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Abstract 

The starting point of search is an important factor in optimal design construction as a poor starting point may require a 

longer time before convergence is reached. Hence the location of the initial design points for use in the Quick 

Convergent Inflow Algorithm on segmented regions is examined with the aim of developing useful criteria for 

identifying the initial design points. Proportional allocation of design points to go into the initial design measures is 

proposed. The allocation of 100% vertex points, 100% boundary points and 100% boundary points as well as the 

allocation of 50% vertex and 50% boundary points, 50% vertex and 50% interior points and 50% interior and 50% 

boundary points are investigated. Results show that a combination of design points comprising of 50% vertex points 

and 50% interior points or 50% vertex points and 50% boundary points forms helpful rules in identifying the initial 

design points for use in the Quick Convergent Inflow Algorithm. With these combinations, a moderate number of 

iterations needed to reach the required optimal or near-optimal solution is maintained.  

Keywords: Initial design points, Vertex points, Boundary points, Interior points, segmented regions, Quick Convergent 

Inflow Algorithm 

1. Introduction 

Finding an optimal experimental design is seen as one of the most important topics in the context of experimental 

design. Any effective search scheme usually seeks to maximize performance. In locating the optimizer of an objective 

function using line equations, best decisions should be made on the design of the experiments, the starting point of 

search, the direction of search and the step-length. As an important aspect in optimal design construction, a poor initial 

design may require a longer time before convergence is reached. We consider, in this paper, the location of the initial 

design points for use in the Quick Convergent Inflow Algorithm (QCIA) introduced by Iwundu and Odiakosa (2013). In 

particular, we propose helpful rules for identifying the initial design points for use in the QCIA. 

The Quick Convergent Inflow Algorithm as a line search algorithm is based on experimental design principles and has 

been used in solving linear programming problems. The use of experimental design methods to solve constrained and 

unconstrained optimization problems is established in the literature. Onukogu (1997) introduced the Minimum Variance 

line search algorithm, that is based on minimum variance properties, for locating the optimizers of unconstrained 

surfaces.  Umoren (1999) considered the Maximum Norm Exchange Algorithm (MNEA), an experimental design 

technique for solving constrained optimization problems. The iterative method exchanges a design point having 

maximum norm with the end point of the r
th

 iteration. The initial design measure for the Maximum Norm Exchange 

Algorithm consists of design points selected from the boundary of the design region. Other works that apply 

experimental design principles for solving optimization problems include Umoren and Etukudo (2010), Osita and 

Iwundu (2013), Ekezie and Nzenwa (2013), Chigbu and Ukaegbu (2013), Ekezie etal. (2013), Iwundu and Hezekiah 

(2014), Iwundu and Ebong (2014) and Iwundu and Ndiyo (2015).  

The Quick Convergent Inflow Algorithm of Osita and Iwundu (2013) used in solving Linear Programming (LP) 

problems moves in the direction of minimum variance and relies on adding the point reached by the line equation, at 

each iteration, to an existing design. The addition of such point(s) would usually guarantee convergence of the 

algorithm to an approximate optimum. Iwundu and Hezekiah (2014) examined the effect of the QCIA on segmented 

regions and observed that although the QCIA is effective in solving linear programming problems, it is possible that by 

its stopping rule, the algorithm may, for some problems, converge only locally. Also, the algorithm may not always 

reach the optimum of the linear objective function for the design size, N, bounded by p < N < ½ p(p+1) + 1 for a 
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p-parameter model. Hence, for such problems the Quick Convergent Inflow Algorithm fails to converge at the required 

optimum. As a consequence, Iwundu and Hezekiah (2014) presented a method that attempts to overcome the possible 

convergence of the QCIA at a non-global optimum. The method is based on variance exchange of a design point in the 

design measure at a current iteration, having minimum (or maximum) variance of prediction with the point reached by 

the line equation in a maximization (or minimization) problem. As applied to some LP problems, the modification of 

Iwundu and Hezekiah (2014) could require fairly long iterative moves to reach the optimum. This may be as a result of 

choosing a poor starting design. 

As a further observation on the QCIA, Iwundu and Ebong (2014) noted that problem occurs with the QCIA when the 

point reached by the line equation does not satisfy the linear inequality constraints and hence cannot be used as an 

admissible point of the experimental design. At this instance, the QCIA cannot successfully converge at the required 

optimum. To circumvent this problem, Iwundu and Ebong proposed a modification to the basic algorithm by 

considering the addition of a point of optimum predictive variance (from among a set of candidate points from the 

feasible region that satisfy the constraint equations) to an existing design. As shown theoretically, a point of maximum 

predictive variance when added to an existing design leads to the maximizer of the response function in a maximization 

problem. Similarly, the addition of a point of minimum predictive variance to an existing design leads to the minimizer 

of the response function in a minimization problem. The idea behind the Modified Quick Convergent Inflow Algorithm 

(MQCIA) of Iwundu and Ebong (2014) stemmed from the fact, as established by Atkinson and Donev (1992), that 

relationship often exists between the experimental design and the variance of predicted response in optimal design 

construction. Subsequently, by improving an existing experimental design the optimizer of the response function is 

approached. For any sequential search that seeks to arrive at the optimun, there is the need to start the search optimally.  

Atkinson and Donev (1992) and a number of other researchers have discussed on techniques for constructing starting 

designs for use in search algorithms when selection of design points is paramount. Some of the techniques rely on 

random selection of design points and some are guided by specific rules. For example, Iwundu (2008) observed the 

importance of starting experimental designs and thus offered an improvement on the starting design for use in variance 

exchange algorithms. The starting designs were constructed on the basis of distances of design points from the centre of 

the design regions. Iwundu (2010) stipulated rules for obtaining the starting design points for use in the combinatorial 

algorithm of Onukogu and Iwundu (2008). The rules were based on permutation-invariance of design points. Iwundu 

and Abolaji (2014) applied the permutation-invariance technique in constructing the starting design for use in the 

variance exchange algorithm in constructing D-optimal designs and compared its performance with the commonly used 

random selection method. 

The aim of this research is to develop useful criteria for obtaining the starting design for use in the Quick Convergent 

Inflow Algorithm. Particularly, it seeks to address where to select design points that makes up the initial experimental 

design for use in the algorithm. The motivation for this research centers around the behaviour of the QCIA when design 

points are chosen only from the boundary of the feasible region. In most examined cases, it failed to converge at the 

required optimum.  

2. Methodology 

The fundamental algorithm used in this work is due to Odiakosa and Iwundu (2013). However, we employ in particular 

the segmentation algorithm of Iwundu and Hezekiah (2014) whose abridged steps are outlined in section 2.1. 

2.1 The Algorithmic Framework of the QCIA on Segmented Regions 

The Quick Convergent Inflow Algorithm on segmented regions is defined by the following steps; 

i. Partition the feasible region into s segments. 

ii. Select N support points from each of the s segments and hence make up the design measures  1,  2, …, s 

where p < N < ½ p(p+1)+1 and p represents the number of model parameters.   

iii. Compute, at each iteration, the starting point of search x
r

∗
 , the direction of search dr

∗ and the step-length of 

search ρr
∗  

iv. At the r
th

 iteration make a move to the point   

xr+1
∗  = x

r

∗
  + ρr

∗ dr
∗ in a maximization problem and to the point  

xr+1
∗  = x

r

∗
  -  ρr

∗ dr
∗ in a minimization problem. 

v. Employ the stopping rule.   
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2.2 Starting Point of Search 

The starting point of search is obtained from the initial design measure, ξ1, ξ2, …, ξs, define on the s segments of the 

design region. For the purpose of this work s=2. Hence, the starting point is obtained using ξ1 and ξ2, where ξ1 and 

ξ2 are defined, respectively, as 

  ξ1 =  (

x11

x12

⋮
x1N1

)     and     ξ2 =  (

x21

x22

⋮
x2N2

) 

where N1 and N2 are the respective design sizes for ξ1 and ξ2 and are such that 

p ≤ Ns ≤
1

2
p(p + 1) + 1 ; s = 1, 2. 

xsj is the j
th

 design (support) point obtained from the s
th

 segment and defined as a function of the model. The design 

points to go into the initial design measures shall be obtained from proportional allocation of vertex, interior and 

boundary points as outlined in section 2.4. For the illustrations used in this work, the number of model parameters p, 

equals the number of variates k. Hence p = k. 

In the first segment 

 x11 = [x111 x121 … x1k1 ] 

 x12 = [x112 x122 … x1k2 ] 

 ⋮ 

 x1N1
= [x11N1

x12N1
… x1kN1

] 

Similarly, In the second segment 

x21 = [x211 x221 … x1k1 ] 

x22 = [x212 x222 … x2k2 ] 

⋮ 

x2N2
= [x21N2

x22N2
… x2kN2

] 

The starting point of search, x0, is hence the arithmetic mean of x11, x12, …, x1N1
, x21, x22, … , x2N2

. 

Other components of the line equation are as in Iwundu and Hezekial (2014). 

2.3 Stopping Rule 

In a minimization problem, let 𝑥1
∗ , 𝑥2

∗ , ... , 𝑥𝑟−1
∗ , 𝑥𝑟

∗ be local minimizers such that  𝑥1
∗ ≥ 𝑥2

∗ ≥ ... ≥ 𝑥𝑟−1
∗  < 𝑥𝑟

∗. 

The algorithm terminates at the r
th

 iteration, where the value of the objective function at the r
th

 iteration is such that 

f(𝑥𝑟−1
∗ ) < f( 𝑥𝑟

∗). Similarly, in a maximization problem, let 𝑥1
∗ , 𝑥2

∗ , ... , 𝑥𝑟−1
∗ , 𝑥𝑟

∗ be local maximizers such that 𝑥1
∗ 

≤ 𝑥2
∗ ≤ ... ≤ 𝑥𝑟−1

∗  > 𝑥𝑞𝑟
∗ . The algorithm terminates at the r

th
 iteration, where the value of the objective function at the 

r
th

 iteration is such that f(𝑥𝑟−1
∗ ) > f(𝑥𝑟

∗). 

2.4 Rules for Selecting Initial Design Points for Use in the QCIA 

In establishing rules for selecting initial design points for use in the Quick Convergent Inflow Algorithm on segmented 

regions, we employ the following proportional allocation of design points to go into the design;  

(i) 100% vertex points 

(ii) 100% boundary points 

(iii) 100% interior points 

(iv) 50% vertex points and 50% boundary points 

(v) 50% vertex points and 50% interior points 

(vi) 50% boundary points and 50% interior points 

The remaining task is as in the algorithmic framework outlined in section 2.1. The consideration of proportional 

allocation of design points stems from experiences in the use of the QCIA. 

3. Numerical Illustrations 

We present results on the behaviours of vertex, boundary and interior points for the Quick Convergent Inflow Algorithm 
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(QCIA) in obtaining optimal solutions for linear programming problems on segmented regions. 

3.1 Illustration 1 

We consider the maximization of 

f(x) = 5x1 + 4x2 

Subject to 

6x1 + 4x2 ≤ 24  

x1 + 2x2 ≤ 6 

-x1 + x2 ≤ 1 

x2 ≤ 2 

x1, x2 ≥ 0 

To solve the problem using the Quick Convergent Inflow Algorithm, we consider proportional allocation of support 

points to make up the initial design. 

3.1.1 100% Vertex Points  

Here the starting design is made up of design points which satisfy the constraints and are obtained only from the 

vertices of the design region. 

Using 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2] 

S2 = [x1, x2: 2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2] 

we form the initial design measures  

ξ1  = (
0 1
2 0
2 2

)    ξ2 = (
2 0
2 2
4 0

) 

These measures together with the model form the design matrices X1 and X2 respectively as  

X1 = (
0 1
2 0
2 2

)     ,      X2 = (
2 0
2 2
4 0

) 

The associated information matrices are, respectively, 

X1
TX1 = (

8 4
4 5

)   ,   X2
TX2 =  (

24 4
4 4

) 

(.)
T
 represents transpose. 

The inverse of each information matrix is, respectively, 

(X1
TX1)-1 

=  (
0.2083 −0.1667

−0.1667 0.3333
)    ,     (X2

TX2)-1
 = (

0.05 −0.05
−0.05 0.3

) 

The matrices of coefficient of convex combination of the dispersion matrices are, respectively, 

H1 = diag (0.1936, 0.4737) H2 = diag (0.8064, 0.5263) 

The average information matrix is given by: 

M1(ξN)  =  (
15.9065 2.0644
2.0644 2.2300

) 

The inverse of the average information matrix is 

M1
−1(ξN) = (

0.0715 −0.0661
−0.0661 0.5097

) 

The response vector of the i
th

 row of the average information matrix is 
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Z =  (
Z1

Z2
) =  (

87.7901
19.2420

) 

Hence the direction vector is  

d1 = M1
−1(ξN) Z  = (

5.0051
4.0047

) 

By normalizing of the vector d1, we have  

d1
∗  =  (

0.7808
0.6248

) 

The optimal starting point is  

x
1

∗
= (

2.0000
0.8333

) 

The optimal step-length using the four constraints is ρ1
∗ =1.1492. 

With x
1

∗
 , d1

∗  and ρ1
∗  we make a move to 

x1
∗  =  (

2.8972
1.5513

) 

The value of the objective function at x1
∗ is 20.6912. 

To check for convergence, we make a second move. This requires augmenting the design measure with the point 

x1
∗  =  (

2.8972
1.5513

) 

The resulting design measures are 

ξ1 = (
0 1
2 0
2 2

)   ξ2 = (

2
2

0
2

4 0
2.8972 1.5513

) 

The corresponding design matrices are 

X1 =  (
0 1
2 0
2 2

) and    X2 = (

2
2

0
2

4 0
2.8972 1.5513

) 

Continuing the process, we obtain the starting point of search, the direction of search and the step-length of search, 

respectively as 

x
2

∗
= (

2.1282
0.9359

) 

d2
∗  =   (

0.7813
0.6242

) 

ρ2
∗  = 0.9854 

With x
2

∗
 , d2

∗  and ρ2
∗  we make a move to 

x2
∗  =    (

2.898
1.5509

) 

The value of the objective function at x2
∗  is 20.6936 

Since f(x1
∗) < f(x2

∗) we make a next move.  

The design measure is again augmented with the points 

x2
∗  =    (

2.898
1.5509

) 

Hence 
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ξ1 = (
0 1
2 0
2 2

)    and   ξ2 =  (

2.898
2

1.5509
2

4 0
2.8972 1.5513

) 

The corresponding design matrices are 

X1 =  (
0 1
2 0
2 2

)        X2 = (

2.898
2

1.5509
2

4 0
2.8972 1.5513

) 

The optimal starting points at this iteration is 𝑥
3

∗
= (

2.2565
1.1575

) 

The normalized direction vector is 𝑑3
∗  =   (

0.7801
0.6256

) 

The optimal step-length is 𝜌3
∗ = 0.9854 

With 𝑥
3

∗
 , 𝑑3

∗  and 𝜌3
∗ we make a move to 

𝑥3
∗ =  (

2.805
1.5974

) 

The value of the objective function at 𝑥3
∗ is 20.4146 

At this iteration, f(𝑥1
∗) < f(𝑥2

∗) > f(𝑥3
∗) and the stopping rule is satisfied. 

Therefore, the algorithm converges at f(𝑥2
∗) = 20.6936 where 𝑥2

∗ = (
2.8980
1.5509

) is the optimizer of the objective function 

as obtained using 100% vertex point criterion. 

3.1.2 100% Interior Points 

Here the starting design is made up of design points obtained only from the interior points and which must satisfy the 

constraints. 

Using 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2] 

S2 = [x1, x2: 2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2] 

We form the initial design measures as  

𝜉1  = (
1.5 1.5
1.5 0.5
0.5 0.5

)  , 𝜉2 = (
2.5 1.5
2.5 0.5
3.5 0.5

) 

These measures together with the model form the design matrices X1 and X2 respectively as  

X1 = (
1.5 1.5
1.5 0.5
0.5 0.5

)   , X2 = (
2.5 1.5
2.5 0.5
3.5 0.5

) 

The associated information matrices are, respectively, 

𝑋1
T𝑋1 =  (

4.75 3.25
3.25 2.75

)  and  𝑋2
T𝑋2 =   (

24.75 6.75
6.75 2.75

) 

The average information matrix is  

𝑀1(𝜉𝑁) =  (
20.0950 16.9929
16.9929 14.9368

) 

Following the steps of the algorithm we obtain the optimal solution as f(𝑥1
∗) = 20.693 where 𝑥1

∗ = (
2.8978
1.5510

) is the 

optimizer of the objective function.  
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3.1.3 100% Boundary Points  

Here the starting design is made up of design points obtained only from the boundaries only and which must satisfy the 

constraints. 

Using 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2] 

S2 = [x1, x2: 2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2] 

We form the initial design measures 

𝜉1  = (
0.5 0
0.5 1.5
2 1.5

) 𝜉2 = (
2 1
3 0
3 1.5

) 

These measures together with the model form the design matrices X1 and X2 respectively as  

X1 =(
0.5 0
0.5 1.5
2 1.5

) X2 =(
2 1
3 0
3 1.5

) 

 

The associated information matrices are, respectively, 

𝑋1
T𝑋1 =  (

4.5 3.75
3.75 4.5

)  and  𝑋2
T𝑋2 =  (

22 6.5
6.5 3.25

) 

The average information matrix is  

𝑀1(𝜉𝑁) =  (
16.6352 3.0246
3.0246 1.9485

) 

Following the steps of the algorithm we obtain the optimal solution as f(𝑥2
∗) = 20.1937 where 𝑥2

∗ = (
2.7313
1.6343

) is the 

optimizer of the objective function.  

3.1.4 50% Vertex Points, 50% Interior Points  

Here the starting design is made up of 50% of design points obtained from the vertices and 50% of design points 

obtained from the interiors and which must satisfy the constraints. 

Using 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2] 

S2 = [x1, x2: 2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2] 

We form the initial design measures 

𝜉1  = (
0 1
2 0
2 2

) 𝜉2 = (
2.5 1.5
2.5 0.5
3.5 0.5

) 

These measures together with the model form the design matrices X1 and X2 respectively as  

X1 =(
0 1
2 0
2 2

) X2 = (
2.5 1.5
2.5 0.5
3.5 0.5

) 

The associated information matrices are, respectively, 

𝑋1
T𝑋1 =   (

8 4
4 5

) and  𝑋2
T𝑋2 =  (

24.75 6.75
6.75 2.75

) 

The average information matrix is  

𝑀1(𝜉𝑁)= (
10.9260 2.1242
2.1242 3.0940

) 
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Following the steps of the algorithm we obtain the optimal solution as f(𝑥1
∗) = 20.6522 where 𝑥1

∗ = (
2.8842
1.5578

) is the 

optimizer of the objective function. 

3.1.5 50% Vertex Points, 50% Boundary Points 

Here the starting design is made up of 50% of design points obtained from the vertices and 50% of design points 

obtained from the boundaries and which must satisfy the constraints. 

Using 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2] 

S2 = [x1, x2: 2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2] 

We form the initial design measures as 

𝜉1  = (
0 0
2 0
2 2

) 𝜉2 = (
2 1.5
3 0
3 0.5

) 

These measures together with the model form the design matrices X1 and X2, respectively as  

X1 = (
0 0
2 0
2 2

) X2 = (
2 1.5
3 0
3 0.5

) 

The associated information matrices are, respectively, 

𝑋1
T𝑋1 =  (

8 4
4 4

)  and  𝑋2
T𝑋2 =  (

17 4
4 2.5

) 

The average information matrix is  

𝑀1(𝜉𝑁)  =   (
9.5630 1.8878
1.8878 1.7430

) 

Following the steps of the algorithm we obtain the optimal solution as f(𝑥1
∗) = 20.7697 where 𝑥1

∗ = (
2.9233
1.5383

) is the 

optimizer of the objective function. 

3.1.6 50% Interior Points, 50% Boundary Points 

Here the starting design is made up of 50% of design points obtained from the interiors and 50% of design points 

obtained from the boundaries and which must satisfy the constraints. 

Using 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2] 

S2 = [x1, x2: 2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2] 

We obtain initial design measure from the segments as 

𝜉1  = (
0.5 0.5
1.5 0.5
1.5 2

) 𝜉2 = (
2 2
2 0.5

3.5 0
) 

These measures together with the model form the design matrices X1 and X2 respectively as  

X1 =  (
0.5 0.5
1.5 0.5
1.5 2

) X2 =  (
2 2
2 0.5

3.5 0
) 

The associated information matrices are, respectively, 

𝑋1
T𝑋1 =   (

4.75 4
4 4.5

) and  𝑋2
T𝑋2 =  (

20.25 5
5 4.25

) 

The average information matrix is  
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𝑀1(𝜉𝑁) = (
17.2870 3.4401
3.4401 2.5820

) 

Following the steps of the algorithm we obtain the optimal solution as f(𝑥3
∗) = 20.6162 where 𝑥3

∗ = (
2.8722
1.5638

) is the 

optimizer of the objective function. 

For illustration 1, the design measures, starting point of search, direction of search, step-length of search, determinant 

value of the average information matrix, optimal point reached, value of objective function, variance of optimizer as 

well as the number of iterative steps are summarized in Table 1 

Table 1. Summary statistics for illustration 1 

Criterion Design 

measures 

defined on the s 

segments 

Iterative 

step r 

Determinant value 

of the average 

information matrix 

Starting 

point 

Normalized 

direction 

vector 

Step-length Optimal 

point 

reached 

Value of 

objective 

function 

Variance 

of 

optimizer 

100% Vertex 

Points 
(

0 1
2 0
2 2

)  

(
2 0
2 2
4 0

) 

1 31.2097 (
2.0000
0.8333

) (
0.7808
0.6248

) 1.1492 (
2.8972
1.5513

) 20.6912 0.2777 

2 47.4910 (
2.1282
0.9359

) (
0.7813
0.6242

) 0.9854 (
2.898

1.5509
) 20.6936 0.2777 

3 43.9386 (
2.2565
1.1575

) (
0.7801
0.6256

) 0.9854 (
2.805

1.5974
) 20.4146 0.2879 

100% 

Interior 

Points 

(
1.5 1.5
1.5 0.5
0.5 0.5

)  

(
2.5 1.5
2.5 0.5
3.5 0.5

) 

1 11.3963  (
2.0000
0.8333

) (
0.7811
0.6244

) 1.1495 (
2.8978
1.5510

) 20.693 0.2777  

2 21.3585 (
2.1283
0.9356

) (
0.7802
0.6256

) 0.9845 (
2.8964
1.5518

) 20.6992 0.2778 

100% 

Boundary 

Points 

(
0.5 0
0.5 1.5
2 1.5

)  

(
2 1
3 0
3 1.5

) 

1 23.2655 (
1.8333
0.9167

) (
0.7812
0.6243

) 1.1495 (
2.7312
1.6343

) 20.1932 0.2961  

2 29.6409 (
1.9616
1.0192

) (
0.7812
0.6243

) 0.9853 (
2.7313
1.6343

) 20.1937 0.2970 

3 29.3818 (
2.0661
1.1098

) (
0.7793
0.6266

) 0.8434 (
2.7333
1.6382

) 20.1693 0.2970 

50% Vertex 

Points and 

50% Interior 

Points 

(
0 1
2 0
2 2

)  

(
2.5 1.5
2.5 0.5
3.5 0.5

) 

1 29.2928 (
2.0833
0.9167

) (
0.7807
0.6249

) 1.0260 (
2.8842
1.5578

) 20.6522 0.2792 

2 31.7919 (
2.1977
1.0083

) (
0.7810
0.6245

) 0.8794 (
2.8845
1.5574

) 20.6521 0.2792 

50% Vertex 

Points and 

50% 

Boundary 

Points 

(
0 0
2 0
2 2

)  

(
2 1.5
3 0
3 0.5

) 

1 13.1045 (
1.8333
0.6667

) (
0.7810
0.6245

) 1.3957 (
2.9233
1.5383

) 20.7697 0.2749 

2 8.8570 (
1.9890
0.7912

) (
0.7810
0.6245

) 1.1964 (
2.9233
1.5383

) 20.7697 0.2749 

50% Interior  

Points and 

50% 

Boundary  

Points 

(
0.5 0.5
1.5 0.5
1.5 2

)  

 

(
2 2
2 0.5

3.5 0
) 

1 32.8007 (
1.6667
0.9167

) (
0.7802
0.6255

) 1.2308 (
2.6269
1.6865

) 19.8805 0.3079 

2 57.3787 (
1.9467
1.0266

) (
0.7810
0.6245

) 0.9853  (
2.7162
1.6419

) 20.1486 0.2978 

3 68.8992 (
2.0490
0.9041

) (
0.7808
0.6257

) 1.0544 (
2.8722
1.5638

) 20.6162 0.2805 

4 8.8451 (
1.9593
1.4132

) (
0.7809
0.6246

) 0.5981  (
2.4263
1.7867

) 19.2783 0.3304 

3.2 Illustration 2 

We consider the minimization of 

f(x) = 3x1 + 2x2 

Subject to: 2x1 + x2 ≥ 6  
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x1 + x2 ≥ 4 

x1 + 2x2 ≥ 6 

x1, x2 ≥ 0 

Again to solve the problem using the Quick Convergent Inflow Algorithm on segmented regions, each of the six 

proportional allocation criteria is employed. The results obtained using 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 6] 

S2 = [x1, x2: 3 ≤ x1 ≤ 6, 1 ≤ x2 ≤ 6] 

and the selection criteria are as tabulated in Table 2. 

Table 2. Summary statistics for illustration 2 

Criterion Design 

measures 

defined on 

the s 

segments 

Iterative 

step r 

Determinant 

value of the 

average 

information 

matrix 

Starting 

point 

Normalized 

direction 

vector 

Step-length Optimal 

point 

reached 

Value of 

objective 

function 

Variance 

of 

optimizer 

100% 

Vertex 

Points 

 

(
0 6
3 1.6
3 6

)  

(
3 1.6
3 6
6 0

) 

1 1055.2556 (
3.0000
3.5333

) (
0.8320
0.5548

) 1.0644 (
2.1145
2.9428

) 11.9504 0.2379 

2 1101.2223 (
2.8643
3.4428

) (
0.8321
0.5547

) 1.4293 (
1.6750
2.6500

) 10.325 0.3052 

3 739.0492 (
2.6750
2.9643

) (
0.8326
0.5538

) 1.0429 (
1.8067
2.3868

) 9.1158 0.4076 

100% 

Interior 

Points 

 

(
2.5 5.5
1.5 4.5
2 3

)  

 

(
4.5 5
5 2

3.5 3
) 

1 468.5989 (
3.1667
3.8333

) (
0.8301
0.5576

) 1.5452 (
1.8841
2.9717

) 10.5120 0.2848 

2 541.1838 (
2.9478
3.6863

) (
0.8324
0.5542

) 1.6142 (
1.6042
2.7918

) 10.3962 0.2894 

3 372.7110 (
2.8198
3.2994

) (
0.8318
0.5550

) 1.3247 (
1.7180
2.5642

) 10.2824 0.3149 

4 314.8463 (
2.8510
3.0229

) (
0.8315
0.5555

) 1.2283 (
1.8297
2.3406

) 10.1703 0.3399 

5 430.5721 (
2.8266
2.9287

) (
0.8314
0.5556

) 1.1639 (
1.8590
2.2821

) 10.1412 0.3463 

6 300.2125 (
2.8638
2.8541

) (
0.8321
0.5546

) 1.1636 (
1.8956
2.2088

) 10.1044 0.3541 

7 307.8947 (
2.9004
2.7708

) (
0.8308
0.5565

) 1.1594 (
1.9372
2.1256

) 10.0628 0.3627 

8 273.4995 (
2.9316
2.7082

) (
0.8322
0.5545

) 1.1589 (
1.9672
2.0656

) 10.0328 0.3687 

9 324.7780 (
2.9513
2.6689

) (
0.8325
0.5540

) 1.1589 (
1.9866
2.0269

) 10.0136 0.3724 

10 326.9602 (
2.9696
2.6324

) (
0.8315
0.5556

) 1.1502 (
2.0059
1.9885

) 10.0267 0.3737 

100% 

Boundary 

Points 

(
1.5 3
3 4

0.5 6
)  

 

(
3 3

4.5 6
6 1

) 

1 1079.8625 (
3.0833
3.8333

) (
0.8323
0.5543

) 1.8026 (
1.5830
2.8342

) 10.4174 0.2847 

2 232.3160 (
2.8690
3.6906

) (
0.8317
0.5552

) 1.5454 (
1.5837
2.8342

) 10.4163 0.2849 

3 1256.9662 (
2.6667
3.5238

) (
0.8330
0.5533

) 1.2874 (
1.5943
2.8115

) 10.4059 0.2872 

4 1289.5964 (
2.8230
3.0683

) (
0.8306
0.5569

) 1.2237 (
1.8066
2.3869

) 10.1936 0.3348 

5 1162.5872 (
2.8668
2.9807

) (
0.8309
0.5565

) 1.2236 (
1.8502
2.2998

) 10.1502 0.3443 

6 1124.7568 (
2.9050
2.9044

) (
0.8318
0.5551

) 1.2234 (
1.8874
2.2253

) 10.1128 0.3524 

7 1141.4748 (
2.9484
2.8176

) (
0.8314
0.5557

) 1.2235 (
1.9312
2.1378

) 10.0692 0.3615 

8 1090.8381 (
2.1378
2.7214

) (
0.8289
0.5594

) 0.4497 (
1.7651
2.4699

) 10.2351 0.3255 
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50% Vertex 

Points, 50% 

Interior 

Points 

(
3 6
3 1.6
2 2.1

)  

(
5 5

3.5 2.5
5.5 1.5

) 

1 487.2584 (
3.6667
3.1167

) (
0.8319
0.5549

) 2.0057 (
1.9982
2.0038

) 10.0022 0.3746 

2 462.8439 (
3.4283
2.9577

) (
0.8320
0.5548

) 1.7191 (
1.9981
2.0040

) 10.0023 0.3746 

50% Vertex 

Points, 50% 

Boundary 

Points 

(
0 6
2 2.1
3 6

)  

 

(
3 2

4.5 6
6 4

) 

1 1031.1700 (
3.0833
4.3500

) (
0.8317
0.5553

) 2.0357 (
1.3903
3.2196

) 10.6101 0.2439 

2 1007.8026 (
2.5843
4.1885

) (
0.8315
0.5555

) 1.5132 (
1.3261
3.3480

) 10.6743 0.2313 

3 1070.7775 (
2.6023
3.8097

) (
0.8313
0.5558

) 1.3588 (
1.4728
3.0545

) 10.5274 0.2609 

4 323.0309 (
2.8127
3.3889

) (
0.8319
0.5549

) 1.3586 (
1.6825
2.6351

) 10.3177 0.3069 

5 259.5635 (
2.8637
3.2870

) (
0.8322
0.5544

) 1.5524 (
1.5718
2.4264

) 9.5682 0.3589 

50% 

Boundary 

Points, 50% 

Interior 

Points 

(
1.5 3
2 6
3 2

)  

 

(
3.5 5.5
5.5 3
46 2

) 

1 547.2867 (
3.2500
3.5833

) (
0.8037
0.5951

) 1.8539 (
1.7601
2.4801

) 10.2405 0.3244 

2 578.6832 (
3.0372
3.4258

) (
0.8326
0.5539

) 1.5773 (
1.724

2.5522
) 10.2764 0.3163 

3 265.8628 (
2.9977
2.9332

) (
0.8318
0.5551

) 1.3200 (
1.8998
2.2005

) 10.1004 0.3550 

4 491.2263 (
2.8406
2.9618

) (
0.8315
0.5555

) 1.1913 (
1.8501
2.3001

) 10.1505 0.3443 

3.3 Illustration 3 

We consider the maximization of 

 f(x)  = 3x1 + 4x2 

 subject to 

  4x1 + 3x2≤12 

 4x1 + x2≤8 

 x1- x2≤8 

 x1, x2 ≥ 0 

The results obtained using the 2 segments defined by  

S1 = [x1, x2: 0 ≤ x1 ≤ 0.75, 0 ≤ x2 ≤ 4] 

S2 = [x1, x2: 0.75 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4] 

and the selection criteria are as tabulated in Table 3. 

Table 3. Summary statistics for illustration 3 

Criterion Design 

measures 

defined on 

the s 

segments 

Iterative 

step r 

Determinant 

value of the 

average 

information 

matrix 

Starting 

point 

Normalized 

direction 

vector 

Step-length Optimal 

point 

reach 

Value of 

objective 

function 

Variance 

of 

optimizer 

100% 

Vertex 

Points 

 

(
0 4

0.75 0
0.75 3

)  

 

(
0.75 0
1.5 2
2 0

) 

1 92.6556 (
0.9583
1.5000

) (
0.8321
0.5546

) 0.6868 (
1.5298
1.8750

) 8.3394 0.5123 

2 113.7356 (
1.0400
1.5536

) (
0.8325
0.5540

) 0.5887 (
1.5300
1.8797

) 8.3494 0.5107 

3 106.0603 (
1.1514
1.8221

) (
0.8325
0.5540

) 0.3862 (
1.4729
2.0360

) 8.4907 0.4751 

4 84.8608 (
1.0761
2.1130

) (
0.8337
0.5523

) 0.2718 (
1.3026
2.2631

) 8.4907 0.4400 

100% 

Interior 

Points 

(
0.25 3
0.5 2

0.25 1
)  

(
1 2
1 1

1.5 1
) 

1 26.1030 (
0.7500
1.6667

) (
0.8320
0.5548

) 0.8012 (
1.4165
2.1112

) 8.4719 0.4641 

2 34.7830 (
0.8452
1.7302

) (
0.8321
0.5546

) 0.6868 (
1.4166
2.1112

) 8.4722 0.4641 

3 5.2538 (
0.9047
1.8889

) (
0.8322
0.5545

) 0.5437 (
1.3571
2.1903

) 8.4519 0.3550 
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100% 

Boundary 

Points 

(
0 3

0.5 0
0.75 2

)  

(
0.75 1
1.25 0
1.5 2

) 

1 21.0741 (
0.7917
1.3333

) (
0.8320
0.5548

) 0.9014 (
1.5416
1.8333

) 8.2914 0.5229 

2 31.4760 (
0.8988
1.4048

) (
0.8321
0.5546

) 0.7726 (
1.5416
1.8332

) 8.2912 0.5232 

50% 

Vertex 

Points, 

50% 

Interior 

Points 

(
0 4

0.75 3
0.75 0

)  

(
1.25 2
1.5 1
1 1

) 

1 36.6088 (
0.8750
1.8333

) (
0.8322
0.5545

) 0.6009 (
1.3750
2.1664

) 8.4578 0.4557 

2 35.9836 (
0.9464
1.8809

) (
0.8317
0.5552

) 0.5151 (
1.3748
2.1668

) 8.458 0.4556 

3 37.2041 (
1.0000
2.0476

) (
0.8323
0.5543

) 0.3720 (
1.3096
2.2537

) 8.4362 0.4416 

50% 

Vertex 

Points, 

50% 

Boundary 

Points 

(
0 4
0 0

0.75 3
)  

(
0.75 1
1.25 0
1.75 1

) 

1 85.4472 (
0.7500
1.5000

) (
0.8321
0.5546

) 0.9014 (
1.5000
1.9999

) 8.4998 0.4800 

2 78.0656 (
0.8571
1.5714

) (
0.8322
0.5544

) 0.7726 (
1.5000
1.9997

) 8.4994 0.4801 

3 58.3975 (
0.8929
1.8571

) (
0.8320
0.5548

) 0.523 (
1.3690
2.1746

) 8.4562 0.4543 

50% 

Boundary 

Points, 

50% 

Interior 

Points 

(
0 2

0.5 0
0.75 1

)  

 

(
1 2
1 1

1.5 1
) 

1 4.2196 (
0.7917
1.1667

) (
0.8321
0.5547

) 0.9442 (
1.5773
1.6904

) 8.1127 0.5612 

2 6.8232 (
0.9039
1.2415

) (
0.8320
0.5548

) 0.8094 (
1.5773
1.6905

) 8.1129 0.5612 

3 8.2761 (
0.8435
1.3401

) (
0.8321
0.5547

) 0.8462 (
1.5476
1.8094

) 8.2616 0.5292 

4 5.4774 (
0.9932
1.4558

) (
0.8321
0.5547

) 0.6622 (
1.5442
1.8231

) 8.2788 0.5256 

5 3.3003 (
0.9932
1.4558

) (
0.8321
0.5547

) 0.5887 (
1.5607
1.7569

) 8.1959 0.5432 

 
4. Results and Discussion 

In proposing rules for identifying the initial design points for use in the Quick Convergent Inflow Algorithm on 

segmented regions, the proposed method of proportional allocation of points in identifying the design points to go into 

the initial design measures for use in the Quick Convergent Inflow Algorithm on segmented regions has been examined 

numerically. The allocation of 100% vertex points, 100% interior points and 100% boundary points as well as the 

allocation of 50% vertex and 50% boundary points, 50% vertex and 50% interior points and 50% interior and 50% 

boundary points were investigated. The following results were observed on the behaviour of vertex points, boundary 

points and interior points for each illustration considered. 

4.1 Observations using Illustration 1 

With 100% vertex points, the algorithm converged at f(𝑥2
∗) = 20.6936. The result was obtained at the second iteration. 

With 100% interior points, the algorithm converged at f(𝑥1
∗) = 20.693. The result was obtained at the first iteration. With 

100% boundary points, the algorithm converged at f(𝑥1
∗) = 20.1937. The result was obtained at the second iteration. 

With 50% vertex points, 50% interior points, the algorithm converged at f(𝑥1
∗) = 20.6522. The result was obtained at the 

first iteration. With 50% vertex points, 50% boundary points, the algorithm converged at f(𝑥1
∗) = 20.7697. The result 

was obtained at the first iteration. With 50% interior points, 50% boundary points, the algorithm converged at f(𝑥1
∗) = 

20.6162. The result was obtained at the third iteration. 

4.2 Observations using Illustration 2 

With 100% vertex points, the algorithm converged at f(𝑥2
∗) = 10.325. The result was obtained at the second iteration. 

With 100% interior points, the algorithm converged at f(𝑥1
∗) = 10.0136. The result was obtained at the ninth iteration. 

With 100% boundary points, the algorithm converged at f(𝑥1
∗) = 10.0692. The result was obtained at the seventh 

iteration. With 50% vertex points, 50% interior points, the algorithm converged at f(𝑥1
∗) = 10.0022. The result was 

obtained at the first iteration. With 50% vertex points,50% boundary points, the algorithm converged at f(𝑥1
∗) = 10.3177. 

The result was obtained at the fourth iteration. With 50% interior points,50% boundary points, the algorithm converged 

at f(𝑥1
∗) = 10.1004. The result was obtained at the third iteration. 

4.3 Observations using Illustration 3 

With 100% vertex points, the algorithm converged at f(𝑥2
∗) = 8.4907. The result was obtained at the third iteration. With 

100% interior points, the algorithm converged at f(𝑥1
∗) = 8.4722. The result was obtained at the second iteration. With 
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100% boundary points, the algorithm converged at f(𝑥1
∗) = 8.2914. The result was obtained at the first iteration. With 50% 

vertex points, 50% interior points, the algorithm converged at f(𝑥1
∗) = 8.458. The result was obtained at the second 

iteration. With 50% vertex points, 50% boundary points, the algorithm converged at f(𝑥1
∗) = 8.4998. The result was 

obtained at the first iteration. With 50% interior points, 50% boundary points, the algorithm converged at f(𝑥1
∗) = 8.2788. 

The result was obtained at the fourth iteration. 

It is important to note that the initial design for use in the algorithm plays an integral role in the location of the optimizer 

in any linear programming problem. As seen in the work, rules based on a combination of design points comprising of 50% 

vertex points and 50% interior points or 50% vertex points and 50% boundary points seem helpful. For the three 

illustrations considered, the average number of iterations made by using the 100% vertex points criterion is 3. The 

average number of iterations made by using the 100% interior points criterion is 5. The average number of iterations 

made by using the 100% boundary points criterion is 4. The average number of iterations made by using the 50% vertex 

points and 50% interior points criterion is 2. The average number of iterations made by using the 50% vertex points and 

50% boundary points criterion is 3. The average number of iterations made by using the 50% boundary points and 50% 

interior points criterion is 4. These results seem to suggest that a combination of design points comprising of 50% vertex 

points and 50% interior points or 50% vertex points and 50% boundary points forms helpful rules in identifying the initial 

design points for use in the Quick Convergent Inflow Algorithm. With these combinations, a moderate number of 

iterations are needed to reach the required optimal or near-optimal solution. It may be possible to compare these results 

with proportions that involve combinations of design points from three of vertex, interior and boundary points. 

References 

Atkinson, A. C., & Donev, A. N. (1992). Optimum Experimental Designs, Oxford: Oxford University Press. 

Chigbu, P. E., & Ukaegbu, E. C. (2013). On the precision and Mean Square Error Matrices: Approaches in Obtaining 

Direction vector for Optimization Polynomial Response Surfaces. Journal of the Nigerian Statistical Association, 

25, 13-30. 

Ekezie, D. D., & Nzenwa, U. (2013). Using Experimental Design Procedure in Solving Linear Programming Problem. 

International journal of Current Research, 5(5), 1093-1100. 

Ekezie, D. D., Ekechukwu, C. A., & Onukogu, I. B. (2013). An Experimental Design Method for Solving Constrained 

Optimization Problem. The international journal of Engineering and Science, 2(6), 28-39. 

Iwundu, M. P. (2008). An Improvement on the starting point for use in constructing D-Optimal Exact Designs. Journal 

of the Nigerian Statistical Association, 20, 34-44. 

Iwundu, M. P. (2010). On the choice of initial tuple of support points for quadratic response surface designs. African 

Journal of Physical Sciences, 3(2), 1-10.   

Iwundu, M. P., & Abolaji, E. (2014). Starting design for use in variance exchange algorithms. Scientia Africana, 13(2), 

36-46. 

Iwundu, M. P., & Ebong, D. W. (2014). Modified Quick Convergent Inflow Algorithm for Solving Linear 

Programming Problems. International Journal of Statistics and Probability, 3(4), 54-66.  

Iwundu, M. P., & Hezekiah, J. E. (2014). Algorithmic approah to solving Linear Programming Problems on segmented 

regions. Asian Journal of Mathematics and Statistics, 7(2), 40-59. 

Odiakosa, O., & Iwundu, M. (2013). A Quick Convergent Inflow Algorithm for Solving Linear Programming Problems. 

Journal of Stat. Appl. And Probability, 2(2), 103-114. 

Onukogu, I. B. (1997). Foundations of optimal exploration of response surfaces. Ephrata press, Nsukka, Nigeria. 

Onukogu, I. B., & Iwundu, M. P. (2007). A Combinatorial Procedure for Constructing D- Optimal Designs. Statistica, 

67(4), 415-423. 

Umoren, M. U. (1999). A maximum Norm Exchange Algorithm for Solving Linear Programming Problems. Journal of 

the Nigerian Statistical Association, 13, 39-56. 

Umoren, M. U., & Etukudo, I. A. (2010). A Modified Super Convergent Line Series Algorithm for Solving 

Unconstrained Optimization Problems. Journal of Modern Mathematics and Statistics, 4(4), 115-122.  

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


