
International Journal of Statistics and Probability; Vol. 6, No. 1; January 2017
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Statistical Study of Monthly Rainfall Trends by Using the
Transmuted Power Lindley Distribution
Daniele C. T. Granzotto1, Josmar Mazucheli1 & Francisco Louzada2

1 Universidade Estadual de Maringá, DEs, PR, Brazil
2 Universidade de São Paulo, ICMC, SP, Brazil

Correspondence: Daniele C. T. Granzotto, Universidade Estadual de Maringá, DEs, PR, Brazil. E-mail: dctgranzot-
to@uem.br

Received: February 3, 2016 Accepted: November 26, 2016 Online Published: December 21, 2016

doi:10.5539/ijsp.v6n1p111 URL: https://doi.org/10.5539/ijsp.v6n1p111

Abstract

In this article, we generalize the power Lindley distribution using a quadratic rank transmutation map to develop a trans-
muted power Lindley distribution. The new distribution exhibits, in addition to decreasing, increasing and bathtub hazard
rate, depending on its parameters also unimodal hazard rate. A comprehensive mathematical properties of this distribution
is provided. Some expressions for the moments, order statistics, quantiles function are derived. The model parameters
are estimated by the maximum likelihood method. A Monte Carlo experiment on the finite sample behavior of the MLEs
is performed. A real climatological data set was used in order to show the applicability of the new model and different
statistics of fit were used as selection criteria.
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1. Introduction

The Lindley distribution was proposed by Lindley (1958) and have been widely used in survival analysis and reliability
fields. This distribution uses a mixture of exponential and length biased exponential distributions to illustrate the different
between fiducial and posterior distributions. Late years, different applications and modifications have been proposed for
this model such as: Ghitany et al. (2008) that argue that the Lindley distribution could be a better lifetime model than the
exponential distribution through a numerical example; Nadarajah et al. (2011) and Zakerzadeh and Dolati (2009) in the
proposition of a generalization; Merovci and Elbatal (2014) introduced a new lifetime distribution;Warahena-Liyanage
and Pararai (2014) proposed an exponentiated power Lindley distribution with applications.

Those cited papers translate the concern with the proposition of new survival probability models based on the Lindley
distribution. Also, various are the papers extending standard survival distributions in general, designed to serve as statis-
tical survival models for a wide range of real lifetime phenomena. The challenge is the derivation of statistical survival
probability models or simply survival distributions of real world lifetime phenomena that can represent more consistently
the random behavior of experimental observations.

A convenient way to construct new distributions, in particular survival ones, are transmutation maps proposed by Shaw
and Buckley (2007). The transmutation maps comprise the functional composition of a cumulative distribution function on
a distribution with the inverse cumulative distribution (quantile) function of a non-Gaussian distributions, see for example
Aryal and Tsokos (2009, 2011) that transmuted some models of Gamma distribution family and Granzotto and Louzada
(2014); Louzada and Granzotto (2015) that proposed the transmuted log-logistic distribution and the regression extension
of this model.

In this paper, we introduce a new lifetime distribution by transmuted and compounding power Lindley distribution named
Transmuted Power Lindley (TPL) distribution. Briefly, it is the functional composition of a cumulative distribution func-
tion on a distribution with the inverse cumulative distribution (quantile) function of a non-Gaussian distribution, see Shaw
and Buckley (2007). In this case, it incorporates a new third parameter (in our case ęË), what introduces a skewnwess
and preserve the moments of the distribution base, see for example Shaw and Buckley (2007) and Granzotto and Louzada
(2014). Although the TPL model is a positive distribution that can be applied for modeling on several areas such as
reliability analysis, reliability along with engineer, hydrology, economics (income inequality) datasets; in this paper we
proposed to analyse a real climatological dataset.

The paper is organized as follows. A background with the Lindley and its generalization are presented in Section 2
beyond the genesis of the transmutation map and the distributions Lindley and power Lindley. The derivation of the
transmuted generalized Lindley distribution is presented in Section 3. Various important properties such as moments,
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moment generating function, quantiles, residual life, etc, for the transmuted Lindley distribution, as well as the minimum,
maximum and median order statistics are presented in Section 4. Section 5 presents the maximum likelihood estimates
and the asymptotic confidence intervals of the unknown parameters. In Section 6, the results of a simulation study is
provided as well as the new distribution is illustrated in a climatological real data set, where we presented seven different
statistics of fit were used as selection criteria. Final remarks are presented in Section 7.

2. Background

In this section we present a review of the Lindley and the Power Lindley distributions along with the transmutation map
method, that are necessary to introduce the new model, TPL.

2.1 The Lindley Distribution

Proposed by Lindley (1958), the Lindley distribution is a exponential mixture that is important for studying stress-strength
reliability modeling. Let X be a nonnegative random variable denoting the lifetime of an individual in some population.
The random variable X is said to be Lindley distributed if the cumulative distribution function (c.d.f.) is given by

FL(x, θ) = 1 − (1 +
θx
θ + 1

)e−θx, x > 0, θ > 0, (1)

and the corresponding probability density function (p.d.f.) is given by

fL(x, θ) =
θ2

θ + 1
(1 + x)e−θx; x > 0, θ > 0. (2)

Ghitany et al. (2008) argue that the Lindley distribution could be a better lifetime model than the exponential distribution
through a numerical example. In addition, they show that the hazard function of the Lindley distribution does not exhibit
a constant hazard rate, indicating the flexibility of the Lindley distribution over the exponential distribution.

2.2 The Power Lindley Distribution

Ghitany et al. (2013) proposed new distribution, so called Power Lindley (GL) distribution, for modeling lifetime data.
As the authors showed in their paper, they aim to discuss some properties of the power Lindley distribution which was
formulated by using a power transformation X = T 1/α. The paper included the shapes of the density and hazard rate
functions, the moments and some associated measures, the quantile function, and the limiting distributions of order
statistics. Also, the maximum likelihood estimation of the model parameters and their asymptotic standard errors are
derived.

Let X be a nonnegative random variable denoting the lifetime of an individual in some population. The random variable
X is said to be power Lindley distributed with parameters θ and α if its cumulative density function (c.d.f.) is given by

FPL(x, θ, α) =
[
1 − (1 +

θxα

θ + 1
)e−θx

α

]
, (3)

where θ > 0 and α > 0. The corresponding probability density function (p.d.f.) and the hazard (failure) rate function are
given, respectively, by

fPL(x, θ, α) =
αθ2

θ + 1
(1 + xα)xα−1e−θx

α

; x > 0, θ, α > 0 (4)

and

hPL(x, θ, α) =
αθ2

θ + 1 + θxα
(1 + xα)xα−1. (5)

Note that equation (3) has two parameters, θ and α, just like the gamma, lognormal, Weibull and exponentiated expo-
nential distributions. Note also that equation (5) has the attractive feature of allowing for monotonically decreasing,
monotonically increasing and bathtub shaped hazard rate functions while not allowing for constant hazard rate functions.

2.3 Transmutation Map

Let F1 and F2 be the cumulative distribution functions, of two distributions with a common sample space. The general
rank transmutation as given in ? is defined as

GR12(u) = F2(F−1
1 (u)) and GR21(u) = F1(F−1

2 (u)).

112



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 1; 2017

Note that the inverse cumulative distribution function also known as quantile function is defined as

F−1(y) = inf
x∈R
{F(x) ≥ y} for y ∈ [0, 1] .

The functions GR12(u) and GR21(u) both map the unit interval I = [0, 1] into itself, and under suitable assumptions are
mutual inverses and they satisfy GRi j(0) = 0 and GRi j(1) = 1. A Quadratic Rank Transmutation Map (QRTM) is defined
as

GR12(u) = u + λu(1 − u), |λ| ≤ 1, (6)

from which it follows that the cdf’s satisfy the relationship

F2(x) = (1 + λ)F1(x) − λF1(x)2 (7)

which on differentiation yields,
f2(x) = f1(x) [(1 + λ) − 2λF1(x)] , (8)

where f1(x) and f2(x) are the corresponding pdfs associated with cdf F1(x) and F2(x) respectively. An extensive infor-
mation about the quadratic rank transmutation map is given in Shaw and Buckley (2007). Observe that at λ = 0 we have
the distribution of the base random variable. The following Lemma proved that the function f2(x) in given (8) satisfies
the property of probability density function. Note that f2(x) given in (8) is a well defined probability density function.
Rewriting f2(x) as f2(x) = f1(x) [(1 − λ(2F1(x) − 1] we observe that f2(x) is nonnegative. We need to show that the inte-
gration over the support of the random variable is equal one. Consider the case when the support of f1(x) is (−∞,∞). In
this case we have ∫ ∞

−∞
f2(x)dx =

∫ ∞

−∞
f1(x) [(1 + λ) − 2λF1(x)] dx

= (1 + λ)
∫ ∞

−∞
f1(x)dx − λ

∫ ∞

−∞
2 f1(x)F1(x)dx

= (1 + λ) − λ = 1.

Similarly, other cases where the support of the random variable is a part of real line follows. Hence f2(x) is a well defined
probability density function. We call f2(x) the transmuted probability density of a random variable with base density
f1(x). Also note that when λ = 0 then f2(x) = f1(x).

3. The Transmuted Power Lindley Distribution

Let X be a nonnegative random variable denoting the lifetime of an individual in some population. The random variable
X is said to be Transmuted Power Lindley (TPL) with parameters θ, α and λ if its cumulative density function (c.d.f.) is
given by

FT PL(x, θ, α, λ) = G(x) [(1 + λ) − λG(x)] (9)

=

[
1 −

(
1 +

θxα

θ + 1

)
e−θx

α

] [
1 + λ

(
1 +

θxα

θ + 1

)
e−θx

α

]
where θ, α > 0 and λ ∈ (−1, 1). The corresponding probability density function (p.d.f.) of the transmuted power Lindley
is given by

fT PL(x, θ, α, λ) =
αθ2

θ + 1
(1 + xα)xα−1e−θx

α

(10)

×
[
1 + λ − 2λ

(
1 −

(
1 +

θxα

θ + 1

)
e−θx

α

)]
.

The transmuted power Lindley distribution is an extended model to analyse data from complex situations and it generalizes
some of the widely used distributions in reliability analysis. The power Lindley distribution is clearly a special case for
λ = 0 (see, Ghitany et al. (2013)). Also, the density and cumulative density curves of transmuted power model, for
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different parameters values can be seen in Figures 1, upper left and right panels, respectively.
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Figure 1. Upper panels: Density and Cumulative Density for fixed α = θ = 1; Lower panels: Survival and Hazard curves
for fixed θ = 1.

The reliability function of the transmuted power Lindley model is denoted by RT PL(t) and is defined as

RT PL(t, θ, α, λ) = 1 − FT PL(t) (11)

= 1 −
[
1 − (1 +

θxα

θ + 1
)e−θx

α

] [
1 + λ(1 +

θxα

θ + 1
)e−θx

α

]
.

For different parameters values the estimated curves can be seen in Figures 1, left lower panels. One of the characteristic
in reliability analysis is the hazard rate function defined by

hT PL(t, θ, α, λ) =
fT PL(t)

1 − FT PL(t)
(12)

It is important to note that the units for hT PL(t) is the probability of failure per unit of time, distance or cycles. These
failure rates are defined with different choices of parameters, see Figures 1, right lower panels.

114



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 1; 2017

The cumulative hazard function of the model is defined as

HT PL(t, θ, α, λ) = − ln

∣∣∣∣∣∣1 −
[
1 − (1 +

θxα

θ + 1
)e−θx

α

]
(13)

×
[
1 + λ(1 +

θxα

θ + 1
)e−θx

α

]∣∣∣∣∣∣ . (14)

It is important to note that the units for HT PL(t) is the cumulative probability of failure per unit of time, distance or cycles.
For all choice of parameters the distribution has the decreasing patterns of cumulative instantaneous failure rates.

4. Statistical Properties of TPL

4.1 Quantiles and Random Number Generation

The quantile xq of the TPL is obtained from the following equation

F(xq) =
[
1 − (1 +

θxαq
θ + 1

)e−θx
α
q

] [
1 + λ(1 +

θxαq
θ + 1

)e−θx
α
q

]
= q

setting ϕ = (1 +
θxαq
θ+1 )e−θx

α
q then we have

(1 − ϕ)(1 + λϕ) = q

by solving the above equation with respect to ϕ we get

ϕ =

[
1 − q
λ
+

(λ + 1)2

4λ2

]1/2

+
λ − 1

2λ
.

Hence we can obtain the quantile xq of the transmuted generalized Lindley as follows

(1 +
θxαq
θ + 1

)e−θx
α
q =

[
1 − q
λ
+

(λ + 1)2

4λ2

]1/2

+
λ − 1

2λ
. (15)

The above equation has no closed form solution in xq, so we have to use a numerical technique to get the quantiles. In
particular, put q = 0.5 in equation (15) one gets the median of transmuted power Lindley (α, θ, λ, x).

Thus, random number generation as x of the transmuted power Lindley (α, θ, λ, x) is defined by the following relation[
1 − (1 +

θxαq
θ + 1

)e−θx
α
q

] [
1 + λ(1 +

θxαq
θ + 1

)e−θx
α
q

]
= u

where u ∼ U(0, 1). This yields,

(1 +
θxαq
θ + 1

)e−θx
α
q =

[
1 − u
λ
+

(λ + 1)2

4λ2

]1/2

+
λ − 1

2λ
. (16)

Equation (8) above does not have a closed form solution so we generate u as uniform random variables from U(0, 1) and
solve for x in order to generate random numbers from transmuted power Lindley distribution.

4.2 Moments

In this subsection we discuss the rth moment for transmuted power Lindley distribution. Moments are necessary and
important in any statistical analysis, especially in applications. It can be used to study the most important features and
characteristics of a distribution (e.g., tendency, dispersion, skewness and kurtosis).
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Then, the rth moment is given by

E (Xr) =

∫ +∞

0
xr αθ

2

θ + 1
(1 + xα)xα−1e−θx

α

×
[
1 + λ − 2λ

(
1 − (1 +

θxα

θ + 1
)e−θx

α

)]
dx (17)

=
αθ2

θ + 1

∫ +∞

0
(1 + xα)xr+α−1e−θx

α

[
1 − λ + 2λe−θx

α

+
2λθ
θ + 1

xαe−θx
α

]
.

By using Gamma function, in order to solve the equation above, we have

E (Xr) =
αθ

r−1
α

θ + 1

2∑
k=1

θ1−kΓ

(
r − 1
α
+ 1 + k

) [
1 + λ2−(

r−1
α +k)] . (18)

The mean of the model and the variance are given, respectively by

E (X) =
α

θ3(θ + 1)
[θ(2 + λ) + (4 + λ)] (19)

and

V (X) =
αθ

1+2α
α

θ + 1

{
Γ

(
1 + 2α
α

) (
1 + λ2−(1+α)/α

)
+ (20)

Γ

(
1 + 3α
α

) (
1 + λ2−(1+2α)/α

)}
− α2

θ6(θ + 1)2 [θ(2 + λ) + (4 + λ)]2 .

4.3 Distribution of the Order Statistics

According to Aryal and Tsokos (2011), suppose we have a system containing two components with each of them having
independent and identical "base" distribution, for example power Lindley. If the components are connected in series then
the overall system will have transmuted baseline distribution with λ = 1 whereas if the components are parallel then the
overall system will have a transmuted baseline.

It has been observed that a transmuted power Lindley distribution with λ = 1 is the distribution of min(X1, X2) and a
transmuted power Lindley distribution with λ = −1 is the distribution of the max(X1, X2) where X1 and X2 are independent
and identically distributed 2-parameter power Lindley random variables.

In fact, the order statistics have many applications in reliability and life testing. The order statistics arise in the study of
reliability of a system. Let X1, X2, . . . , Xn be a simple random sample from TPL(α, θ, λ, x) with cumulative distribution
function and probability density function as in (9) and (11), respectively. Let X(1:n) ≤ X(2:n) ≤ . . . ≤ X(n:n) denote the order
statistics obtained from this sample. In reliability literature, X(i:n) denote the lifetime of an (n − i + 1)− out− of− n system
which consists of n independent and identically components. Then the pdf of X(i:n) , 1 ≤ i ≤ n is given by

fi::n(x) =
1

β(i, n − i + 1)
[
F(x(i))

]i−1 [
1 − F(x(i))

]n−i f (x(i)) (21)

also, the joint pdf of X(i:n) , X( j:n) and 1 ≤ i ≤ j ≤ n is

fi:: j:n(xi, x j) = C [F(xi)]i−1
[
F(x j) − F(xi)

] j−i−1 [
1 − F(x j)

]n− j
f (xi) f (x j) (22)

where
C =

n!
(i − 1)!( j − i − 1)!(n − j)!

.

We defined the first order statistics X(1) = min(X1, X2, ..., Xn), the the last order statistics as X(n) = max(X1, X2, . . . , Xn)
and median order Xm+1 .
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4.4 Distribution of Minimum, Maximum and Median

Let X(1:n) ≤ X(2:n) ≤ . . . ≤ X(n:n) be independently identically distributed order random variables from the transmuted
generalized Lindley distribution having first , last and median order probability density function are given by the following

f1:n(x) = n
[
1 − F(x(1))

]n−1 f (x(1))

= n
[

nαθ2

θ + 1
(1 + xα(1))xα−1

(1) e−θx
α
(1)

× [
1 + λ − 2λ(1 − ζ(1))

] [
(1 − (1 − ζ(1)))(1 − λζ(1))

]n−1
]
, (23)

where

ζ(i) =

(
1 +
θxα(i)
θ + 1

)
e−θx

α
(i)

fn:n(x) = n
[
F(x(n),Φ)

]n−1 f (x(n)),Φ)

= n
[

nαθ2

θ + 1
(1 + xα(n))xα−1

(n) e−θx
α
(n)

× [
1 + λ − 2λ(1 − ζ(n))

] [
(1 − (1 − ζ(n)))(1 − λζ(n))

]n−1
]

(24)

and

fm+1:n(x̃) =
(2m + 1)!

m!m!
(F(x̃))m(1 − F(x̃))m f (x̃)

=
(2m + 1)!

m!m!
[(

1 − ζ(m+1)
) (

1 + λζ(m+1)
)]m

×
[
αθ2

θ + 1
(1 + xα(m+1))xα−1

(m+1)e
−θxα(m+1) (25)

× [
1 + λ − 2λ(1 − ζ(m+1))

] [
(1 − (1 − ζ(m+1)))(1 − λζ(m+1))

]m]
.

We notice that the minimum, maximum and median order statistics of three parameters transmuted power Lindley distri-
bution have different life time distributions when its parameters are changed.

5. Inference

In this section we consider the maximum likelihood estimators (MLE’s) of transmuted power Lindley distribution. Let
ϕ = (α, θ, λ)T ,in order to estimate the parameters α, θ,and λ of transmuted power Lindley distribution, let x1, . . . , xn be a
random sample of size n from TPL(α, θ, λ), we obtain the likelihood function as follows

L(α, θ, λ) =

(
αθ2

θ + 1

)n n∏
i=1

(1 + xαi )xα−1
i e−θx

α
i (26)

×
[
1 + λ − 2λ

(
1 −

(
1 +

θxαi
θ + 1

)
e−θx

α
i

)]
,

then the log likelihood function can be written as

ln L(α, θ, λ) = n lnα + 2n ln θ − n ln(1 + θ) +
∑n

i=1
ln(1 + xαi )

+(α − 1)
∑n

i=1
ln xi − θ

∑n

i=1
xαi +

+
∑n

i=1
ln

[
1 + λ − 2λ

(
1 − ωie−θx

α
i

)]
, (27)
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where

ωi =

(
1 +

θxαi
θ + 1

)
.

Differentiating ln L(α, θ, λ) with respect to each parameter α, θ, and λ and setting the result equals to zero, we obtain
maximum likelihood estimates. The partial derivatives of ln L(α, θ, λ) with respect to each parameter or the score function
is given by

Un(ϕ) = (Uα,Uθ,Uλ)T

where

Uα =
∂ ln L
∂α

=
n
α
+

n∑
i=1

xαi ln(xi)
(1 + xαi )

+ (1 − θ)
n∑

i=1

ln xi (28)

−2λ
n∑

i=1

θx
α
i ln(xi)e−θx

α
i

[
ωi − 1

1+θ

]
1 + λ − 2λ

(
1 − ωie−θx

α
i

)
 ,

Uθ =
∂ ln L
∂θ
=

n(2 + θ)
θ(1 + θ)

−
n∑

i=1

ln xαi (29)

−2λ
n∑

i=1

xαi e−θx
α
i

 ωi − (1 + θ)−2

1 + λ − 2λ
(
1 − ωie−θx

α
i

)


and

Uλ =
∂ ln L
∂λ

=

n∑
i=1

2ωie−θx
α
i − 1

1 + λ − 2λ
(
1 − ωie−θx

α
i

) . (30)

The maximum likelihood estimation ϕ̂ = (α̂, θ̂, λ̂)T of ϕ = (α, θ, λ)T is obtained by solving the non linear equations
Un(ϕ) = 0. These equations cannot be solved analytically but statistical software can be used to solve them numerically.
For interval estimation and hypothesis tests on the model parameters, we require the information matrix. The 3 × 3
observed information matrix is given by

In(φ) = −

 Iαα Iαθ Iαλ
Iθα Iθθ Iθλ
Iλα Iλθ Iλλ

 ,
where In(ϕ) = ∂2 ln L

∂ϕ∂ϕT . Applying the usual large sample approximation, MLE of ϕ, i.e ϕ̂ can be treated as being approx-
imately N3(ϕ, Jn(ϕ)−1), where Jn(ϕ) = E

[
In(ϕ)

]
. Under conditions that are fulfilled for parameters in the interior of

the parameter space but not on the boundary, the asymptotic distribution of
√

n(ϕ̂ − ϕ) is N3(0, J(φ)−1) , where J(ϕ) =
limn→∞n−1In(ϕ) is the unit information matrix. This asymptotic behavior remains valid if J(ϕ) is replaced by the average
sample information matrix evaluated at ϕ̂, say n−1In(ϕ̂) . The estimated asymptotic multivariate normal N3(ϕ, In(ϕ̂)−1)
distribution of ϕ̂ can be used to construct approximate confidence intervals for the parameters and for the hazard rate and
survival functions. An 100%(1 − γ) asymptotic confidence interval for each parameter ϕr is given by

ACIr =

(
ϕ̂r − z γ

2

√
Îrr, ϕ̂r + z γ

2

√
Îrr

)
,

where Îrr is the (r, r) diagonal element of In(φ̂)−1 for r = 1, 2, 3, and z γ
2

is the quantile 1 − γ2 of the standard normal
distribution.

In order to compare the models seven different statistics of fit were used as selection criteria in Section 6.2: −2×
log-likelihood (Neg2LogLike), Akaike’s information criterion (AIC), corrected Akaike’s information criterion (AICC),
Kolmogorov-Smirnov statistic (KS), Anderson-Darling statistic (AD) and Cramér-von-Mises statistic (CvM).

The first ones, AIC and AICC, are widely used in reliability analysis as a selection criteria. The AIC can be obtained by
using the following expression:

AIC = −2 ln LM(ζ) + 2p,
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with LM the likelihood of the model M, ζ the vector of parameters to the model M and p the number of parameters to the
model M. The AICC is given, respectively, by

AICC = −2 ln LM(ζ) +
2p(p + 1)
n − p − 1

,

with n the number of observations.

Further, the Anderson-Darling and the Cramér-von Mises statistics are widely utilized to determine how closely a specific
distribution whose associated cumulative distribution function fits the empirical distribution associated with a given data
set. These statistics are

A∗ =
(

9
4n2 +

3
4n
+ 1

) [
n +

1
n

∑n

j=1
(2 j − 1) log

[
zi

(
1 − zn− j+1

)]]
and

W∗ =
(

1
2n
+ 1

) ∑n

j=1

(
zi −

2 j − 1
2n

)2

+
1

12n

 ,
respectively, zi = F

(
y j

)
, where the y j values being the ordered observations. The smaller these statistics are, the better

the fit. Upper tail percentiles of the asymptotic distributions of these goodness–of–fit statistics were tabulated in Nichols
and Padgett (2006).

6. Data Experiments

This section presents the results of a Monte Carlo experiment on the finite sample behavior of the MLEs as well as
illustrate the applicability of the proposed distribution in various real data sets on rainfall.

6.1 Simulation Study

The Monte Carlo simulation results were obtained from 1, 000 Monte Carlo replications. The sample sizes n range from
30 to 500, generated according to a transmuted power Lindley distribution for each combination of the parameter values
α, λ and θ = 2 fixed. Table 1 shows that the estimates and BIAS of the MLEs and Table 2 shows us the coverage
probabilities of a 95% two sided confidence intervals for the model parameters and the mean square error which decrease
with the increasing of the sample size.
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Table 1. Parameters estimated and BIAS of the MLEs.

Sample Generated Estimate BIAS
Size α λ θ α λ θ α λ

30 3.0 −0.5 2.191 2.877 −0.278 0.191 0.123 0.222
50 3.0 −0.5 2.173 2.783 −0.292 0.173 0.217 0.208
100 3.0 −0.5 2.126 2.753 −0.258 0.126 0.247 0.242
300 3.0 −0.5 2.119 2.747 −0.255 0.119 0.253 0.245
500 3.0 −0.5 2.103 2.757 −0.237 0.103 0.243 0.263
30 8.0 −0.5 2.010 8.396 −0.421 0.010 0.396 0.079
50 8.0 −0.5 2.004 8.245 −0.442 0.004 0.245 0.058
100 8.0 −0.5 1.988 8.142 −0.445 0.012 0.142 0.055
300 8.0 −0.5 1.986 8.066 −0.458 0.014 0.066 0.042
500 8.0 −0.5 1.977 8.089 −0.448 0.023 0.088 0.052
30 5.0 0.5 2.12267 5.0985 0.47831 0.12267 0.09846 0.02169
50 5.0 0.5 2.11252 5.0225 0.45167 0.11252 0.0225 0.04833
100 5.0 0.5 2.08432 4.9765 0.44898 0.08432 0.02345 0.05102
300 5.0 0.5 2.05484 4.9635 0.46933 0.05484 0.03649 0.03067
500 5.0 0.5 2.05772 4.9686 0.46895 0.05772 0.03143 0.03105
30 3.0 −0.8 1.93496 3.2891 −0.75086 0.06504 0.28911 0.04914
50 3.0 −0.8 1.92625 3.2141 −0.76083 0.07375 0.21406 0.03917
100 3.0 −0.8 1.93109 3.1594 −0.77346 0.06891 0.15942 0.02654
300 3.0 −0.8 1.94909 3.0946 −0.81174 0.05091 0.0946 0.01174
500 3.0 −0.8 1.96397 3.0639 −0.83572 0.03603 0.06387 0.03572
30 8.0 0.2 2.20698 8.0716 0.40377 0.20698 0.07161 0.09623
50 8.0 0.2 2.21645 7.9576 0.36802 0.21645 0.04238 0.13198
100 8.0 0.2 2.24932 7.9094 0.3096 0.24932 0.09061 0.1904
300 8.0 0.2 2.30488 7.8905 0.25473 0.30488 0.10948 0.24527
500 8.0 0.2 2.31874 7.8921 0.2423 0.31874 0.10792 0.2577
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Table 2. Mean square error (mse) of the MLEs and Coverage Probability.

Sample Generated MSE Coverage Probability
Size α λ θ α λ θ α λ

30 3.0 −0.5 0.715 0.921 0.834 0.998 0.881 0.859
50 3.0 −0.5 0.579 0.713 0.719 0.988 0.860 0.864
100 3.0 −0.5 0.439 0.524 0.591 0.972 0.900 0.920
300 3.0 −0.5 0.263 0.328 0.367 0.986 0.904 0.966
500 3.0 −0.5 0.201 0.251 0.301 0.987 0.920 0.992
30 8.0 −0.5 0.637 3.916 0.863 0.977 0.971 0.749
50 8.0 −0.5 0.527 3.186 0.722 0.985 0.939 0.797
100 8.0 −0.5 0.410 2.478 0.560 0.988 0.910 0.857
300 8.0 −0.5 0.272 1.501 0.374 0.982 0.919 0.891
500 8.0 −0.5 0.228 1.199 0.317 0.974 0.930 0.916
30 5.0 0.5 0.84692 1.4552 0.79661 0.942 0.978 0.752
50 5.0 0.5 0.74045 1.036 0.69788 0.913 0.969 0.82
100 5.0 0.5 0.60588 0.7043 0.58288 0.886 0.973 0.86
300 5.0 0.5 0.43729 0.3893 0.41779 0.89 0.95 0.886
500 5.0 0.5 0.3756 0.3079 0.35627 0.916 0.949 0.908
30 3.0 −0.8 0.45726 1.0588 0.82622 0.966 0.96 0.453
50 3.0 −0.8 0.35881 0.7789 0.63423 0.947 0.961 0.515
100 3.0 −0.8 0.27257 0.5424 0.42326 0.955 0.938 0.676
300 3.0 −0.8 0.15113 0.2901 0.18577 0.953 0.956 0.811
500 3.0 −0.8 0.10251 0.1957 0.11576 0.97 0.983 0.834
30 8.0 0.2 0.89199 2.8335 0.8573 0.924 0.981 0.723
50 8.0 0.2 0.78179 1.9179 0.76533 0.928 0.971 0.799
100 8.0 0.2 0.67178 1.3264 0.65662 0.920 0.961 0.859
300 8.0 0.2 0.52796 0.7569 0.48225 0.920 0.973 0.908
500 8.0 0.2 0.4532 0.5759 0.40603 0.956 0.97 0.924

6.2 Applications

In this section we fit, by using the maximum likelihood method, the transmuted power Lindley distribution (TPL) to
rainfall data from six weather stations located in Santa Catarina state, Brazil. The data consist of monthly rainfall for the
years from 1971 to 2014. and were obtained from the National Institute of Meteorology at website
http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Table 3 gives the latitude, longitude, observed period and the
number of valid observations in that period.

Also, for comparison proposes, we have considered four alternative distributions: the one parameter Lindley distribution
(L) with f (y | θ) = θ2

1+θ (1 + y) e−θy, the weighted Lindley distribution (WL) with f (y | θ, λ) = θλ+1

(θ+λ)Γ(λ) y
λ−1 (1 + y) e−θy,

the power Lindley distribution (PL) with f (y | θ, λ) = λθ21+θ

(
1 + yλ

)
yλ−1e−θy

λ

and the transmuted Lindley distribution (TL)

with f (y | θ, λ) = θ2

1+θ (1 + y) e−θy
[
1 − λ + 2λ

(
1 + θy

1+θ

)
e−θy

]
. As a complement, Figure 3 presents a PPlot of the adjusted

models.

In Table 5 we presented, for all models and data sets, the maximum likelihood and standard errors estimates for θ, α and
λ. The maximum likelihood estimates were obtained by SAS/SEVERITY procedure, SAS (2011). The SAS/SEVERITY
procedure can fit multiple distributions at the same time and choose the best distribution according to a specified selection
criterion. Seven different statistics of fit were used as selection criteria: −2× log-likelihood (Neg2LogLike), AIC, AICC,
KS, AD and CvM. The calculated values of theses statistics are reported in Table 4 which present the superscripts that
indicates the rank obtained by the distribution according to the selection criteria (the smaller the better). The column
labeled as “RT” shows the sum of the ranks. From the values of “RT” column we can see that the TPL distribution is
judged as being the most appropriate for five data sets. The fitted transmuted power Lindley density is displayed in Figure
2.
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Figure 2. Adjusted TPL model.

Table 3. Description of meteorological stations.

Location Latitude Longitude begin end n
Indaial (OMM: 83872) -26.90 -49.21 31/12/1970 31/12/2014 443

Chapeco (OMM: 83883) -27.11 -52.61 31/07/1973 31/12/2014 434
Campos Novos (OMM: 83887) -27.38 -51.20 31/01/1970 31/12/2014 468

Lages (OMM: 83891) -27.81 -50.33 31/01/1970 31/12/2014 467
São Joaquim (OMM: 83920) -28.30 -49.93 31/01/1970 31/12/2014 447
Urussanga (OMM: 83923) -28.51 -49.31 31/01/1970 31/07/2014 344
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Table 4. Model selection.

Station Model Neg2LogLike AIC AICC KS AD CvM RT

83872

L 5142.885 5144.885 5144.895 1.365 2.925 0.505 345

WL 5137.864 5141.864 5141.894 0.883 1.033 0.163 264

PL 5134.413 5138.413 5138.443 0.732 0.612 0.082 172

TL 5134.262 5138.262 5138.292 0.954 1.254 0.204 193

TPL 5128.661 5134.661 5134.711 0.671 0.351 0.051 91

83883

L 5124.865 5126.865 5126.875 1.685 4.875 0.715 355

WL 5101.583 5105.583 5105.613 0.682 0.373 0.041 173

PL 5100.082 5104.082 5104.102 0.591 0.341 0.052 111

TL 5111.684 5115.684 5115.704 1.284 2.624 0.354 284

TPL 5097.861 5103.861 5103.921 0.753 0.352 0.053 142

83887

L 5529.375 5531.375 5531.385 2.315 6.375 1.215 355

WL 5520.614 5524.614 5524.644 1.643 3.113 0.543 254

PL 5514.792 5518.792 5518.822 1.362 2.132 0.332 132

TL 5516.473 5520.473 5520.503 1.904 3.914 0.734 233

TPL 5510.671 5516.671 5516.721 1.281 1.831 0.281 91

83891

L 5345.735 5347.735 5347.745 1.875 5.555 0.975 355

WL 5328.223 5332.223 5332.253 1.113 1.393 0.233 203

PL 5324.892 5328.892 5328.922 0.952 0.972 0.152 132

TL 5332.444 5336.444 5336.464 1.454 3.144 0.554 284

TPL 5322.091 5328.091 5328.141 0.921 0.831 0.131 91

83920

L 5170.005 5172.005 5172.015 2.015 5.975 1.055 355

WL 5154.143 5158.143 5158.173 1.123 1.643 0.273 213

PL 5148.312 5152.312 5152.342 0.872 1.012 0.152 132

TL 5156.304 5160.304 5160.324 1.624 3.514 0.624 284

TPL 5144.551 5150.551 5150.601 0.791 0.851 0.121 81

83923

L 3980.205 3982.205 3982.215 1.235 1.155 0.205 315

WL 3977.864 3981.863 3981.893 0.864 0.543 0.093 244

PL 3977.423 3981.422 3981.462 0.812 0.522 0.092 161

TL 3977.102 3981.101 3981.131 0.843 0.564 0.104 172

TPL 3976.001 3982.004 3982.074 0.681 0.421 0.071 172
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Figure 3. PPlot of the adjusted TPL model.

Table 5. Maximum likelihood and standard errors estimates for θ, α and λ.

Station θ α λ

83872
0.0224 0.9502 -0.6632

(0.0076) (0.0588) (0.1556)

83883
0.0183 0.9718 -0.7973

(0.0065) (0.0615) (0.1399)

83887
0.0047 1.0979 0.9786

(0.0010) (0.0433) (0.0447)

83891
0.0049 1.1314 0.9647

(0.0010) (0.0429) (0.0495)

83920
0.0043 1.1436 0.9621

(0.0009) (0.0438) (0.0474)

83923
0.0275 0.9157 -0.6510

(0.0127) (0.0789) (0.2341)

7. Conclusion

In this paper we have introduced a new generalization of the power Lindley distribution, the transmuted power Lindley
model. The proposed distribution was constructed by using a quadratic rank transmutation map and taking the power
Lindley, which was formulated by using a power transformation X = T 1/α, as the baseline distribution. Some mathematical
properties along with order statistics and estimation issues are addressed.

A real data was considered in order to illustrate the usefulness and effectiveness of the new model. In addition to the
transmuted model, four different models were fitted and seven different statistics of fit were used as selection criteria:
−2× log-likelihood, AIC, AICC, BIC, KS, AD and CvM.
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Furthermore, in this paper we showed that the TPL model, despite having a small number of parameters, still interpretable
(the key parameters of the power Lindley distribution is kept) and flexible, i.e, the TPL model can be used in several areas
of application.
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SAS. (2011). SAS/ETSRr Userąŕs Guide, Version 9.33. Cary, NC: SAS Institute Inc.

Shaw, W. T., & Buckley, I. R. C. (2007). The alchemy of probability distributions: beyond Gram-Charlier expansions,
and a skew-kurtotic-normal distribution from a rank transmutation map. UCL Discovery Repository, pages 1-16.

Warahena-Liyanage, G., & Pararai, M. (2014). A generalized power Lindley distribution with applications. Asian Journal
of Mathematics ans Applications, 23.

Zakerzadeh, H., & Dolati, A. (2009). Generalized Lindley Distribution. Journal of Mathematical Extension, 3(2), 13-25.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

125


