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Abstract

Transmetric density estimation is a generalization of kernel density estimation that is proposed in Hovda (2014) and Hov-
da (2016), This framework involves the possibility of making assumptions on the kernel of the distribution to improve
convergence orders and to reduce the number of dimensions in the graphical display. In this paper we show that sev-
eral state-of-the-art nonparametric, semiparametric and even parametric methods are special cases of this formulation,
meaning that there is a unified approach.

Moreover, it is shown that parameters can be trained using unbiased cross-validation. When parameter estimation is
included, the mean integrated squared error of the transmetric density estimator is lower than for the common kernel
density estimator, when the number of dimensions is larger than two.

Keywords: kernel density estimation, semiparametric models, pseudometrics, nonparametric functional data analysis,
cross-validation

1. Introduction

The common kernel density estimator with a fixed bandwidth is given by

f̂H(x) = n−1
n∑

i=1

KH(x − Xi), (1)

where KH(x) : Rm → R is a single modal, symmetric, nonnegative and zero-mean function that integrates to 1 (Fix and
Hodges, 1951; Rosenblatt, 1956; Parzen, 1962; Cacoullos, 1966; Epanechnikov, 1969; Deheuvels, 1977).

A generalization is the transmetric density estimatior, which is described in Hovda (2016) This framework is motivated
by the work in Hovda (2014), which involved using only one transmetric. In Hovda (2014), the bias and the variance are
described using Monte Carlo simulations, while asymptotic arguments are given in Hovda (2016) In the last paper, it is
shown that the convergence order of the mean integrated squared error can be as high as 4/5. The important point is that
the convergence order is independent of the number of dimensions.

For comparison, the convergence orders of common kernel density estimators are 4/(4 + m), where m is the number of
dimensions (Epanechnikov, 1969). This improvement in accuracy over common kernel density estimation is motivating
the path for finding useful and practical applications of this theory.

This paper contains two contributions in this direction. The first contribution involves a dedicated chapter that shows how
a number of state-of-the-art problems are special cases of transmetric density estimation. The examples includes distri-
butions with elliptic level sets (Liescher, 2005), linear regression, partial linear models (Härdle et al., 2000), projection
pursuit models (Friedman et al., 1984) and also an example of nonparametric functional analysis (Ferraty and Vieu, 2006).
Based on these examples, it should be straightforward to see that other methods can be formalized in this way as well.
This clarifies the relationship between methods and opens up for new ways to combine.

The second contribution is a description of how unbiased cross-validation can be used for parameter selection. The
parameters in the model are the bandwidth matrix and the parameters related to the transmetric. In normal kernel density
estimation, there are generally two methods that have received some attention, namely plug-in methods (Duong and
Hazelton, 2003). and cross-validation methods (Duong and Hazelton, 2005). The plug-in methods require an analytic
expression of the asymptotic mean square error. The special cases that are outlined in Hovda(2016) are complex and it is
probably impossible in the general case.

In the case of cross-validation, there are more opportunities. In Duong and Hazelton (2005), the unbiased, the biased
and the smoothed cross-validation methods are described and compared. The biased cross-validation methods requires
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Table 1. List of important symbols

Symbol Explanation and properties
n Number of elements in data matrix.
x A point in the sample space.
xi The i’th component of x.
Xi The i’th data point of a data set.
Xi, j The j’th component of Xi
m Number of dimensions.
q Number of transmetrics.
{P1, P2, ...Pq} Partition of {1, 2, ...m}.
m j Size of P j, i.e.

∑q
j=1 m j = m.

H Symmetric bandwidth matrix of size m × m.
x j The P j elements of H−1/2x.
y j The P j elements of H−1/2y.
Xi, j The P j elements of H−1/2Xi.
c j Center point parameter in the jth transmetric (not the center of the balls).
pj Vector of positive exponents in the j’th transmetric.
p̃ j Harmonic average of the elements in pj.
Vpj Volume of the generalized unit ball with parameters pj.
Vt, j Volume of the unit ball in the jth transmetric space.
c Concatenated vector of all the c js. Size is m.
c j The jth component of c, not any of the c js.
p Concatenated vector of all the pjs. Size is m.
p j The jth component of p, not any of the pjs.
dtype, j,par The jth premetric of type type with parameters par.
dtype Tuple of q premetrics of type type.

an expression for asymptotic mean square error and is not suitable for transmetric density estimators. The unbiased
cross-validation methods is called unbiased since it is designed to improve the mean integrated squared error and not the
asymptotic version. The smoothed cross-validation method is similar, but more complex as it involves finding a pilot
bandwidth matrix. The main conclusion of the paper is that the smoothed cross-validation method is the most reliable.
However, it also points out that the unbiased cross-validation method has reliable performance on several distributions.

In this paper, we have chosen to develop an expression for the unbiased cross-validation method. This is because of its
algorithmic simplicity and computational efficiency.

In section 2, the definition of transmetric density estimation and relevant theorems from Hovda (2016) are repeated. Rela-
tionship to other methods is described in section 3, while the unbiased cross-validation method is outlined and discussed
using Monte Carlo simulations in section 4. The paper is concluded in section 6. Table 1 contains a list of symbols that
are frequently used in this paper.

2. Transmetric Density Estimation

In Hovda (2016) the transmetric is defined as:

Definition 2.1. A transmetric on a set Rm is a function (distance function) dt : Rm × Rm → R+, which for all x, y ∈ Rm

and ϵ ∈ R+, satisfies the following conditions:

1. dt(x, y) ≥ 0 (nonnegativity)
2. dt(x, x) = 0 (mild identity)
3. (Rm, {Bdt (x, ϵ) | ϵ > 0 & x ∈ Rm})

is a topological space (topology)
4. VBdt (x,ϵ) = VBdt (y,ϵ) (translation invariance

of ball volumes)

The two first criteria is the definition of a premetric. A transmetric is therefore a premetric with the additional criteria of
topology and translation invariance of ball volumes. All metrics that induces a norm are transmetrics, which is practically
all metrics that are used in common kernel density estimation.
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The key idea of this definition is to generalize the metric that induces a norm as much as possible, but still make sense
for kernel density estimation. The first two criteria ensures that close points (in the sense of the transmetric) are weighted
higher than points that are further away. The third criterion implies that if the kernel is continuous, then the estimator
is also. The last criterion in definition 2.1, ensures that the variance of the estimator is everywhere proportional to the
density (Hovda, 2016). It is worth emphasizing that relaxing the identity criterion yield some opportunities in smoothing
along level sets of the distribution.

Morevover, we also need this definition:

Definition 2.2. A kernel K is said to be associated to a transmetric space (Rm, dt), or associated to a transmetric dt, if K
is nonnegative, monotonically decreasing with compact support and satisfy∫

Rm
K(dt(x, y))dy = 1,

in the case when the unit ball VBdt (x,1) is finite and in the infinite case∫
Rm

K(dt(x, y))dy ∝ VBdt (x,1).

In the case when VBdt (x,1) is infinite, it is not meaningful to set the integral equal to one, since the kernel would clearly
approach zero everywhere. To elaborate on this, we define the equivalence relation ∼dt as for all x, y ∈ Rm, x ∼dt y iff
dt(x, y) = 0. It is clear that all equivalence classes in Rm with respect to ∼dt are unbounded. To compensate for this
unboundedness, we have decided to let the integral be proportional to VBdt (x,1). Another way to handle this, would be to
impose boundaries on the transmetric space (i.e let it be a subset of Rm), such that all Bdt (x, 1)s would be bounded.

Two useful examples of kernels are when the transmetric is either Euclidean or Chebyshev distance

K(ϵ) =
1

(2π)
m
2

exp
(
−1

2
ϵ2

)
. (2)

K(ϵ) =

 1
3

m
2 2m

for |ϵ| ≤
√

3

0 for |ϵ| >
√

3.
(3)

Transmetric density estimation is defined here.

Definition 2.3. Let {P1, P2, ...Pq} be a partition of {1, 2, ...m}, where m j = |P j|. Let x j , y j and Xi, j be vectors that,
respectively, consist of the P j elements of H−1/2x, H−1/2y and H−1/2Xi. If we choose a tuple of transmetrics dt , such that
for every P j, there is a K j associated with the transmetric space (Rm j , dt, j(x j, y j)), then the transmetric density estimator
is defined as

f̂H,dt (x) = |H|− 1
2

∫
Rm

q∏
j=1

K j(dt, j(x j, y j)) f̂ (y)dy

= n−1|H|− 1
2

n∑
i=1

q∏
j=1

K j(dt, j(x j, Xi, j)),

where f̂ (y) is equal to 1/n at the Xis and 0 elsewhere.

The idea is to weight the contributions of the Xi, js according to the distances in the transmetric spaces. It is very important
to note that in the case when any of the transmetrics has an unbounded unit ball, f̂H,dt (x) is only proportional to f (x). As
said before, this is because the whole Rm is considered, rather than a subset where all transmetric spaces have bounded
unit balls.

In the trivial case, all P j are equal to { j} and for all j, dt, j(x j, y j) = d j = |x j − y j|. In this case f̂H,dt (x) = f̂H,d(x), where d
is the tuple of d js. If we let

∏m
j=1 K j(u j) = K(u), then we arrive at the estimator defined in equation (1).

It is easy to see how any metric that defines a normed vector space can be used, but the interesting question is what
other options do we have. What transmetrics make sense to use and which kernels can be associated to them? It is
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of particular interest to investigate the opportunities of relaxing the identity criterion. This motivates the definition of
associated distributions:

Definition 2.4. A probability density function is said to be an associated distribution of f̂H,dt , denoted as f∼H,dt
: Rm → R+,

when all x j ∼dt, j y j, imply that f∼H,dt
(x) = f∼H,dt

(y) for all x, y ∈ Rm. Here, the equivalence relation ∼dt, j is defined as for
all x j, y j ∈ Rm j , x j ∼dt, j y j iff dt, j(x j, y j) = 0.

While discussing the usefulness of a family of transmetrics, it makes sense to ask which density functions are invariant to
the equivalence relations that are implied by the transmetrics.

Another point to note is that the graphical display of the estimated density can be reduced to a q-dimensional display. This
is because the estimated density at a certain point x is constant on {y ∈ Rm | y j ∈ [x j]∼dt, j

}.
All the transmetric spaces that will be discussed in this paper, have the following property regarding how the volumes of
the balls vary as a function of the radius.

Definition 2.5. A transmetric dt or a transmetric space (Rm, dt), is said to be of order u, if the volume of the ball is on the
form VBdt (x,ϵ) = VBdt (x,1)ϵ

u = Vtϵ
u, where x ∈ Rm and u is a positive integer. Such transmetrics are denoted dt,Vt ,u.

This property is useful as it makes it easy to find associated kernels.

Theorem 2.1. Given a transmetric space (Rm, dt,Vt ,u) of order u, then for any function g : R+ → X, where X ⊂ R, that is
bounded and continuous almost everywhere, the following property is valid∫

Bdt,Vt ,u
(x,U)

g(dt,Vt ,u(x, y))dy =uVt

∫ U

0
g(ϵ)ϵu−1dϵ,

where U is finite valued. If g also has compact support then∫
Rm

g(dt,Vt ,u(x, y))dy =uVt

∫ ∞

0
g(ϵ)ϵu−1dϵ.

A direct consequence of this is that the normal and the uniform associated kernels of dt,Vt ,u are:

K(ϵ) =
1

2
u
2 Γ( u

2 )Vt
exp

(
−1

2
ϵ2

)
(4)

and

K(ϵ) =

 1
3

u
2 Vt

for |ϵ| ≤
√

3

0 for |ϵ| >
√

3,
(5)

when Vt is finite and in the infinite case, equation (2) and (3) can be used.

An important source for finding transmetrics is using pseudometrics. In general the volumes of the balls in pseudometric
spaces with constant radius are dependent on the locations of the centers. This means that they can not be used directly.
However, the following theorem shows how transmetrics can be designed from pseudometrics that are inducing a topology
on Rm.

Theorem 2.2. If (Rm, dp) is a pseudometric space and (Rm, {Bdp (x, ϵ) | ϵ > 0 & x ∈ Rm}) is a topological space, then
dt,Vt ,u is a transmetric of order u, if

dt,Vt ,u(x, y) =
(VBdp (x,dp(x,y))

Vt

) 1
u

,

where Vt is chosen to be the volume of the unit ball of the transmetric space (Rm, dt,Vt ,u).

Proofs of theorem 2.1 and 2.2 are found in Hovda (2016) To fix ideas, the framework described in this section is required
to discuss the transmetrics as of Hovda (2014). Moreover, the next section demonstrates that many state-of art problems
can be described using this framework.

3. Relationship to State-of-the-art Problems

The purpose of this section is to describe the relationship to other methods and to show the flexibility of modeling problems
with transmetric density estimators. The discussion is far from extensive, but the selection is chosen to show some of the
generality of definition 2.3.
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3.1 Distributions with Elliptic Level Sets

In a paper by Liescher (2005), the level sets of the distributions are constrained to be of elliptic shape. The elliptic shape
of the level sets is constrained by a transformation that is performed prior to applying the nonparametric density estimator.
The estimators in Hovda (2014) and Hovda (2016) can be viewed as a generalization of the estimators of Liescher (2005).
This is because a wider family of distributions is allowed. In Liescher (2005), it is shown that the convergence rates are
independent of the number of dimensions, except in the neighborhood of the mode. This result complies with the results
in Hovda (2014) and Hovda (2016)

3.2 Nonparametric Functional Data Analysis

As said in the introduction, pseudometrics are commonly used in nonparametric functional data analysis. A function can
be viewed as a point in an infinite dimensional space. It is worth noting that the number of dimensions in the definition
2.3 can approach infinity, but the number of dimensions can only be countable infinite. This is less general than the
uncountable infinite number of dimensions that is needed when the domain of the functions are for instance R. In this
respect, definition 2.3 is a specification of what is common in nonparametric functional data analysis. There are two
reasons for this specification. First, the specification has little practical implication as functions are usually discretized.
Second, it is probably possible, but outside the scope of this paper, to generalize definition 2.3 to also include variables of
uncountable infinite dimensions.

In chapter 3.4.1 in the book of Ferraty and Vieu (2006), some finite dimensional pseudometrics are given. As an example,
we mention a pseudometric that is based on the first c principal components of the data

dt(x, y) =

√√√√ c∑
i=1

 m∑
j=1

(x j − y j)w jvi j

2

, (6)

where the discretized representations of the functions x and y have m entries each and the w js are the weights that defines
the approximate integration. Moreover, vi j is the jth coordinate of the ith eigenvector of the covariance matrix of a relevant
dataset.

This is a transmetric of order c, where Vt is clearly infinite and Vt = limL→∞Lm−cVc, where Vc is the volume of the c-
sphere. The c dimensional kernel as defined in equation (2) is an associated kernel. If we choose H 1

2 = hI, the estimator
in our notation is simply

f̂H,dt (x) = n−1h−1
n∑

i=1

K(h−1dt(x, Xi)), (7)

which is analog to what is found in Ferraty and Vieu (2006). It is worth noting that the associated distributions of this
transmetric is the family of all functions that can be described as a linear combination of the first c eigenvectors.

Other pseudometrics that are discussed in Ferraty and Vieu (2006) are either based on partial least squares or the L2-norm
of the derivatives of some order. Without derivations, it should be clear that the finite versions of these pseudometrics are
also transmetrics.

3.3 Linear Regression

We define a transmetric space (Rm, dt), where

dt(x, y) =

∣∣∣∣∣∣∣∣(x1 − y1) −
m∑

j=2

β j−1(x j − y j)

∣∣∣∣∣∣∣∣ . (8)

This is a transmetric of order one, where Vt = limL→∞2Lm−1. The one-dimensional uniform kernel taken from equation
(3) is associated with dt. If we choose H 1

2 = I, then

f̂I,dt (x) = n−1
n∑

i=1

K(dt(x, Xi)).
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The regression model is found by investigating the expected value of x1 given x2, x3, ...xm. Therefore,

E(x1|x2, x3, ...xm) =
∫
R

x1 f (x1|x2, x3, ...xm)dx1 =

∫
R x1 f (x)dx1∫
R f (x)dx1

≈
∫
R x1 f̂I,dt (x)dx1∫
R f̂I,dt (x)dx1

= n−1
n∑

i=1

∫
R

x1K(dt(x, Xi))dx1

= n−1
n∑

i=1

Xi,1 −
m∑

j=2

β j−1(Xi, j − x j)


=

m∑
j=2

β j−1x j + n−1
n∑

i=1

Xi,1 −
m∑

j=2

β j−1(Xi, j)

 ,
which describes the linear regression model. The intercept is zero when the data points are divided by the individual
sample means. Obviously, this result has no effect on the parameter selection method, which is for instance minimizing
the squared residuals. Based on this, it should be clear that other parametric regression models, such as polynomial
regression, can be described in the sense of transmetric density estimation.

3.4 Partially Linear Models

Partially linear models is given by

Xi,1 =

m1∑
j=2

(β j−1Xi, j) + g(Xi,m1+1, Xi,m1+2, .., Xi,m) + ui,

where
∑m1

j=2(β j−1Xi, j) is the linear part and g(Xi,m1+1, Xi,m1+2, ..., Xi,m) is the nonparametric part. The data points are assumed
to be i.i.d. and E(ui|Xi,2, Xi,3, , ..., Xi,m) = 0. An estimator for g(xm1+1, xm1+2, ..., xm) is found by investigating

E(x1 −
m1∑
j=2

β j−1x j|xm1+1, xm1+2, ..., xm)

=

∫
Rm1

(x1 −
m1∑
j=2

β j−1x j) f (x1, x2, ..., xm1 |xm1+1, xm1+2, ..., xm)dx1dx2...dxm1

=

∫
Rm1

(x1 −
∑m1

j=2 β j−1x j) f (x)dx1dx2...dxm1∫
Rm1

f (x)dx1dx2...dxm1

.

We make an estimate of g, denoted ĝ, by inserting an estimator for f (x). We choose a tuple of transmetrics dt , where
dt,1 is a m1-dimensional version of equation (8), associated with a m1-dimensional kernel as of equation (3). The other
transmetrics are one-dimensional, associated with one-dimensional kernels. In this case

f̂H,dt (x) = n−1|H|− 1
2

n∑
i=1

q∏
j=1

K j(dt, j(x j, Xi, j)), (9)

where q = m − m1 + 1. If we choose H so that x1 = {x1, x2, ..., xm1 }, then
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ĝ(xm1+1, xm1+2, ..., xm)

=

n∑
i=1

∫
Rm1

(x1 −
m1∑
j=2

β j−1x j)K1(dt,1(x1, X1,i))dx1×∏q
j=2 K j(dt, j(x j, Xi, j))∑n

i=1

∫
Rm1

K1(dt,1(x1, X1,i))dx1
∏q

j=2 K j(dt, j(x j, Xi, j))


=

n∑
i=1

wi(xm1+1, xm1+2, ..., xm)(X1,i −
m1∑
j=2

β j−1X j,i) where

wi(xm1+1, xm1+2, ..., xm) =

∏q
j=2 K j(dt, j(x j, Xi, j))∑n

i=1
∏q

j=2 K j(dt, j(x j, Xi, j))
.

Here wi(xm1+1, xm1+2, ..., xm) are the weight functions in the partially linear model (Häardle et al., 2000).

Projection Pursuit

In the context of reducing the curse of dimensionality of nonparametric density estimators, it is also worth mentioning the
projection pursuit density estimators. This method was first introduced in Friedman, Stuezle and Schroeder (1984), and a
parametric extension was given by Welling, Zemel and Hinton (2003). In projection pursuit one projects the explanatory
variables into principal directions and fits one-dimensional smooth density functions to these projections. The resulting
density is the product of these densities.

The analogous projection pursuit density estimator can be described as a product of transmetric density estimators as

f̂pp(x) =
Q∏

j=1

f̂Hj,dt, j (x j),

where x j is a vector in the projected space, which only contain a subset of the coordinates. In the special case, when all the
dt, js contains one transmetric each and all transmetrics are one-dimensional, the usual projection pursuit model appears.

A similarity between the transmetric density estimators and the projection pursuit density estimators is that the resulting
density can be visualized in a lower dimensional space. In projection pursuit, it is enough to show the one-dimensional
ridge functions along with the principal directions to understand the full distribution.

4. Parameter Estimation by Cross-validation

The global error criteria to be minimized in the unbiased cross-validation method is the mean integrated squared error that
is defined as

MISE( f̂H,dt ) = E
(∫

Rm
( f̂H,dt (x) − f (x))2dx

)
=

∫
Rm

(
Bias( f̂H,dt (x))

)2
dx +

∫
Rm

Var( f̂H,dt (x))dx.
(10)

This expression is also known as the L2 risk function. The unbiased cross-validation (UCV) method aims to minimize
MISE and employs the objective function

UCV( f̂H,dt ) =
∫
Rm

( f̂H,dt (x))2dx − 2n−1
n∑

i=1

f̂H,dt (−i)(Xi) where

f̂H,dt (−i)(x) = (n − 1)−1|H|− 1
2

n∑
j=1,
j,i

q∏
k=1

Kk(dt,k(xk, Xk, j))
(11)

is a leave-one-out estimator of f . The function UCV( f̂H,dt ) is unbiased in the sense that the expected value of UCV( f̂H,dt )
is equal to MISE( f̂H,dt ) − R( f ). Here, R( f ) is the L2-norm of f . The second term of equation (11) can be expanded to
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−2n−1(n − 1)−1|H|− 1
2

n∑
i=1

n∑
j=1,
j,i

q∏
k=1

Kk(dt,k(Xk,i, Xk, j)) (12)

which is straightforward to treat computationally. The first term of equation (11) can be expanded to

n−2|H|− 1
2

n∑
i=1

n∑
j=1

q∏
k=1

∫
Rm

Kk(dt,k(xk, Xk,i))Kk(dt,k(xk, Xk, j))dxk. (13)

In the case when i is equal to j, equation (13) becomes

n−1|H|− 1
2

q∏
k=1

R(Kk) + n−1(n − 1)−1|H|− 1
2

n∑
i=1

n∑
j=1,
j,i

q∏
k=1

ci jk,

where ci jk =

∫
Rm

Kk(dt,k(xk, Xk,i))Kk(dt,k(xk, Xk, j))dxk

(14)

and R(Kk) is defined as

R(Kk) =
∫
Rmk

K2
k (dt,k(xk, yk))dyk.

If all transmetrics in dt has an order, theorem 2.1 can be used to obtain analytical expressions. Notice that the second part
of equation (14) is an expression of the variance part of MISE. The challenge with estimating UCV(( f̂H,dt ) is to estimate
the ci jks in equation (14). Two special cases are treated below.

4.1 Spesial Case When Transmetrics are of the Type Described in Hovda (2014)

Theorem 4.1. If we define βx,k = (Vpk/Vt,k)1/mk ds,k,pk (xk, ck), βx,k,i = (Vpk/Vt,k)1/mk ds,k,pk (Xk,i, ck) and βx,k, j = (Vpk/Vt,k)1/mk ds,k,pk (Xk, j, ck),
then ∫

Rm
Kk(dt,k(xk, Xk,i))Kk(dt,k(xk, Xk, j))dxk =

mkVt,k

∫ ∞

0
Kk(Umk (βx,k, βx,k,i))Kk(Umk (βx,k, βx,k, j))β

(mk−1)
x,k dβx,k.

(15)

Proof. We start by defining αx,k = ds,k,pk (xk, ck), αx,k,i = ds,k,pk (Xk,i, ck) and αx,k, j = ds,k,pk (Xk, j, ck). Furthermore, we
define the function dt1,k(αx,k, αx,k,i) = dt,k(xk, Xk,i) and since αx,k is a transmetric of order mk, we can apply theorem 2.1.
The integral has therefore reduced the number of dimensions to one

mkVpk

∫ ∞

0
Kk(dt1,k(αx,k, αx,k,i))Kk(dt1,k(αx,k, αx,k, j))α

(mk−1)
x,k dαx,k.

The proof is concluded by changing variables to βx,k = (Vpk/Vt,k)1/mkαx,k, βx,k,i = (Vpk/Vt,k)1/mkαx,k,i and also βx,k, j =

(Vpk/Vt,k)1/mkαx,k, j. This means that the arguments in the kernels can be expressed by the Umk function. �

The integral is now one-dimensional, but unfortunately the integral is not trivial to solve for arbitrary mk. For most choices
of kernel, we must rely on numerical solutions. In those cases, it is only necessary to integrate in regions that are close to
βx,k,i and βx,k, j.

If we define these two functions

C1,s(u, v) =


3−

s
2 [min(u + rs(u), v + rs(v))s −max(u − rs(u), v − rs(v))s]

for u − rs(u) − rs(v) ≤ v ≤ u + rs(u) + rs(v)
0 else

C2,s(u, v) =

1 for u − rs(u) ≤ v ≤ u + rs(u)
0 else,

(16)
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choose a uniform kernel and let Vt,k = 2mk , then equation (15) is simply

3−
mk
2 2−mkC1,mk (βx,k,i, βx,k, j), (17)

which is computationally tractable. This is because each βx,k,i and each rmk (βx,k,i) can be pre-computed before calculating
the double sums in equation (14). Note that C1,mk (βx,k,i, βx,k, j) is bounded by one, which happens when βx,k,i = βx,k, j.

To summarize, the estimator of UCV for the uniform kernel is therefore

UCV( f̂H,dt ) = n−1|H|− 1
2

q∏
k=1

R(Kk)−

2n−1(n − 1)−1|H|− 1
2

n∑
i=1

n∑
j=1,
j,i

q∏
k=1

Kk(dt,k(Xk,i, Xk, j))+

n−1(n − 1)−1|H|− 1
2

n∑
i=1

n∑
j=1,
j,i

q∏
k=1

3−
mk
2 2−mkC1,mk (βx,k,i, βx,k, j).

(18)

This can be reduced to

UCV( f̂H,dt ) = n−1|H|− 1
2 3−

m
2 2−m×1 + (n − 1)−1

n∑
i=1

n∑
j=1,
j,i

 q∏
k=1

C1,mk (βx,k,i, βx,k, j) − 2
q∏

k=1

C2,mk (βx,k,i, βx,k, j)


.

(19)

It is worth noting that C1,s is generally smaller than one and that it takes values other than zero more often than C2,s. It is
also worth noting that the two points βx,k,i and βx,k, j, contribute maximally to decrease UCV when βx,k, j = βx,k,i±rmk (βx,k,i).
By contrast, when βx,k, j is slightly more than βx,k,i + rmk (βx,k,i) or slightly less than βx,k,i − rmk (βx,k,i), these two points
contribute maximally to increase UCV. This effect is also seen for UCV on common kernel density estimation, when the
kernel is uniform.

4.2 Special Case when Transmetrics are Metrics

It is straightforward to see that UCV for the common kernel density estimator, with a uniform kernel as of Duong and
Hazelton (2005) is given by

UCV( f̂H) = n−1|H|− 1
2 3−

m
2 2−m×1 + (n − 1)−1

n∑
i=1

n∑
j=1,
j,i

 m∏
k=1

C3(Xk,i, Xk, j) − 2
m∏

k=1

C4(Xk,i, Xk, j)


 .

C3(u, v) =

1 − |u−v|
2
√

3
for |u − v| ≤ 2

√
3

0 else

C4(u, v) =

1 for u −
√

3 ≤ v ≤ u +
√

3,
0 else,

(20)

which is analogous to the generalized method.

5. Comparison of Transmetric Density Estimation and Kernel Density Estimation Using Monte Carlo Simulations

This section focuses on comparing transmetric density estimation with common kernel density estimation. In particular,
AMISE is compared to optimal MISE and optimal UCV is compared to optimal MISE subtracted by R( f ). The kernels
are uniform and the data sets are drawn from multi-dimensional normal distributions, where the number of dimensions
and population sizes are varied.
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Table 2. Parameters that are common for all experiments

Parameter Argument
Distribution type Standard normal N[0, 1]
Number of dimensions (m) {2,4,8}
Kernel shape Uniform
Parameters of f̂H H1/2 = |H|1/(2m)I
Parameters of f̂H,dt c = 0, the elements of p are 2

and H1/2 = |H|1/(2m)I

Table 3. Parameters in experiment one and two

Parameter Argument
Population sizes (n) {10, 31, 100, ... 100000}
Number of MSE repetitions nMS E 100000
HAMISE( f̂H) and AMISEopt( f̂H) Equation (20) in Hovda (2016), where

M = m(m + 2)2−m−2π−m/2

HAMISE( f̂H,dt ) and AMISEopt( f̂H,dt ) Equation (19) in Hovda (2016), where
approximation limit L = 0.05

5.1 Monte Carlo Simulations of MISE and AMISE in the Case When q = 1

From equation (19) in Hovda (2016), we have analytical expressions for the optimal AMISE of fH,dt , AMISEopt( fH,dt )
with the corresponding optimal bandwidth HAMISE( fH,dt ). Equation (20) in the same article gives analytical expressions
for AMISEopt( fH) and HAMISE( fH). All these expressions are given as functions of n.

In order to verify these approximations, we have chosen to simulate MISE when |H| 12 = HAMISE. This value is denoted
MISE(HAMISE) and it is compared with AMISEopt. Moreover, we have also estimated minimal MISE, that is MISEopt,

by varying |H| 12 around HAMISE. The |H| 12 that correspond to MISEopt is denoted HMISE.

The procedure for MISE calculations is straightforward. A region R f of volume VR f is identified, where f is assumed to
be close to zero outside this region. For fixed f , H and dt , the following are repeated nMS E times. In iteration i, n data
points are drawn randomly from f and placed in a dataset Xi. A single sample Ti is drawn from a uniform distribution on
R f . The estimator f̂ i is calculated based on the dataset Xi and the estimator of MISE is calculated by

M̂ISE( f̂H,dt ) = VR f n
−1
MS E

nrep∑
i=1

( f̂ i(Ti) − f (Ti))2. (21)

In experiment one, f̂H is computed and in experiment two, f̂H,dt is computed. To summarize, MISE is estimated by taking
the average of a number of mean square error MSE estimates with random points taken uniformly within R f . The relevant
parameters are listed in the table 2 and table 3.

5.1.1 Results:

The result of experiment one is shown in figure 1. Here, the common kernel density estimator is evaluated. It is clear that
HAMISE seems to overestimate HMISE for small n, but this effect is smaller for larger n. Since the graphs are on a log
scale, the reducing gap between them means that the normalized experimental error |HAMISE −HMISE|/HMISE is also
reducing.

Moreover, it seems that AMISEopt is an overestimation of MISEopt, but the normalized experimental error is reduced
with increased n. The reason for this is related to that HAMISE overestimates HMISE on this distribution.

The fact that MISE(HAMISE) seems to lie between MISEopt and AMISEopt is a verification of the approximations given
in equation (20) in Hovda (2016) It is also worth noting that this experiment is a verification of the convergence orders for
the common kernel density estimators. On a log scale the convergence orders are proportional to the slopes of the graphs
and it is clear that the slopes of AMISE are similar to those for MISE. It is also clear that the slopes are levelling out when
the number of dimensions is increasing. This is expected.

The result of experiment two is shown in figure 2. Here the transmetric density estimator is evaluated. Similar to the result
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Table 4. Parameters in experiment three and four

Parameter Argument
Population sizes (n) {10, 31, 100, ... 10000}
Number of minimizations nMIN 1000
Number of MSE repetitions nMS E 100000
UCV( f̂H) Equation (20)
UCV( f̂H,dt ) Equation (19)

of experiment one it is clear that HAMISE and AMISEH are overestimates of HMISE and MISEH, respectively.

Moreover, the normalized experimental errors of both HAMISE and AMISEH improve for increasing n. This is expected,
because the restriction in equation (18) in Hovda (2016), suggest that the approximations of AMISE are only valid for
n larger than 106. Unfortunately, limited computational power has restricted us from evaluating larger population sizes.
However, the convergence of MISEH towards AMISEH gives trust to the approximations of equation (19) in Hovda
(2016) Another verification is that MISE(HAMISE) seems to follow AMISEopt.

It is clearly worth commenting that for the smallest population sizes, MISEopt( f̂H,dt ) is similar to MISEopt( f̂H) and
HMISE( f̂H,dt ) is similar to HMISE( f̂H). This is because the two methods coincide, when n is small. However, it is
obvious that MISEopt( f̂H,dt ) is substantially smaller than MISEopt( f̂H) for larger n. This is seen in the left subfigure of
figure 5, where the ratio of MISEopt( f̂H,dt ) and MISEopt( f̂H) is plotted. In eight dimensions and when n = 100000, MISE
of the transmetric density estimator is 20 times smaller.

5.2 Experiments on cross-validation

In this section, the optimal UCV( f̂H,dt ) and UCV( f̂H) are calculated for various choices of bandwidths. Again the multi-
dimensional normal distributions are considered.

The optimal bandwidth HUCV is the bandwidth that minimizes UCV, that is UCVopt. The mean integrated squared error
that correspond to HUCV is denoted MISEUCV. For a given population size (n), each search for HUCV is repeated nMIN

times. A distribution of estimates of HUCV is therefore available. MISEUCV is found by calculating MISE based on the
average of nMS E MSE calculations. The bandwidths are chosen randomly from the HUCV distribution.

In the experiments, the distributions are normal and known and therefore UCV + R( f ) is compared to the estimates of
MISE that is found in experiment one and two. The parameters of experiment three and four are listed in table 4.

5.2.1 Results

When using transmetric density estimation on multi-dimensional normal distributions, the convergence order of the mean
integrated squared error, away from the mode, is approaching 4/5 for large population sizes. This result is independent of
the number of dimensions. This result complies with the asymptotic arguments in Hovda (2016) Moreover, it is shown that
parameters can be trained using unbiased cross-validation. However, the convergence order is slower for the transmetric
density estimatior when the number of dimensions is small.

The result of experiment three is shown in figure 3. It is clear that using UCV on the common density estimator is a
method that converges for increasing n in all dimensions. The fact that the gaps between the quartiles of HUCV and HMIS E

decrease on the log scale, indicate that also the normalized experimental error decrease for increasing n. Moreover, it is
seen that the expected value of UCV( f̂H) + R( f ) converges towards MISE( f̂H) as n increases. Notice that the normalized
experimental error MISE(HUCV ) is decreasing as a function of n.

The result of experiment four is shown in figure 4. Here, UCV of the transmetric density estimator is shown. Clearly, the
method seems to pick too small bandwidths, and this effect is most evident in two dimensions. This effect is increasing
with n. This may not be too surprising since this method coincide with the common kernel density estimator for small n.

It is not completely clear whether the expected value of UCV( f̂H) + R( f ) converges towards MISE( f̂H) or not. On one
side, since all graphs are decreasing everywhere on these log plots, it is clear that the experimental error is decreasing as
a function of n. Moreover, in two and four dimensions the normalized experimental error seems constant, which is an
important property for indicating convergence. However this is not the case in eight dimensions, which could be a sign
that this will level out for very large n.

However, it is encouraging that this effect is not seen in MISE(HUCV ). It seems that the normalized experimental error is
constant everywhere.
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Two dimensions. Two dimensions.

Four dimensions. Four dimensions.

Eight dimensions. Eight dimensions.

Figure 1. Result of experiment one, where the common kernel density estimator is evaluated. The left column shows log
plots of optimal AMISEopt, MISE(HAMISE) and MISEopt as functions of population size n. The distributions vary in the
number of dimensions, but are all standard normal. The right column shows the corresponding optimal bandwidths in the
sense of MISE and AMISE. The plots clearly show that optimal AMISE and optimal MISE decrease with approximately
n−4/(4+m), while the optimal bandwidths are proportional with n−1/(4+m).
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Two dimensions. Two dimensions.

Four dimensions. Four dimensions.

Eight dimensions. Eight dimensions.

Figure 2. Result of experiment two, where the transmetric density estimator is evaluated. The left column shows log
plots of optimal AMISEopt, MISE(HAMISE) and MISEopt as functions of population size n. The distributions vary in the
number of dimensions, but are all standard normal. The right column shows the corresponding optimal bandwidths in the
sense of MISE and AMISE. The plots clearly show that optimal AMISE and optimal MISE decrease with approximately
n−4/5, while the optimal bandwidths are proportional with n−1/5.
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It is worth noting that the poorer performance of UCV on the transmetric density estimator is somewhat surprising and
the question of error in the computer program is always valid. To mitigate this, the author has implemented the code in
both Java and Matlab with identical results.

The right plot in figure 5, summarizes the cross-validation experiments. The ratio of the two methods is shown, where
parameter estimation is part of the methods. In general, some of the gain that is achieved by using transmetrics is lost
by poorer performance of the cross-validation method. In fact, in two dimensions, the common kernel density estimator
is working better when parameter estimation is part of the equation. However, in more dimensions, it seems that the
transmetric density estimator is superior.

6. Conclusion

A great variety of state-of-the-art problems can be defined using transmetric density estimation. This has clarified how
methods relate to each other and opened up new ways on how they can be combined. Moreover, unbiased cross-validation
is possible even when the distribution is not an associated distribution.

Using Monte Carlo simulations, it is shown that parameters such as the scaling of the bandwidth matrix can be estimated
using unbiased cross-validation. Although, the method seems to underestimate the bandwidth in two dimensions, the
method seems appropriate when the number of dimensions is higher. The experimental error of the unbiased cross-
validation method seems constant with increasing population size. Moreover, Monte Carlo simulations have verified the
asymptotic properties that were outlined in Hovda (2016)
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Two dimensions. Two dimensions.

Four dimensions. Four dimensions.

Eight dimensions. Eight dimensions.

Figure 3. Result of experiment three, where the common kernel density estimator is evaluated. The left column shows log
plots of quartiles of HUCV together with HMIS E and HAMIS E . The next column shows the quartiles of UCV +R( f ) together
with MISE(HUCV ) and MISEopt.
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Two dimensions. Two dimensions.

Four dimensions. Four dimensions.

Eight dimensions. Eight dimensions.

Figure 4. Result of experiment four, where the transmetric density estimator is evaluated. The left column shows log plots
of quartiles of HUCV together with HMIS E and HAMIS E . The next column shows the quartiles of UCV +R( f ) together with
MISE(HUCV ) and MISEopt.
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Without UCV. With UCV.

Figure 5. Comparison of transmetric density estimation and common kernel density estimators. The left figure shows
a plot of MISEopt( f̂H,dt )/ MISEopt( f̂H), while the right figure shows a plot of MISEUCV ( f̂H,dt )/ MISEUCV ( f̂H) in various
dimensions.
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