bf_|(dt—1,ﬁt_1) (Q'aﬁl, B 1) + l(aaﬂl i 1))Mt(at1,ﬁz—1)]Kzl] s

One the other hand, for g;.(@),

*

1 ’
—=,g_ 1,...,sf_s)

¢ = h2
nd de, 2 2 2 2
30 h3( 8,_1, g (e, ... el
Then, by using with the result Also
% =0, aa]Zt = (],8?71, . ,atz_s)’,

the recursive equations for 8 are given by

&, = @, 1+Kr( C,_ 1(&I—I)MI(B[7U&Z—1)>7

OM(B,_y, &-1) , O @)
oa’ oa

-1
K; = Krl[I (f_l(@r—l) Mt(Btl,&'z—l))Kt—l) ,
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Example. We consider the simple linear regression model with the ARCH (1) error defined as y, = By,_1 + & where
E [stlﬁ"'t};l] = 0, and Var (st|2{1) =h =ay+ als . The parameter of interest are (8, a’) = (B, ap, a;). If we assume
v =0and « = 0, then

ANE-1 X1 4

* *

a, ,=—-—,b,_, = c

t—1 t—1 Eig ol
h

1
s = - 1’ 2 s
— ht 1 htz( 8[_1)

and

da;_, A B ob;_, _ dajel 3 _ axl, o _ 3(1 2 V(1,6
B n? T op n} R: e op VT

t

Also, the derivatives of m, and M, with respect to 5 and « are given by

om oM, om om ,
aﬁ’ X ag =20y, — Bx)X; + 2181 X1, a’=0,7’=(1,s$_1>.

Then the recursive equations for 8 and a are derived as

x(ys _Bzxz) " 1181 %-1(Q _ﬁzxz)z - hz(d’t—l)))
hi(@-1) hi(@-1) '

Kt_K”(l ( 5 2 6 0= i)

/Agt = 8;—1 + K; (—

— — =+ .
h(@-1) hi(@—1)
+ Q1 4-18-1 %120 _ﬁzxz)xz + 28 181 X1-1)
hi (@)
. -1
L e X B (@) O~ B ht(az_n)]K ]
-1
(@) ’
and
—B.x)% = h (G
& =, - K, O ﬁtx;)A t(a’r—l)(l’grz_l);’
ht(at—l)
K =K_|LL - l,e 1,&
t t1(2 (l’lz(Azl)( f])( ;1)
-1
2 — - _
+ (Or ,tht) hi(&; 1))(],8271),(1,82,1) K, .
hz(&_ ) t t
t t—1

3.5 RCA Models with GARCH Errors
For the RCA model with GARCH errors of the form

Ve =(0+Db)y1 + \/h_tsz

p q
ht:w+2aj8t2—j+2ﬁjhl—j’ (22)
=1 =1

where {b;} and {&,} are uncorrelated zero mean processes with unknown variance ¢ = cri and variance 0@(9) with unknown

parameter 6, respectively. Further, we denote the skewness and excess kurtosis of {b;} by y,, k, which are known, and of

{&:} by v:(0), k:(0), respectively. In this model, the conditional mean is i, = y,—;0 and the conditional variance is 0'2 =

ytz_lé + h,a'2(9) The parameter 6 appears simultaneously in the mean and variance. Let m, = y, — g, and s, = m,2 - O't such

that (m), = y2 |6+ ho2, (M), = y* 6% (kp+2) + R0 H (ks +2) + 47 | Shya2, (m, MY, =y 63y, + ;> 02y, the conditional
skewness is y, = (m, M),/o7}, and the conditional excess kurtosis is k, = (M),/o"t — 2. Then It follows from Theorem 1
that the optimal component quadratic estimating function for the parameter vector 6 = (6,6, w, @1, -+ ,@,,B1,- -+ ,B4) s
given by

ge(0) = > (aym, + b} M), (23)

t=1
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where
o =(1_ (m, M)? )‘( Vet (h L zah,) m, M),
! (m)(M), my, "\ °00 | (my(M),’

52 (m, M), ,0h {m, M), 0h; (m, M), 02% (m, M),
l_1< >z<M>z’ “ow <m>t<M>t’ 860’1 <m>z<M>z ’ gaa’p <m>t<M>t,
zaht (m M), 0_2% <m5M>t)
66ﬁ1 (m),(M), ' Eaﬁq (m) (M),

and
b _(1 _ (.M )‘1 (y,_l<m,M>, _(h L 2@) !
- (myM), )\ my(my, " de " 7700 ) (M),
)2 1 28h, 1 zéh, 1 ’ Zah, 1
My G0 My, e T b, (M),
26h, 1 _ 2c’)h, 1 )'
Teop T 0B, (M)
The calculation of ‘;h’ (‘Z;’,O, ‘;ﬁj,% -,(‘%’;,%, -,%—}g)'q is not straight forward and we the recursive form is neces-

sary to take into account. Computation of %}g yields:

= ‘ziam—j—lst— Z“/st i zq:ﬁ
0 2. I
LN L

% ) ‘_Z% ]ht_laah, ; iﬁf% ;

TS L

Example. We consider the RCA model GARCH (1, 1) error defined as

e =@+ Dby +

2
hr =w+aig_ +ﬁ1hl_1,

where {b;} and {&,} are Gaussian processes with y, = 0,k, = 0,y.(0) =

vector 8 = (0, 6, w, a1, B1), we have
* V-
a, , = —,
! ( Y216+ o
and
b, = (bf—l,l’b:—l,z’bj—l,3’b* 1.4 —1,5)

__ 1 A do? 2 Ohy
202 6+ ha2? 1 00 ° 00’

\/h_,g,

Then takeing the derivative of a;_| and b;_, with respect to 6 we obtain

2 0h,
£ 00

&

06

+ 0y

0

%)

1

aa;k—l - YVi-1 (hz
90 (2,6 + ho?)?
and i
ob;_,
00

T 02,0+ ho)

71

0,0,0, 0)
2 20k 5 Ol
7 G0 7 day”
oy o,
ytz_l %% %%
0 0 0

(Bij)1<i<s,1<j<55

ah[_j
700

(24)

0 and «.(0) = 0. In order to estimate the parameter

20l
Eaﬂl

)

2 ot
£0p
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where

Bii = 1( o> 16+h,o-2)(h,a;922 %ags aggz;f) 2(h,6(; iaa}g))

B =y, (hza(; i?;é) By,

Bz = %( 0746 + hyo Z)(Zhl 6(; a;;;;) ( ﬁ z%}g) 52}1[) B3,

bt shep (B ) ol )

Bis = 3 (-0 o (S5 w2 D) o5 4 20 2 ) <

By = y,_1

By =y, 10'§Zhr = B3y

By =y 0} ghl = By

Bys = y;_ 10-5(9/}: Bs;

B33=%( (yl 10+ ho (gil;) ]

B34=%( o7 15+h10'2)0'88828ht1 2gzght) By

Bss = %( 0+ o )agaa ;21 aﬁ%g—gi) = Bs;

By = %( o> 6+h,o-§)o-§gaf%t 20‘;(%)2]

Bys = %( 02,6 + ho? )08%2;31 + (r;‘gz’l gg:) Bs,

Bsszé( 02,6 + ho? 68,8 (S/IZ)]
Also, since

‘Z";’ = (=3,0,0,0,0)’
and
(200 - @4 basemes - (g + 250 - 2 2 2O
the recursive estimate of @ are given by
8, = 0,1+ K, (a0 )m(8,-1) + b]_,(B-)M,(B, 1)),
K =K. (Is - (a;:,@tl)a”‘gg,"” 63?‘3(09"‘%,(9”)
+ by l)aMf(:’ 1) 6"?‘3;9"1)Mt(9,1>] KH]_I.

4. Appendix
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Proof of Lemma 4. Method 1 (General estimating functions). For the class of unbiased estimating function G = {g : g =
@181 + @282}, we want to derive the coefficients @ and @, such that min,, 4, E[S — a181 — @8-]? is obtained. Take the
derivative with respect to a; and @, we have

E[(S —a181 — @282)81]1 = 0, E[(S — @181 — @282)821 =0
which are equivalent to

Cov(S,g1) —a1Var(gy) — @2Cov(g1,82) =0 (25)
Cov(S, g2) —a1Cov(gi, g2) — axVar(gy) = 0. (26)

From equation (3) we have
_ Cov(S, g2) — arVar(gr)

a) =
Cov(g1,82)

Substituting o to equation (2) we have

COV(S,gl) _ Cov(S.g2)Var(g1)

Cov(g1,82)
Var(g)Var(gz)
Cogrgy —~ COV(81:82)

_ Cov(S,81)Cov(g1, 82) = Cov(S, g2)Var(g1)
Var(g)Var(gz) — Cov(g1,82)
~ E %2] Var(g)) — E [%] Cov(gi, 82)
Var(g)Var(g,) — Cov*(g1,82)

an =

Similarly,
dg1 0gr
E|%|Var(g:) - E| 52| Covigr, £2)
Var(g)Var(g:) — Cov3(g1,82)

a1 =

Alternatively, the optimal combined estimating function based on the orthogonal estimating functions g; and ¢, = g, —

Mgl is given by

Var(g))
9g 9g2 ] _ Covigi.gd) - [ 081
2 = E[a_al] E[ao] Var(g) E[ae] Cov(gi, &2)
¢~ ! Co(g1,82) _ A Co(gren) \°2 :
Var(gy) Var(g,) + Var(;l)z -9 Var(;l)z Var(g))

Expanding the above equation, the coefficients for g; and g, are given by

E|%|Var(g)) - E| %] Cov(gi, 2)
Var(g1)Var(gz) — Cov(g1, g2)

an =

and
B E [%‘] E [%i;] Var(g)) - E [%‘] Cov(g1, g2) y Cov(g1, 8)
' Var(g)  Var(g)Var(ga) - Covi(g1,82) Var(g,)
E [%‘] Var(g,) - E [%] Cov(gi,82)
- Var(g)Var(g) - Co(gi,g)
O
. . <m’ M>l
Proof of Theorem 1. We choose two orthogonal martingale differences m;(6) = x;—u;(0) and y;(6) = M;(6)— = m;(0),
m);

(m, M)} . .
o That is, m;(0) and y;(0) are uncorrelated with
m

i
conditional variance (m); and (y);, respectively. Moreover, the optimal martingale estimating function and associated

where the conditional variance of ;(0) is given by (y); = (M); —
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information based on the martingale differences y;(0) are

o o (mmn, T )
B0 = ;(ae o +E[ae ‘/"“Dw»

~ i(l‘ (m, My )—1((_% (m, M)} _E[%‘ P (m,M)i)
- (my(M)y; 36 (my>(M); 00 | 71| Gmyaay; )

t=1

w_n MM
+(60<m><M>,+E[ ]<M>) )

and

O (m, M);
00 (m);

I, (6) = +E

8M,~ X (3lui<m,M>,‘ aMi
a0 |7 ])(aa’ ) +E[aa’

MM

Ny T (B O m MM My | 1
= (m)i(M); 90 060" (my>(M); 00 06’ |~ T (M),
N %51‘41‘ +%6ﬂi (m, M);

00 00 060 00 ) (m)(M);)

Then the combined estimating function based on m; and y; becomes

e m, M2\ (B 1 OM;| . | (m. M),
gc® = Z(]_<m>,»<M>i] ((_%@_E[aa Zi- <m><M>l)’"

=1
B,u[ <I’}’l, M), (9M X 1
+(%<m>i<M>i+E[ a9 |7~ ‘] <M>,) )

and satisfies the sufficient condition for optimality

E[égc(e) .

50 i- 1] Cov(gc(0), gc(e) | 7 ) K, Vgc(0) € Y,

1
75, || —
llD Wi

where K is a constant matrix. Hence, g.(0) is optimal in the class Yc, and part (a) follows. Since m; and i; are orthogonal,
the information Iy (6) = I (6) + Iy, (6) and part (b) follows. Hence, neither g, (6) nor gj,(6) is fully informative, that is,

Ig*c(H) > I, (0) and IgE(O) > Igjw (0). Part (c) follows immediately from the fact that if %M =-E [ ‘93—1‘;

00 (m);
i, then gy, (6) = 0 and I, () = 0

Fr 1] for each

Proof of part (d) is as follows. The optimal combined estimating function based on m;((#)) and M;((0)) is given by

n

g'(0) = > ai ,(O)mi(6) + b} (OMi(H).

i=1
Then using Taylor’s expansion for gy (6) we have

n

" ., L, om(®) oa (O
Zafl(O)mi(0)+b§‘1(0)M,-(0)+(Z ) ’"( omi®) , aa_:;)M,-(a)
i=1 i=1

6m,(0) N ab;_ ()

+ bi 1((9) 50

Ml-<9)] 0®-6=0

74



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 5, No. 2; 2016

Substituting the recursive estimate for 6 at each step, the estimate based on the first i — 1 observations is given by

i—1 * 0
. a 0, oa_ (By1) . OM(B,
0,~_1={Z[“<03 p2O) BT o )by b, 20
s=1

S BN It SIS . o .
+ =M@ | |- ) (A Bem @) + b B )MB,-)

s=1
i—1

oal_(0,) .
+Z[ . 1(05 1)6mS(OS 1) as_l( l)mi(03—1)+b* l(as 1) S(as_l)

00 00
ob* (6, n o
+ MM(&;_»] 03_1).

00

When the ith observation becomes available, the estimate becomes

i

. . Omy(B,) oAl (Bo1) OM,(8,-1)
9 = {a§_1(0s1) + mi(@,-1) +b:_ (O, 1)—
{; 00 00 00

-1 .
ob*_ (6, N . N N N N
+ % i(as—l)]} (_ 4 (a:—l(gx—l)ms(es—l) + bz—l(as—l)Ms(es—l))

ams(es DSOSV . MO
+Z(”(0s ) b @) b B
(O ),
+ ;—BM,-(os_l)]a,‘_l].
Let
. " amvwv D oA (0, OM(B;-1)
K =-— 8, s (O )+ b7 (0 ) —
, Z](l( D) + = miB,) + b (B
ob*_ (B-1)
S—M,- gs_ ,
50 ( 1))
then
et (o s Om@By) 0B . OM(B)
K,-1=Ki_11—(as L e ;0 mi(@y-1) + bl B ) —7
o (B,1) .
A—Mi 6,_D|,
+ 50 (0, 1)]
and

8- 01 = K (K "9, - K19,
= Ki (a7, Bi-)mi(B1) + b, (B )Mi(B;1)).

Hence it is easy to show that the recursive equations for 6 take the form (15) - (16).

]

For the RCA model with GARCH errors , the information matrix of the optimal quadratic estimating function for  is

given by

loo  los oo Too lop

Iss  Iss lsw s Lo
Igz @ =] Lo los loo low Iw,B’ s

Lo los low oo Iaﬁ’

Igop Tps lpo Tpor Tpp
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where
RS PR A C R A S A
=51 ) (im0 %)
oz ,0h\ (m,M),
~2e (h’% " ”8%) <m>,<M>t)’
LN m MY\ ([ G0 Lok 1 yaGm M),
’“"“‘;(1‘—<m>w>,) (055 + 2% )y~ S,
R (m, M2\ ¥
I&s—tzl:(l——<m>t<M>t) M’
Ny gm M (G0 o) 1 yeim M), 0k
]9”_1‘"9_;(1_W) ((h’%“”%) (M), (M), )”%
e (m, M2 \"' y%, 02 B,
Is, = 1,5 = tz;(l - (m)t<M>;) (M), dw’
2 m M2\ ot (on\
fo = Zl(l B <m>t<M>f) (M), (%) ’
RN AN (m P\ ([, 00F Lok 1 yei(m M)\ 0,
fe _I""_(;(l_<m>l<s>,) (45« 2% ) o~ o) 72 e
) e
L n <m,M>12 -1 yrz—lo-z‘ ah[
Yoo =Ty = [Z(l ) <m>t<M>t) My dai) |
T n <m’M>f2 -1 (T? ah[ ahz
Lo =140 _(;(1 - <m>t<M>[) <M>t%a_a'z =1 ’
4 1
Sl
“ \L\ T vy, M), B bay)
i,j=1,,p
Cp [0y M2\ 002 ) L yeam M),
‘eﬁ"‘ﬂa‘[,zl (1= i) (05 2% )am ~ “eon, )35
R (1_ (m, My? )’1 Vi102 Ohy
o = g5 = - (my (M), (M) 9B; ) ’
t J=Lep
Coop Sy gmd T ok om o
W = pw ~ = B (my (M), <M>t%8_ﬁ] ; ,
t= J=leg
Ly =1, =[S (12 MR\ ot oh Oh
o8 = T\ LT iy, My daioB;)
o =1 =l
n (m, M)? )‘1 ot Oh, o,
1o = = ’
B (;( my (M), ] (M) 0B 9B; ). .\
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