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Abstract

There has been a growing interest in discrete circular models such as wrapped zero inflated Poisson and wrapped Poisson
distributions and the trigonometric moments (see Brobbey et al., 2016 and Girija et al., 2014). Also, characteristic
functions of stable processes have been used to study the estimation of the model parameters using estimating function
approach (see Thavaneswaran et al., 2013). One difficulty in estimating the circular mean and the resultant mean length
parameter of wrapped Poisson (WP) or wrapped zero inflated Poisson (WZIP) is that neither the likelihood of WP/WZIP
random variable nor the score function is available in closed form, which leads one to use either trigonometric method
of moment estimation (TMME) or an estimating function approach. In this paper, we study the estimation of WZIP
distribution and WP distribution using estimating functions and obtain the closed form expression of the information
matrix. We also derive the asymptotic distribution of the tangent of the mean direction for both the WZIP and WP
distributions.

Keywords: Circular distribution, zero-inflated Poisson, characteristic function, trigonometric moments, skewness, kurto-
sis, wrapped stable distributions.

1. Introduction

Directional statistics is an emerging area of statistics and is being used as a tool for practitioners in many scientific fields
such as astronomy, biology, earth science, meteorology, medicine and physics. Directional data is a set of observations
measured on directions. The sample space may be a circle, a sphere or an hypersphere. The directions may be in two
or three dimensions. More specifically, the directions may be regarded as points on the circumference of a circle (in two
dimensions) or on the surface of a sphere (in three dimensions). For further details, see Jammalamadaka and SenGupta
(2001).

Various circular models have been studied by many researchers. Mardia and Jupp (2000) published a comprehensive
text on directional statistics. For discrete circular models, Girija et al. (2014) derived characteristics functions of the
wrapped Poisson distribution. Brobbey et al. (2016) introduced a new discrete circular distribution, the wrapped zero-
inflated Poisson (WZIP) distribution and derived its population characteristics. In this paper, we study the estimation of
the parameters of the WZIP and WP distributions using estimating functions, and also derive asymptotic distribution of
the tangent of the mean direction. We first briefly discuss the wrapped discrete distribution and WZIP distribution as given
in Brobbey et al. (2016).

1.1 Wrapped Discrete Distribution

If X is a linear random variable on the real line with density f (x), the corresponding wrapped random variableΘ is defined
by Θ = x (mod 2π). The operation corresponds to wrapping the real line around the unit circle accumulating probability
over all the overlapping points x = Θ,Θ ± 2π,Θ ± 3π, · · · . In particular, if X has a distribution concentrated on the points
x = k

2πm , k = 0,±1,±2, · · · and m is an integer, we have a wrapped discrete circular random variable Θ, such that the
probability mass function of θ is

pw(Θ =
2πr
m

) =
∞∑

k=−∞
p(r + km), r = 0, 1, 2, · · · ,m − 1.

The probability mass function satisfies the following properties
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1. pw(Θ = 2πr
m ) ≥ 0

2.
m−1∑
r=0

pw(Θ = 2πr
m ) = 1

3. The random variable Θ has the same distribution as (Θ + 2πk). That is, for any integer k, pw(θ) = pw(θ + 2πk).

1.2 Wrapped Zero-inflated Poisson Distribution

Data with excess zeros are often observed in applied science and public health studies. Zero-inflated Poisson (ZIP)
regression model is a common statistical tool for analyzing such data. The zero-inflated Poisson distribution is given by

p(x) =

w + (1 − w)e−λ x = 0
(1 − w) e−λλx

x! x = 1, · · · ,∞.

As we mentioned earlier, Brobbey et al. (2016) introduced the wrapped zero-inflated Poisson distribution and derived its
population characteristics. The results are summarized in the following Theorem 1 and Corollary 1.

Theorem 1. (a) The pth trigonometric moments of the wrapped zero-inflated Poisson distribution are given by

αp = w + (1 − w)e−λ(1−cos 2πp
m ) cos

(
λ sin

2πp
m

)

βp = (1 − w)e−λ(1−cos 2πp
m ) sin

(
λ sin

2πp
m

)
.

(b) The pth circular mean is

µp = tan−1

 (1 − w)e−λ(1−cos 2πp
m ) sin

(
λ sin 2πp

m

)
w + (1 − w)e−λ(1−cos 2πp

m ) cos
(
λ sin 2πp

m

)  .
so that the mean of the wrapped zero inflated Poisson is given by µ1.

(c) The pth circular mean resultant length is

ρp =

√
w2 + (1 − w)2e−2λ(1−cos 2πp

m ) + 2w(1 − w)e−λ(1−cos 2πp
m ) cos

(
λ sin

2πp
m

)
.

and the mean resultant length, ρ, variance, V0, and the standard deviation, σ0, of the wrapped zero-inflated Poisson are
given by

ρ =

√
a2

1 + b2
1 + 2a1b1 cos

(
λ sin

2π
m

)
V0 = 1 − ρ

σ0 =

√√√
log

 1

a2
1 + b2

1 + 2a1b1 cos
(
λ sin 2π

m

) .
where a1 = w and b1 = (1 − w)e−λ(1−cos 2π

m ).

Corollary 1. The pth central trigonometric moments are

ᾱp = w cos pµ + (1 − w)e−λ(1−cos 2πp
m ) cos

(
λ sin

2πp
m
− pµ

)

β̄p = w sin pµ + (1 − w)e−λ(1−cos 2πp
m ) sin

(
λ sin

2πp
m
− pµ

)
.
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The circular skewness, s, and circular kurtosis, k, of the wrapped zero-inflated Poisson distribution are given by

s =

[
w sin 2µ + (1 − w)e−λ(1−cos 4π

m ) sin
(
λ sin 4π

m − 2µ
)]

[
1 −

√
a2

1 + b2
1 + 2a1b1 cos

(
λ sin 2π

m

)]3/2

k =

[
w cos 2µ + (1 − w)e−λ(1−cos 4π

m ) cos
(
λ sin 4π

m − 2µ
)
−

(
a2

1 + b2
1 + 2a1b1 cos

(
λ sin 2π

m

))2
]

[
1 −

√
a2

1 + b2
1 + 2a1b1 cos

(
λ sin 2π

m

)]2 .

2. Estimating Function based on Characteristic Function

Small and McLeish (1994) were the first to use estimating functions based on the characteristic function to study inference
for the stable distributions based on independent observations. For models with heavy tailed distributions, Thavaneswaran
and Heyde (1999) discussed the superiority of the LAD estimating function over the least squares estimating function. For
models with stable errors, estimating functions based on sines and cosines are natural, since closed form expressions are
available for E cos(uyt) and E sin(uyt) in the characteristic function E[exp(iuyt)] = E[cos(uyt) + i sin(uyt)]. Suppose first
that y1, · · · , yn is a sequence of independent, identically distributed (i.i.d.) random variables following a symmetric stable
distribution with real-valued location parameter θ, positive scale parameter c, and stability index α with 0 < α ≤ 2. In
Thavaneswaran et al. (2013), it is assumed that α is known. In practice, we estimate α by the quantile estimation method
proposed by McCulloch (1986). The characteristic function of yt takes the form E[exp(iuyt)] = exp(iuθ− |cu|α), for u > 0.
The cases α = 1 and α = 2 correspond respectively to the Cauchy and normal distributions.

Theorem 2. If y1, · · · , yn is a sequence of independent, identically distributed (i.i.d.) real-valued random variables
having a symmetric stable distribution with the characteristic function E[exp(iuϕt)] = exp(iuθ − |cu|α) then based on the
elementary estimating functions

ht(θ, c) =
{
sin

[
u1 (yt − θ)

]
, cos

[
u2 (yt − θ)

] − exp(−|cu2|α), t = 1, . . . , n
}

then the optimal estimating function for (θ, c)′ is given by

g∗n(θ, c) =


− 2u1e−|cu1 |α

1−e−|2cu1 |α

n∑
t=1

sin
[
u1 (yt − θ)

]
2αcα−1 |u2 |αe−|cu2 |α

1+e|2cu2 |α−2e−2|cu2 |α )

n∑
t=1

{
cos

[
u2 (yt − θ)

] − exp(−|cu2|α)
}


and the corresponding information matrix is

Ig∗n =


2nu2

1 exp(−2|cu1 |α)
1−exp(−|2cu1 |α) 0

0 2nα2c2(α−1)u2α
2 e−2|cu2 |α

(1+e−|2cu2 |α−2e−2|cu2 |α )

 .
Note. We can choose the optimal values of u1 and u2 which maximize the associated information. For example, suppose
yt, t = 1, · · · , n are independent Cauchy random variables having probability density function

f (y; θ) =
1
π

[
1

(y − θ)2 + 1

]
.

Based on the optimal estimating function
∑n

t=1 sin[u1(yt − θ)] for θ, the optimal value of u1 can be obtained by maximizing
nu2

1

e2u1 − 1
. Moreover, when yt, t = 1, · · · , n are independent Cauchy random variables having probability density function

f (x; c) =
1
π

[
c

y2 + c2

]
, then for any real u2, the optimal estimate of e−u2c is given by n−1 ∑n

t=1 cos u2yt, and the optimal

value of u2 is obtained by maximizing
2nu2

2e−2cu2

1 − e−2cu2
.
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2.1 Estimating Function for Discrete Circular Models

One difficulty in estimating the parameter(s) of wrapped Poisson (WP) or wrapped zero inflated Poisson (WZIP) is that
neither the likelihood of WP/WZIP random variable nor the score function is available in closed form, which leads one to
use either trigonometric method of moment estimation (TMME) or an estimating function approach.

In a recent paper, Thavaneswaran et al. (2013) studied parameter estimation for nonlinear time series with stable errors
using combinations of bounded sine and cosine estimating functions. However, there is still a gap in the literature in
terms of effective use of estimating functions for inference for discrete circular distributions. In this section, we study
joint estimation of circular mean and mean resultant length parameters via estimating functions for a class of circular
distributions.

Circular distributions often involve circular parameters, i.e., parameters taking values on the unit circle. Because we can-
not directly take expectations of circular variables, it is not immediately obvious how to define unbiasedness of estimates
of circular parameters. Mardia and Jupp (2000) defined a statistic t taking values on the unit circle as an unbiased esti-
mator of ω if the mean direction of t is ω, defined as E[sin(t − ω)] = 0 and provided a lower bound on the variability of
unbiased estimators as

Var(sin(t − ω)) ≥ ρ
2
ω(t)
Iω

where ρω(t) is the mean resultant length of t and Iω denotes the Fisher information

Iω = E
[(
∂l
∂ω

)]
= E

[
− ∂

2l
∂ω2

]
,

which is assumed to be positive.

Theorem 3. If ϕ1, · · · , ϕn are independent and identically distributed symmetric circular random variables with circular
mean θ and the pth trigonometric moments given by ᾱp = E[cos p(ϕt−θ)] and β̄p = E[sin p(ϕt−θ)] = 0 where ᾱp depends
on the concentration parameter c, then based on the elementary estimating functions

ht(θ, c) =
{
sin[p(ϕt − θ)], cos[p(ϕt − θ)] − ᾱp(c)

}′
the optimal estimating function for (θ, c)′ is given by

g∗(θ, c) =
n∑

t=1


2ᾱp(c)

1−ᾱ2p(c) sin[p(ϕt − θ)]

−
2∂ᾱp (c)
∂c

1+ᾱ2p(c)−2ᾱ2
p(c)

{
cos[p(ϕt − θ)] − ᾱp(c)

}  ,
and the information matrix is given by

Ig∗ =


2nᾱ2

p(c)
1−ᾱ2p(c) 0

0
2n

(
∂ᾱp(c)
∂c

)2

1+ᾱ2p(c)−2ᾱ2
p(c)

 .
Corollary 2. Suppose ϕ1, · · · , ϕn are i.i.d. WP(λ) random angles in [0, 2π) with circular mean θ = λ sin 2π

m and centered
trigonometric moments given by ᾱp(λ) = e−λ(1−cos 2πp

m ) cos
(
λ sin 2πp

m

)
, then the corresponding optimal estimating function

and the information matrix are respectively

g∗(λ) =
n∑

t=1
− 2ᾱ1(λ) sin 2π

m
1−ᾱ2(λ) sin(ϕt − λ sin 2π

m )

and

Ig∗ =

2nᾱ2
1(λ) sin2 2π

m

1 − ᾱ2(λ)

 .
The following table gives the values of the information for m = 12 and λ from 1 to 6.
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Table 1. Poisson Simulation

λ 1.0 2.0 3.0 4.0 5.0 6.0
(m = 12)

Ig∗ 4401.00 2401.87 1728.55 1357.06 1128.65 957.07

Corollary 3. Suppose ϕ1, · · · , ϕn are independent and identically distributed WZIP random variables with the circular
mean

θ(λ,w) = atan−1

 (1 − w)e−λ(1−cos 2π
m ) sin

(
λ sin 2π

m

)
w + (1 − w)e−λ(1−cos 2π

m ) cos
(
λ sin 2π

m

) 
and the trigonometric moments ᾱ1 = E[cos(ϕt − θ)] and ᾱ2 = E[cos 2(ϕt − θ)],
then based on the martingale differences

ht(θ, c) = (sin[(ϕt − θ)], cos[(ϕt − θ)] − ᾱ1(c))′

the optimal estimating function is given by

g∗(λ,w) =
n∑

t=1

 − 2ᾱ1(λ,w)
1−ᾱ2(λ,w)

∂θ(λ,w)
∂λ

sin(ϕt − θ)
− 2ᾱ1(λ,w)

1−ᾱ2(λ,w)
∂θ(λ,w)
∂w sin(ϕt − θ)


and the corresponding information matrix is given by

Ig∗ =
2nᾱ2

1(λ,w)
1 − ᾱ2(λ,w)


(
∂θ(λ,w)
∂λ

)2 (
∂θ(λ,w)
∂λ

) (
∂θ(λ,w)
∂w

)(
∂θ(λ,w)
∂w

) (
∂θ(λ,w)
∂λ

) (
∂θ(λ,w)

w

)2

 .
2.2 Inference on the Mean Direction

We derive the asymptotic normal distribution of the tangent of the mean direction in the following theorem.

Theorem 4. (a) Suppose ϕ1, · · · , ϕn are symmetric i.i.d. circular random angles in [0, 2π), i.e. with trigonometric
moments E cos(ϕ1 − µ) = ᾱ1, E cos 2(ϕ1 − µ) = ᾱ2 and E sin(ϕ1 − µ) = β̄1 = 0. Let µ̂ be the estimate of µ obtained by
solving g∗ =

∑n
i=1 sin(ϕi − µ) = 0. Then the limiting distribution of the tangent of the mean direction is given by

√
n(tan µ̂ − tan µ)

D→ N(0, σ2)

where the asymptotic variance σ2 is

σ2 =
1 − ᾱ2

2ᾱ2
1 cos4 µ

.

(b) Suppose ϕ1, · · · , ϕn are i.i.d. WP(λ) random angles in [0, 2π) with circular mean µ = λ sin 2π
m and centered trigono-

metric moments ᾱp = e−λ(1−cos 2πp
m ) cos

(
λ sin 2πp

m

)
. Then the limiting distribution of the tangent of the mean direction is

given by
√

n(tan µ̂ − tan µ)
D→ N(0, σ2)

where the asymptotic variance σ2 is σ2 = 1−ᾱ2
2ᾱ2

1 cos4 µ
.

(c) Suppose ϕ1, · · · , ϕn are i.i.d. WZIP(λ,w) random angles in [0, 2π) with circular mean

µ = atan−1

 (1 − w)e−λ(1−cos 2π
m ) sin

(
λ sin 2π

m

)
w + (1 − w)e−λ(1−cos 2π

m ) cos
(
λ sin 2π

m

)  ,
5
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and centered trigonometric moments ᾱp = w cos pµ+(1−w)e−λ(1−cos 2πp
m ) cos

(
λ sin 2πp

m − pµ
)
. Then the limiting distribution

of the tangent of the mean direction is given by

√
n(tan µ̂ − tan µ)

D→ N(0, σ2),

where the asymptotic variance σ2 is

σ2 =
1 − ᾱ2

2ᾱ2
1 cos4 µ

.

The proof of this theorem is similar to Gatto and Jammalamadaka (2003).

We have studied the sampling distribution of the estimators of the circular mean µ, mean resultant length ρ and variance
V0 (= 1- ρ) of the wrapped zero inflated Poisson distribution. For this purpose, we have simulated 100 samples of size
1000 from wrapped zero inflated Poisson distribution with λ = 4 and w = 0.4. The theoretical values of µ, ρ and V0 are
given by µ = 0.8989205, ρ = 0.4078955 and V0 = 0.5921045. We produced the histograms of the above estimates as
well as the normal Q-Q plots of each. The plots are given in Figure 1. It is clear that plots show a good fit of the normal
distribution.
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Figure 1. Sampling distributions of the estimators of circular mean µ, mean resultant length ρ and circular variance V0.

We have also studied the sampling distribution of the estimators of w and λ of the wrapped zero inflated Poisson distribu-
tion. The plots are given in Figure 2. It also shows a good fit of the normal distribution.
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Figure 2. Sampling distributions of the estimators of w and λ.

3. Concluding Remarks

In the present work we have tried to address an important problem of estimation of wrapped zero-inflated Poisson distribu-
tion using estimating functions. We have studied estimating functions based on characteristic function and indicated how
we can maximize the D-optimality criterion, that is, by maximizing the determinant of the Godambe’s information matrix.
We have studied the joint estimation of circular mean and mean resultant length parameters via estimating functions for a
class of circular distributions. In particular, we have studied this for wrapped Poisson and wrapped zero-inflated Poisson.
Further, we have derived the asymptotic normal distribution of the tangent of the mean direction for both the wrapped
Poisson and wrapped zero-inflated Poisson distributions. Our simulation studies (based on the histograms of the estimates
and the normal Q-Q plots) show that the estimates are normally distributed.
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